1
|
Lu T, Wang Y, Liu F, Zhang L, Huang S, Zhou Y, Wu H, Mao Y, Jin C, Song W. Synergistic Inhibitory Effect of Berberine and Low-Temperature Plasma on Non-Small-Cell Lung Cancer Cells via PI3K-AKT-Driven Signaling Axis. Molecules 2023; 28:7797. [PMID: 38067530 PMCID: PMC10708101 DOI: 10.3390/molecules28237797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Low-temperature plasma (LTP) is an emerging biomedical technique that has been proposed as a potential approach for cancer therapy. Meanwhile, berberine (BER), an active ingredient extracted from various medical herbs, such as Coptischinesis, has been proven antitumor effects in a broad spectrum of cancer cells. In this study, we seek to develop a novel dual cancer therapeutic method by integrating pre-administration of BER and LTP exposure and evaluating its comprehensive antitumor effect on the human non-small-cell lung cancer (NSCLC) cell lines (A549 and H1299) in vitro. Cell viability, cell cycle, cell apoptosis, and intracellular and extracellular ROS were investigated. The results showed that cotreatment of BER and LTP significantly decreased the cell viability, arrested the cell cycle in the S phase, promoted cell apoptosis, and increased intracellular and extracellular ROS. Additionally, RNA Sequencing (RNA-Seq) technology was used to explore potential mechanisms. The differentially expressed genes among different treatment groups of NSCLC cells were analyzed and were mainly enriched in the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Moreover, cotreatment of BER and LTP notably depressed the total protein expression level of PI3K and AKT with immunoblotting. In conclusion, BER and LTP have a synergistic inhibitory effect on NSCLC cells via the PI3K-AKT signaling pathway, which could provide a promising strategy for supplementary therapy in the anti-NSCLC battle.
Collapse
Affiliation(s)
- Tingting Lu
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China; (T.L.); (Y.W.); (L.Z.); (S.H.); (Y.M.)
- Anhui Province Key Laboratory of Medical Physics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (F.L.); (Y.Z.); (H.W.)
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Wang
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China; (T.L.); (Y.W.); (L.Z.); (S.H.); (Y.M.)
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Fang Liu
- Anhui Province Key Laboratory of Medical Physics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (F.L.); (Y.Z.); (H.W.)
| | - Lu Zhang
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China; (T.L.); (Y.W.); (L.Z.); (S.H.); (Y.M.)
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Simin Huang
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China; (T.L.); (Y.W.); (L.Z.); (S.H.); (Y.M.)
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yuanyuan Zhou
- Anhui Province Key Laboratory of Medical Physics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (F.L.); (Y.Z.); (H.W.)
| | - Hui Wu
- Anhui Province Key Laboratory of Medical Physics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (F.L.); (Y.Z.); (H.W.)
| | - Yanmei Mao
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei 230012, China; (T.L.); (Y.W.); (L.Z.); (S.H.); (Y.M.)
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chufeng Jin
- Key Laboratory of Neutronics and Radiation Safety, Chinese Academy of Sciences, Hefei 230031, China
- International Academy of Neutron Science, Qingdao 266199, China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (F.L.); (Y.Z.); (H.W.)
| |
Collapse
|
2
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
3
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
4
|
Repurposing cabozantinib with therapeutic potential in KIT-driven t(8;21) acute myeloid leukaemias. Cancer Gene Ther 2022; 29:519-532. [PMID: 33833412 PMCID: PMC9113930 DOI: 10.1038/s41417-021-00329-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Cabozantinib is an orally available, multi-target tyrosine kinase inhibitor approved for the treatment of several solid tumours and known to inhibit KIT tyrosine kinase. In acute myeloid leukaemia (AML), aberrant KIT tyrosine kinase often coexists with t(8;21) to drive leukaemogenesis. Here we evaluated the potential therapeutic effect of cabozantinib on a selected AML subtype characterised by t(8;21) coupled with KIT mutation. Cabozantinib exerted substantial cytotoxicity in Kasumi-1 cells with an IC50 of 88.06 ± 4.32 nM, which was well within clinically achievable plasma levels. The suppression of KIT phosphorylation and its downstream signals, including AKT/mTOR, STAT3, and ERK1/2, was elicited by cabozantinib treatment and associated with subsequent alterations of cell cycle- and apoptosis-related molecules. Cabozantinib also disrupted the synthesis of an AML1-ETO fusion protein in a dose- and time-dependent manner. In a mouse xenograft model, cabozantinib suppressed tumourigenesis at 10 mg/kg and significantly prolonged survival of the mice. Further RNA-sequencing analysis revealed that mTOR-mediated signalling pathways were substantially inactivated by cabozantinib treatment, causing the downregulation of ribosome biogenesis and glycolysis, along with myeloid leukocyte activation. We suggest that cabozantinib may be effective in the treatment of AML with t(8;21) and KIT mutation. Relevant clinical trials are warranted.
Collapse
|
5
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Ashley Bui
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chunhui Jiang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renee M McKay
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura J Klesse
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Comprehensive Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Shang R, Song X, Wang P, Zhou Y, Lu X, Wang J, Xu M, Chen X, Utpatel K, Che L, Liang B, Cigliano A, Evert M, Calvisi DF, Chen X. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut 2021; 70:1746-1757. [PMID: 33144318 PMCID: PMC8089119 DOI: 10.1136/gutjnl-2020-320716] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with limited treatment options. Cabozantinib, an orally bioavailable multikinase inhibitor is now approved by Food and Drug Administration (FDA) for HCC patients. We evaluated the therapeutic efficacy of cabozantinib, either alone or in combination, in vitro and in vivo. DESIGN Human HCC cell lines and HCC mouse models were used to assess the therapeutic efficacy and targeted molecular pathways of cabozantinib, either alone or in combination with the pan-mTOR inhibitor MLN0128 or the checkpoint inhibitor anti-PD-L1 antibody. RESULTS Cabozantinib treatment led to stable disease in c-Met/β-catenin and Akt/c-Met mouse HCC while possessing limited efficacy on Akt/Ras and c-Myc liver tumours. Importantly, cabozantinib effectively inhibited c-MET and ERK activity, leading to decreased PKM2 and increased p21 expression in HCC cells and in c-Met/β-catenin and Akt/c-Met HCC. However, cabozantinib was ineffective in inhibiting the Akt/mTOR cascade. Intriguingly, a strong inhibition of angiogenesis by cabozantinib occurred regardless of the oncogenic drivers. However, cabozantinib had limited impact on other tumour microenvironment parameters, including tumour infiltrating T cells, and did not induce programmed death-ligand 1 (PD-L1) expression. Combining cabozantinib with MLN0128 led to tumour regression in c-Met/β-catenin mice. In contrast, combined treatment with cabozantinib and the checkpoint inhibitor anti-PD-L1 antibody did not provide any additional therapeutic benefit in the four mouse HCC models tested. CONCLUSION c-MET/ERK/p21/PKM2 cascade and VEGFR2-induced angiogenesis are the primary targets of cabozantinib in HCC treatment. Combination therapies with cabozantinib and mTOR inhibitors may be effective against human HCC.
Collapse
Affiliation(s)
- Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shaanxi, China,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of General Surgery, The 910 Hospital, Quanzhou, Fujian, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Collaborative Innovation Center for Agricultural Product Processing and Nutrition & Health, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinjun Lu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of Hepatic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jingxiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, Beijing, China
| | - Meng Xu
- Department of General Surgery, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Chen
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,R&D Center, Legend Biotech USA Inc, Piscataway, New Jersey, USA
| | - Binyong Liang
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Su B, Huang T, Jin Y, Yin H, Qiu H, Yuan X. Apatinib exhibits synergistic effect with pyrotinib and reverses acquired pyrotinib resistance in HER2-positive gastric cancer via stem cell factor/c-kit signaling and its downstream pathways. Gastric Cancer 2021; 24:352-367. [PMID: 33030616 PMCID: PMC7902570 DOI: 10.1007/s10120-020-01126-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recently, progress has been made in the development of targeted therapies for human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC). However, drug resistance has severely limited the efficacy of anti-HER2 therapies. Pyrotinib is a novel pan-HER inhibitor. Although it is effective in HER2-positive GC treatment, its efficacy in combination with apatinib and associated resistance mechanisms in HER2-positive GC remains unclear. METHODS In this study, the combination effects of pyrotinib and apatinib were examined in two pyrotinib-sensitive GC cells and xenografts. The RNA sequencing was used to determine the underlying mechanisms of acquired pyrotinib resistance. The role of imatinib and apatinib in reversing pyrotinib resistance was tested in pyrotinib-resistant cells and xenografts. RESULTS Here, we reported that a combination of pyrotinib and apatinib exhibits synergistic effect in HER2-positive NCI-N87 xenografts, and showed enhanced antitumor efficacy in HER2-positive GC, both in vitro and in vivo. Moreover, up-regulation of the stem cell factor (SCF) levels, and the PI3K/AKT and MAPK pathways was associated with acquired pyrotinib resistance in HER2-positive GC. Mechanistically, we demonstrated that the activation of the SCF/c-kit signaling and its downstream PI3K/AKT and MAPK pathways mediated pyrotinib resistance by promoting cell survival and proliferation. Imatinib and apatinib augmented the sensitivity of pyrotinib-resistant cells and xenografts to pyrotinib, by blocking SCF/c-kit signaling. CONCLUSION These results highlight the effectiveness of pyrotinib combined with apatinib in HER2-positive GC and acquired pyrotinib resistance, thus providing a theoretical basis for new treatment methods.
Collapse
Affiliation(s)
- Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Tyrosine kinase inhibitors (TKIs) are the backbone for advanced gastrointestinal stromal tumor (GIST) treatment. The increasing knowledge concerning the structure and the changing conformational status because of some mutations in KIT and PDGFRα, allowed the development of new efficient compounds, with the main goal to overcome resistance in GIST. This review summarizes the latest developments in the treatment of GIST patients. RECENT FINDINGS Amongst the several TKIs currently being studied in GIST, ripretinib, avapritinib and crenolanib had shown promising potent activity in preclinical studies and clinical trials. Ripretinib is a type II inhibitor that exerts its main action in the switch pocket of the activation loop, by mimicking the inhibition exerted by the regulatory region in this domain. Ripretinib is considered the new standard in the fourth line in advanced GIST. Avapritinib is a type I inhibitor synthesized to exerts its activity in the active conformation of the activation loop of KIT and PDFGRα. The relevant activity reported with avapritinib in patients carrying the D842 v mutation represents, for first time, an active therapeutic option in this resistant mutant. Crenolanib is a type I selective inhibitor of PDGFRα-resistant mutants, mainly D842 V, which is currently under clinical trial. SUMMARY New potent TKIs are being approved, adding value to the already three registered drugs. Other agents, such as MEK inhibitors, immunotherapy and TRK-targeted therapy are potential new options in specific subsets of GIST patients.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Sarcomas are a diverse group of rare solid tumors with limited treatment options for patients with advanced, inoperable disease. Cabozantinib is a tyrosine kinase inhibitor currently approved for advanced renal cell, hepatocellular, and medullary thyroid carcinoma. Cabozantinib has potent activity against a variety of kinases, including MET, vascular endothelial growth factor receptor, and AXL, that are associated with sarcoma growth and development. Here we review the preclinical findings and clinical development of cabozantinib in the treatment of soft tissue sarcoma, gastrointestinal stromal tumors (GIST), osteosarcoma, and Ewing sarcoma. RECENT FINDINGS In vitro, cabozantinib has shown relevant activity in inhibiting the growth and viability of soft tissue sarcoma, GIST, osteosarcoma, and Ewing sarcoma tumor cell lines. Cabozantinib also promoted the regression of GIST in various murine xenografts, including imatinib-resistant models. More than 10 prospective trials with cabozantinib that included patients with sarcomas have been completed or are currently ongoing. Clinical activity with cabozantinib has been recently reported in phase 2 clinical trials for patients with GIST and for patients with osteosarcoma or Ewing sarcoma. SUMMARY Cabozantinib has shown promising activity for the treatment of various sarcomas, supporting further evaluation in this setting.
Collapse
|
10
|
Martorana A, Lauria A. Design of antitumor drugs targeting c-kit receptor by a new mixed ligand-structure based method. J Mol Graph Model 2020; 100:107666. [PMID: 32659630 DOI: 10.1016/j.jmgm.2020.107666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
An important challenge, in the medicinal chemistry field, is the research of novel forceful drugs to overcome tumor-acquired resistance. The c-Kit tyrosine kinase receptor (TKR) represents a suitable target for the carcinogenesis control of gastro-intestinal stromal (GIST), leukemia, and mastocytosis tumors; nevertheless, several hotspot mutations of the protein limit the efficacy of a few clinical administered TKRs inhibitors. In this study, a new in silico protocol based on ligand and structure-based combined method is proposed, with the aim to identify a set of new c-Kit inhibitors able to complex c-Kit mutated proteins. A recent and freely available web-server DRUDIT is used for the ligand-based method. The protocol application allows for identifying a new generation of potential TKR inhibitors, which, in silico, complex the V654A and T670I mutated proteins and potentially overcome resistant mutations (D816H). The structure-based analysis is performed by Induced Fit Docking (IFD) studies. The comparison between the explored ligands and well-known drugs highlights the possibility to overcome tumor-acquired resistance. The best-selected structures (630705 and SML1348) provide valuable binding affinities with the mutated c-Kit forms (respectively T670I and V654A).
Collapse
Affiliation(s)
- Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Viale delle Scienze - Ed. 17, 90128, Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Viale delle Scienze - Ed. 17, 90128, Palermo, Italy.
| |
Collapse
|
11
|
Schöffski P, Mir O, Kasper B, Papai Z, Blay JY, Italiano A, Benson C, Kopeckova K, Ali N, Dileo P, LeCesne A, Menge F, Cousin S, Wardelmann E, Wozniak A, Marreaud S, Litiere S, Zaffaroni F, Nzokirantevye A, Vanden Bempt I, Gelderblom H. Activity and safety of the multi-target tyrosine kinase inhibitor cabozantinib in patients with metastatic gastrointestinal stromal tumour after treatment with imatinib and sunitinib: European Organisation for Research and Treatment of Cancer phase II trial 1317 'CaboGIST'. Eur J Cancer 2020; 134:62-74. [PMID: 32470848 DOI: 10.1016/j.ejca.2020.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Gastrointestinal stromal tumour (GIST) is commonly treated with tyrosine kinase inhibitors (TKIs), but most patients ultimately develop secondary resistance. Cabozantinib, a multi-targeted TKI inhibitor, has activity in patient-derived GIST mouse xenograft models and can overcome compensatory MET signalling occurring on TKI treatment. European Organisation for Treatment of Cancer (EORTC) 1317 'CaboGIST' assessed the safety and activity of cabozantinib in patients with GIST who had progressed on imatinib and sunitinib. METHODS In this multi-center, open label, single arm phase II study, eligible GIST patients received oral cabozantinib (60 mg) once daily. Primary end-point was the progression-free survival rate at 12 weeks assessed by the local investigator per Response Evaluation Criteria in Solid Tumours 1·1. If at least 21 of the first 41 eligible and evaluable patients were progression-free at week 12, the activity of cabozantinib was sufficient to warrant further exploration according to the A'Hern one-stage study design. FINDINGS A total of 50 eligible patients started treatment between 02/2017 and 08/2018, including four (8%) still continuing cabozantinib at clinical cut-off (09/2019). The number of 3-weekly treatment cycles ranged from 1 to 30. Among the first 41 eligible and evaluable patients, 24 were progression-free at week 12 (58·5%, 95% confidence interval [CI] 42·0-74·0%). Among all 50 patients, 30 were progression-free at week 12 (60%, 95% CI 45-74%). Seven patients achieved a partial response (14%, 95% CI 6-27%), and 34 had stable disease (68%, 95% CI 53-80%) as best response. Progression was seen in eight patients (16%, 95% CI 7-29%), and one was not evaluable. Disease control was achieved in 41 patients (82%, 95% CI 69-91%). Median progression-free survival was 5·5 months (95% CI 3·6-6·9). The most common adverse events were diarrhoea (76%), palmar-plantar erythrodysesthesia syndrome (60%), fatigue (50%), hypertension (42%), weight loss (40%) and oral mucositis (30%), with 32 (64%) patients requiring dose reductions, 27 (54%) having treatment interruptions and no cabozantinib-related deaths observed. INTERPRETATION EORTC 1317 met its primary end-point, with 24/41 patients being progression-free at week 12 of treatment. The objective response was 14% with an encouraging disease control rate of 82%. Results of this trial confirm preclinical findings and warrant further exploration of cabozantinib in GIST. CLINICAL TRIAL NUMBERS EORTC 1317, NCT02216578, EudraCT 2014-000501-13.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, and Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium.
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Bernd Kasper
- Sarcoma Unit, Interdisciplinary Tumor Center Mannheim, Mannheim University Medical Center, Mannheim, Germany
| | | | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, NETSARC+, LYRICAN, and Université Claude Bernard Lyon I, Lyon, France
| | | | | | | | - Nasim Ali
- Clatterbridge Cancer Centre, Wirral, United Kingdom
| | - Palma Dileo
- Sarcoma Unit, University College London, United Kingdom
| | - Axel LeCesne
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Franka Menge
- Sarcoma Unit, Interdisciplinary Tumor Center Mannheim, Mannheim University Medical Center, Mannheim, Germany
| | | | | | - Agnieszka Wozniak
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, and Department of Oncology, KU Leuven, Laboratory of Experimental Oncology, Leuven, Belgium
| | - Sandrine Marreaud
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Saskia Litiere
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Facundo Zaffaroni
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | | | - Isabelle Vanden Bempt
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Kumar R, Harilal S, Gupta SV, Jose J, Thomas Parambi DG, Uddin MS, Shah MA, Mathew B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem 2019; 182:111602. [PMID: 31421629 PMCID: PMC7127402 DOI: 10.1016/j.ejmech.2019.111602] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Drug discovery and development are long and financially taxing processes. On an average it takes 12-15 years and costs 1.2 billion USD for successful drug discovery and approval for clinical use. Many lead molecules are not developed further and their potential is not tapped to the fullest due to lack of resources or time constraints. In order for a drug to be approved by FDA for clinical use, it must have excellent therapeutic potential in the desired area of target with minimal toxicities as supported by both pre-clinical and clinical studies. The targeted clinical evaluations fail to explore other potential therapeutic applications of the candidate drug. Drug repurposing or repositioning is a fast and relatively cheap alternative to the lengthy and expensive de novo drug discovery and development. Drug repositioning utilizes the already available clinical trials data for toxicity and adverse effects, at the same time explores the drug's therapeutic potential for a different disease. This review addresses recent developments and future scope of drug repositioning strategy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Muhammad Ajmal Shah
- Department of Pharmacogonosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India.
| |
Collapse
|
13
|
Liu X, Wang B, Chen C, Qi Z, Zou F, Wang J, Hu C, Wang A, Ge J, Liu Q, Yu K, Hu Z, Jiang Z, Wang W, Wang L, Wang W, Ren T, Bai M, Liu Q, Liu J. Discovery of (E)-N1-(3-Fluorophenyl)-N3-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)malonamide (CHMFL-KIT-033) as a Novel c-KIT T670I Mutant Selective Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs). J Med Chem 2019; 62:5006-5024. [DOI: 10.1021/acs.jmedchem.9b00176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xuesong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziping Qi
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Fengming Zou
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Junjie Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Aoli Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Juan Ge
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qingwang Liu
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Kailin Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Zongru Jiang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| | - Tao Ren
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
- Precedo Pharmaceuticals Inc., Hefei, Anhui 230088, P. R. China
| | - Mingfeng Bai
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Qingsong Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230088, P. R. China
| |
Collapse
|