1
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
De Sousa-Coelho AL, Fraqueza G, Aureliano M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals (Basel) 2023; 17:12. [PMID: 38275998 PMCID: PMC10819319 DOI: 10.3390/ph17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
| | - Gil Fraqueza
- Instituto Superior de Engenharia (ISE), Universidade do Algarve, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Rezaei F, Alebouyeh M, Mirbagheri SZ, Ebrahimi A, Foroushani AR, Bakhtiari R. Transcriptional analysis of Helicobacter pylori cytotoxic-associated gene-pathogenicity island in response to different pH levels and proton pump inhibitor exposure. Indian J Gastroenterol 2023; 42:686-693. [PMID: 37665542 DOI: 10.1007/s12664-023-01422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Long-term use of proton pump inhibitors (PPIs) can increase the risk of gastric cancer in Helicobacter pylori-infected patients; nevertheless, there is no data about their impact on the pathogenicity of H. pylori. This study aimed at investigating the transcriptional alteration of key gene mediators of cytotoxin-associated gene-pathogenicity island (cag-PAI) among clinical H. pylori isolates in response to omeprazole at different pH levels. METHODS Accordingly, H. pylori isolates with the same virulence genotypes selected from the gastric biopsies of patients and transcriptional alteration in the cag-PAI genes studied in the presence or absence of omeprazole (2 mg/mL) at pH 2.0, 4.0 and 7.0 after 30 and 90 minutes of the treatment. Relative changes in the transcriptional levels were recorded in each assay, separately. RESULTS Of 18 H. pylori isolates, the cag-PAI empty site was detected in four strains, while the presence of cagA, cagL and cagY was characterized in 77.7%, 83.3% and 83.3% of the cag-PAI-positive strains, respectively. Transcriptional analysis of the selected strains showed up-regulation of cagA and cagL, mainly at pH 2.0 and 4.0 after 30 and 90-minute exposure. A diversity in the expression levels of cag-PAI genes was seen among the strains at the extent and time of induction. CONCLUSION Our results showed that omeprazole could increase the expression of H. pylori cagA and cagL at acidic pH. Heterogeneity among the strains probably has an impact on the extent of their interplay with PPIs. Further studies are needed to establish this correlation.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Centre, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zohre Mirbagheri
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ebrahimi
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
FOXM1 increases hTERT protein stability and indicates poor prognosis in gastric cancer. Neoplasia 2022; 36:100863. [PMID: 36528911 PMCID: PMC9792884 DOI: 10.1016/j.neo.2022.100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is one of most lethal diseases across the world. However, the underlying mechanism of gastric cancer carcinogenesis and development is still not fully known. Forkhead box M1 (FOXM1) belongs to the FOX family and has crucial roles in transactivation of multiple oncogenes in several cancer types, including gastric cancer. Recent studies have also shown the non-transcriptional function of FOXM1 via protein-protein interactions. Human telomerase reverse transcriptase (hTERT) is the core subunit of telomerase that facilitates cancer initiation and progression by maintaining cell immortalization, promoting cell proliferation and inhibiting cell apoptosis. However, the relationship between FOXM1 and hTERT in gastric cancer is still unclear. In our study, we found that FOXM1 and hTERT were convergent to the cell cycle-related pathways and they were positively related with advanced gastric cancer stages and poor outcomes. Simultaneous high levels of FOXM1 and hTERT predicted the worst prognosis. FOXM1 could increase hTERT protein rather than mRNA levels in a non-transcriptional manner. Mechanistically, FOXM1 interrupted the interaction between the E3 ligase MKRN1 and hTERT and decreased hTERT protein degradation. Further studies revealed that FOXM1 interacted with hTERT through its DNA-binding domain (DBD) region. Finally, we found that hTERT played important roles in FOXM1-mediated activation of the Wnt/β-catenin pathway to promote gastric cancer cell proliferation. Taken together, we found a novel non-classical function of FOXM1 to increase hTERT protein stability. Targeting the FOXM1-hTERT pathway may be a potential therapeutic strategy in treating gastric cancer.
Collapse
|
6
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Proposal to Consider Chemical/Physical Microenvironment as a New Therapeutic Off-Target Approach. Pharmaceutics 2022; 14:pharmaceutics14102084. [PMID: 36297518 PMCID: PMC9611316 DOI: 10.3390/pharmaceutics14102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular revolution could lead drug discovery from chance observation to the rational design of new classes of drugs that could simultaneously be more effective and less toxic. Unfortunately, we are witnessing some failure in this sense, and the causes of the crisis involve a wide range of epistemological and scientific aspects. In pharmacology, one key point is the crisis of the paradigm the “magic bullet”, which is to design therapies based on specific molecular targets. Drug repurposing is one of the proposed ways out of the crisis and is based on the off-target effects of known drugs. Here, we propose the microenvironment as the ideal place to direct the off-targeting of known drugs. While it has been extensively investigated in tumors, the generation of a harsh microenvironment is also a phenotype of the vast majority of chronic diseases. The hostile microenvironment, on the one hand, reduces the efficacy of both chemical and biological drugs; on the other hand, it dictates a sort of “Darwinian” selection of those cells armed to survive in such hostile conditions. This opens the way to the consideration of the microenvironment as a convenient target for pharmacological action, with a clear example in proton pump inhibitors.
Collapse
|
8
|
EGR1-CCL2 Feedback Loop Maintains Epithelial-Mesenchymal Transition of Cisplatin-Resistant Gastric Cancer Cells and Promotes Tumor Angiogenesis. Dig Dis Sci 2022; 67:3702-3713. [PMID: 34499269 DOI: 10.1007/s10620-021-07250-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The mechanism of cisplatin resistance in gastric cancer (GC) is still elusive; several recent evidences proposed that chemoresistant tumor cells acquired aggressive behaviors. AIMS This study was aimed to investigate the mechanism of epithelial-mesenchymal transition (EMT) and angiogenesis in chemoresistant GC. METHODS Bioinformatics analysis and function or mechanism experiments including RT-qPCR, immunofluorescence, Western blot, luciferase reporter assay, Chromatin immunoprecipitation, Chicken chorioallantoic membrane assay and animal experiments were applied to evaluate the role of EGR1-CCL2 feedback loop. RESULTS Compared with the parental cell line SGC7901, cisplatin resistant SGC7901R cells underwent EMT and showed increased angiogenic capabilities. Mechanistically, SGC7901R cells showed increased levels of EGR1, which could transcriptionally activate the angiogenic factor CCL2 and EMT regulator ZEB2. Reciprocally, CCL2 activated the CCR2-ERK-ELK1-EGR1 pathway, thus forming a positive feed-forward loop. Moreover, CCL2 in culture medium of SGC7901R cells promoted angiogenesis of Human Umbilical Vein Endothelial Cells (HUVECs). EGR1 expression was positively correlated with CCL2 and ZEB2 in clinical GC tissues, and the depletion of ERG1 could also decrease microvessel density and ZEB2 expression in metastatic nodules of nude mice. CONCLUSIONS EGR1-CCL2 feedback loop might exert critical roles on EMT and angiogenesis of chemoresistant GC.
Collapse
|
9
|
The uninvited guests of our microbiome: Helicobacter pylori and Epstein-Barr virus and their role in gastric cancerogenesis. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
It is well established that human body is an ecosystem for numerous microorganisms: bacteria, fungi, eukaryotic parasites, and viruses. They form a “microbiome” that under conditions of homeostasis remains in a friendly mutual relationship with the host. However, the composition and diversity of this microbe community is dynamic and can be changed under the influence of environmental factors, such as diet, antibiotic therapy, lifestyle, and the host’s genotype and immunity. The result of gut microbiome dysbiosis can lead even to cancer. The aim of this review is the description of the healthy gastrointestinal microbiome and the role of two infectious agents: Gram-negative bacteria Helicobacter pylori and Epstein-Barr virus in the development of gastric cancer in terms of gut dysbiosis. H. pylori is the most important pathogen of gastric microbiome with clear impact on its diversity. Coinfection with Epstein-Barr virus causes chronic gastritis, and the inflammatory process is significantly increased. The process of carcinogenesis begins with chronic inflammation that causes atrophic gastritis, intestinal metaplasia, dysplasia, and finally cancer. It has been proven that chronic inflammatory infection caused by infectious agents increases the risk of stomach cancer. Molecular methods that are progressively used to explore the human microbiome provide hope that this knowledge will be used for future diagnoses and therapy in the state of its dysbiosis and in cases of gastric cancer.
Collapse
|
10
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Martinez EG, Correa-Basurto J, Duenas-Gonzalez A. BAPST. A Combo of Common use drugs as metabolic therapy of cancer-a theoretical proposal. Curr Mol Pharmacol 2021; 15:815-831. [PMID: 34620071 DOI: 10.2174/1874467214666211006123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Advances in cancer therapy have yet to impact worldwide cancer mortality. Poor cancer drug affordability is one of the factors limiting mortality burden strikes. Up to now, cancer drug repurposing had no meet expectations concerning drug affordability. The three FDA-approved cancer drugs developed under repurposing -all-trans-retinoic acid, arsenic trioxide, and thalidomide- do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows they have a good safety profile and lack predicted pharmacokinetic interaction among them. Most importantly, the inhibitory enzymatic concentrations required for inhibiting their cancer targets enzymes are below the plasma concentrations observed when these drugs are used for their primary indication. Based on that, we propose that the regimen BAPTS merits preclinical testing.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| | | | - Alma Chavez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Aurora Gonzalez-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | | | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City. Mexico
| | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| |
Collapse
|
11
|
Zhao D, Qian L, Zhuang D, Wang L, Cao Y, Zhou F, Zhang S, Liu Y, Liang Y, Zhang W, Kang W, Zhang M, Wang Y, Zhang F, Zhang W, Xiao J, Xu G, Lv Y, Zou X, Zhuge Y, Zhang B. Inhibition of ribosomal RNA processing 15 Homolog (RRP15), which is overexpressed in hepatocellular carcinoma, suppresses tumour growth via induction of senescence and apoptosis. Cancer Lett 2021; 519:315-327. [PMID: 34343634 DOI: 10.1016/j.canlet.2021.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
Recent studies suggest that RRP15 (Ribosomal RNA Processing 15 Homolog) might be a potential target for cancer therapy. However, the role of RRP15 in hepatocarcinogenesis remains poorly delineated. In this study, we aimed to evaluate the expression and biological function of RRP15 in human hepatocellular carcinoma (HCC). We show that RRP15 was up regulated in HCC cell lines and tumours. Up-regulation of RRP15 in HCC tumours was also correlated with unfavorable prognosis. We further show that the frequent up-regulation of RRP15 in HCCs is at least partly driven by recurrent gene copy gain at chromosome 1q41. Functional studies indicated that RRP15 knockdown suppresses HCC proliferation and growth both in vitro and in vivo. Mechanistically, RRP15 depletion in p53-wild-type HepG2 cells induced senescence via activation of the p53-p21 signalling pathway through enhanced interaction of RPL11 with MDM2, as well as inhibition of SIRT1-mediated p53 deacetylation. Moreover, RRP15 depletion in p53-mutant PLC5 and p53-deleted Hep3B cells induced metabolic shift from the glycolytic pentose-phosphate to mitochondrial oxidative phosphorylation via regulating a series of key genes such as HK2 and TIGAR, and thus, promoted the generation of ROS and apoptosis. Taken together, our findings provide evidence for an important role of the RRP15 gene in hepatocarcinogenesis through regulation of HCC proliferation and growth, raising the possibility that targeting RRP15 may represent a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Dian Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Liping Qian
- Centre for Experimental Animal, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Duanming Zhuang
- Department of Gastroenterology, Gaochun People's Hospital, Nanjing, Jiangsu, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yu Cao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Fan Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ying Liu
- Department of Ultrasound Diagnostics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ying Liang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jiangqiang Xiao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Bin Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Department of Gastroenterology, Gaochun People's Hospital, Nanjing, Jiangsu, China; Department of Gastroenterology, Yining People's Hospital, Yining, China.
| |
Collapse
|
12
|
Hou S, Liang S, Zhang C, Han Y, Liang J, Hu H, Zhang X, Hu C, Liu X, Zhang H. Design, Synthesis and Anticancer Activity of a New Series of N-aryl- N'-[4-(pyridin-2-ylmethoxy)benzyl]urea Derivatives. Molecules 2021; 26:molecules26123496. [PMID: 34201326 PMCID: PMC8226862 DOI: 10.3390/molecules26123496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/22/2023] Open
Abstract
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N'-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.
Collapse
Affiliation(s)
- Shicheng Hou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Shishao Liang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Chao Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Yingmei Han
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Jianhui Liang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Hongyu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Xingeng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
| | - Chun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
- Correspondence: (C.H.); (X.L.); (H.Z.); Tel.: +86-24-43520246 (C.H.)
| | - Xiaoping Liu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.H.); (S.L.); (C.Z.); (Y.H.); (J.L.); (H.H.); (X.Z.)
- Correspondence: (C.H.); (X.L.); (H.Z.); Tel.: +86-24-43520246 (C.H.)
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (C.H.); (X.L.); (H.Z.); Tel.: +86-24-43520246 (C.H.)
| |
Collapse
|
13
|
Omeprazole improves chemosensitivity of gastric cancer cells by m6A demethylase FTO-mediated activation of mTORC1 and DDIT3 up-regulation. Biosci Rep 2021; 41:227460. [PMID: 33393595 PMCID: PMC7843496 DOI: 10.1042/bsr20200842] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The curative effect for patients with advanced gastric cancer is still unsatisfactory. Proton pump inhibitors could be a promising treatment strategy that could sensitize gastric cancer cells to antitumor drugs further; however, the underlying molecular mechanism remains to be further elucidated. In this research, it was found that omeprazole pretreatment could enhance the inhibitory effect of 5-Fu, DDP and TAX on gastric cancer cells. Interestingly, omeprazole pretreatment enhanced the total m6A level of cells due to the decreased FTO. TCGA analysis showed that FTO expression is up-regulated in GC tissues and is negatively correlated with disease-free survival of GC patients. It was also found that FTO inhibition induced by omeprazole enhanced the activation of mTORC1 signal pathway that inhibited the prosurvival autophagy so as to improve the antitumor efficiency of chemotherapeutic drugs on GC cells. Meanwhile, transcript level of DDIT3, which is an apoptosis-related tumor suppressor gene downstream of mTORC1, was regulated by omeprazole-induced FTO silence through an m6A-dependent mechanism. The present study, for the first time, found that m6A modification and its eraser FTO may play a role in the improvement of chemosensitivity mediated by proton pump inhibitor omeprazole.
Collapse
|
14
|
Takeda A, Takano N, Kokuba H, Hino H, Moriya S, Abe A, Hiramoto M, Tsukahara K, Miyazawa K. Macrolide antibiotics enhance the antitumor effect of lansoprazole resulting in lysosomal membrane permeabilization‑associated cell death. Int J Oncol 2020; 57:1280-1292. [PMID: 33173988 PMCID: PMC7646592 DOI: 10.3892/ijo.2020.5138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
The proton pump inhibitor lansoprazole (LPZ) inhibits the growth of several cancer cell lines, including A549 and CAL 27. We previously reported that macrolide antibiotics such as azithromycin (AZM) and clarithromycin (CAM) potently inhibit autophagic flux and that combining AZM or CAM with the epidermal growth factor receptor inhibitors enhanced their antitumor effect against various cancer cells. In the present study, we conducted the combination treatment with LPZ and macrolide antibiotics against A549 and CAL 27 cells and evaluated cytotoxicity and morphological changes using cell proliferation and viability assays, flow cytometric analysis, immunoblotting, and morphological assessment. Combination therapy with LPZ and AZM greatly enhanced LPZ-induced cell death, whereas treatment with AZM alone exhibited negligible cytotoxicity. The observed cytotoxic effect was not mediated through apoptosis or necroptosis. Transmission electron microscopy of A549 cells treated with the LPZ + AZM combination revealed morphological changes associated with necrosis and accumulated autolysosomes with undigested contents. Furthermore, the A549 cell line with ATG5 knockout exhibited complete inhibition of autophagosome formation, which did not affect LPZ + AZM treatment-induced cytotoxicity, thus excluding the involvement of autophagy-dependent cell death in LPZ + AZM treatment-induced cell death. A549 cells treated with LPZ + AZM combination therapy retained the endosomal Alexa-dextran for extended duration as compared to untreated control cells, thus indicating impairment of lysosomal digestion. Notably, lysosomal galectin-3 puncta expression induced due to lysosomal membrane permeabilization was increased in cells treated with LPZ + AZM combination as compared to the treatment by either agent alone. Collectively, the present results revealed AZM-induced autolysosome accumulation, potentiated LPZ-mediated necrosis, and lysosomal membrane permeabilization, thus suggesting the potential clinical application of LPZ + AZM combination therapy for cancer treatment.
Collapse
Affiliation(s)
- Atsuo Takeda
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Akihisa Abe
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Kiyoaki Tsukahara
- Department of Otolaryngology (Head and Neck Surgery), Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
15
|
Xu Q, Jia X, Wu Q, Shi L, Ma Z, Ba N, Zhao H, Xia X, Zhang Z. Esomeprazole affects the proliferation, metastasis, apoptosis and chemosensitivity of gastric cancer cells by regulating lncRNA/circRNA-miRNA-mRNA ceRNA networks. Oncol Lett 2020; 20:329. [PMID: 33101498 PMCID: PMC7577076 DOI: 10.3892/ol.2020.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, proton pump inhibitors have become a hot research topic in the field of cancer drug research. However, the specific anti-tumor effect and underlying mechanisms of esomeprazole (ESO) in gastric cancer (GC) have remained elusive. In the present study, the toxic effects of ESO on the GC cell line AGS were investigated. MTT assays confirmed that ESO inhibited the proliferation of AGS cells and significantly enhanced their chemosensitivity. Transwell assays were performed to determine the anti-metastatic effects of ESO in AGS cells. Flow cytometry demonstrated that ESO induced cell apoptosis and caused cell cycle arrest in the S and G2/M phases. Furthermore, the differential expression of 948 long non-coding RNAs (lncRNAs), 114 circular RNAs (circRNAs), 1,197 mRNAs and 199 microRNAs (miRNAs) was detected in AGS cells via microarray analysis and RNA-sequencing. The top 10 differently expressed genes were mostly located on chromosomes 10 and 19. In addition, Gene Ontology analysis indicated that the genes were accumulated in functional terms associated with DNA replication, the cell cycle and the apoptotic signaling pathway. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a variety of significantly dysregulated signaling pathways and targets, including the EGFR tyrosine kinase inhibitor resistance pathway, forkhead box O signaling pathway, p53 signaling pathway and platinum drug resistance pathway. Subsequently, the interactions of microtubule-associated protein 2 (MAP2), homeodomain-interacting protein kinase 2 (HIPK2) and ankyrin 2 (ANK2) were noted in a competing endogenous RNA (ceRNA) network, which may be important targets of ESO, exerting an anti-tumor effect in AGS cells. Collectively, ESO affects the proliferation, metastasis, apoptosis and chemosensitivity of gastric cancer cells by regulating long non-coding RNA/circRNA-miRNA-mRNA ceRNA networks.
Collapse
Affiliation(s)
- Qian Xu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiyun Jia
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Wu
- Department of Gastroenterology, Huanghe Central Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lei Shi
- Department of Clinical Pharmacy, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zihan Ma
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nan Ba
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Han Zhao
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xingzhou Xia
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zisen Zhang
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
16
|
Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H +, K +-ATPases in Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2020; 12:cancers12030640. [PMID: 32164284 PMCID: PMC7139746 DOI: 10.3390/cancers12030640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic duct cells are equipped with acid/base transporters important for exocrine secretion. Pancreatic ductal adenocarcinoma (PDAC) cells may utilize such transporters to acidify extracellular tumor microenvironment, creating a niche favoring cell proliferation, fibrosis and resistance to chemotherapy-all contributing to the notoriously bad prognosis of this disease. Here, we report that gastric and non-gastric H+, K+-ATPases (coded by ATP4A and ATP12A) are overexpressed in human and murine pancreatic cancer and that we can target them specifically with proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) in in vitro models of PDAC. Focusing on pantoprazole, we show that it significantly reduced human cancer cell proliferation by inhibiting cellular H+ extrusion, increasing K+ conductance and promoting cyclin D1-dependent cell cycle arrest and preventing STAT3 activation. Pantoprazole also decreased collagen secretion from pancreatic stellate cells. Importantly, in vivo studies show that pantoprazole treatment of tumor-bearing mice reduced tumor size, fibrosis and expression of angiogenic markers. This work provides the first evidence that H+, K+-ATPases contribute to PDAC progression and that these can be targeted by inhibitors of these pumps, thus proving a promising therapeutic strategy.
Collapse
|
17
|
Chi J, Jiang Z, Qiao J, Zhang W, Peng Y, Liu W, Han B. Antitumor evaluation of carboxymethyl chitosan based norcantharidin conjugates against gastric cancer as novel polymer therapeutics. Int J Biol Macromol 2019; 136:1-12. [PMID: 31158420 DOI: 10.1016/j.ijbiomac.2019.05.216] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Novel polymer-drug conjugates (CNC) were prepared from carboxymethyl chitosan (CMCS) and norcantharidin (NCTD) via amidation reaction and characterized by FTIR and 1H NMR spectroscopy. The aim of this study was to elucidate the antitumor efficacy of CNC on gastric cancer and the possible underlying mechanisms. The CNC conjugates possessed significant inhibitory effects on the proliferation of SGC-7901 cells and suppressed the migration as well as tube formation of HUVECs. Besides, Hoechst 33258 staining and Annexin V-FITC/PI detection suggested that the conjugates were more effective in triggering apoptosis of SGC-7901 cells compared with free NCTD. Moreover, CNC remarkably reduced systemic toxicity and enhanced the antitumor efficacy in vivo with a tumor suppression rate of 59.57% against SGC-7901 gastric tumor in BALB/c nude mice. Further investigation about the underlying mechanisms indicated that CNC could upregulate expressions of TNF-α and Bax, and downregulate expressions of VEGF, Bcl-2, MMP-2 and MMP-9, thereby inhibiting tumor metastasis and inducing apoptosis in vivo. Overall, our results demonstrated that CNC might be a promising and feasible polymer therapeutics for gastrointestinal tumor therapy.
Collapse
Affiliation(s)
- Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Jing Qiao
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanfei Peng
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|