1
|
Almarza C, Villalobos-Nova K, Toro MA, González M, Niechi I, Brown-Brown DA, López-Muñoz RA, Silva-Pavez E, Gaete-Ramírez B, Varas-Godoy M, Burzio VA, Jara L, Aguayo F, Tapia JC. Cisplatin-resistance and aggressiveness are enhanced by a highly stable endothelin-converting enzyme-1c in lung cancer cells. Biol Res 2024; 57:74. [PMID: 39443981 PMCID: PMC11515556 DOI: 10.1186/s40659-024-00551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Lung cancer constitutes the leading cause of cancer mortality. High levels of endothelin-1 (ET-1), its cognate receptor ETAR and its activating enzyme, the endothelin-converting enzyme-1 (ECE-1), have been reported in several cancer types, including lung cancer. ECE-1 comprises four isoforms, which only differ in their cytoplasmic N-terminus. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE-1c, increasing its stability and leading to enhanced invasiveness in glioblastoma and colorectal cancer cells, which is believed to be mediated by the amino acid residue Lys-6, a conserved putative ubiquitination site neighboring the CK2-phosphorylated residues Ser-18 and Ser-20. Whether Lys-6 is linked to the acquisition of a cancer stem cell (CSC)-like phenotype and aggressiveness in human non-small cell lung cancer (NSCLC) cells has not been studied. METHODS In order to establish the role of Lys-6 in the stability of ECE-1c and its involvement in lung cancer aggressiveness, we mutated this residue to a non-ubiquitinable arginine and constitutively expressed the wild-type (ECE-1cWT) and mutant (ECE-1cK6R) proteins in A549 and H1299 human NSCLC cells by lentiviral transduction. We determined the protein stability of these clones alone or in the presence of the CK2 inhibitor silmitasertib, compared to ECE-1cWT and mock-transduced cells. In addition, the concentration of secreted ET-1 in the growth media was determined by ELISA. Expression of stemness genes were determined by Western blot and RT-qPCR. Chemoresistance to cisplatin was studied by MTS viability assay. Migration and invasion were measured through transwell and Matrigel assays, respectively, and the side-population was determined using flow cytometry. RESULTS ECE-1cK6R displayed higher stability in NSCLC cells compared to ECE-1cWT-expressing cells, but ET-1 secreted levels showed no difference up to 48 h. Most importantly, ECE-1cK6R promoted expression of the stemness genes c-Myc, Sox-2, Oct-4, CD44 and CD133, which enhance cellular self-renewal capability. Also, the ECE-1cK6R-expressing cells showed higher cisplatin chemoresistance, correlating with an augmented side-population abundance due to the increased expression of the ABCG2 efflux pump. Finally, the ECE-1cK6R-expressing cells showed enhanced invasiveness, which correlated with the regulated expression of known EMT markers. CONCLUSIONS Our findings suggest an important role of ECE-1c in lung cancer. ECE-1c is key in a non-canonical ET-1-independent mechanism which triggers a CSC-like phenotype, leading to enhanced lung cancer aggressiveness. Underlying this mechanism, ECE-1c is stabilized upon phosphorylation by CK2, which is upregulated in many cancers. Thus, phospho-ECE-1c may be considered as a novel prognostic biomarker of recurrence, as well as the CK2 inhibitor silmitasertib as a potential therapy for lung cancer patients.
Collapse
Affiliation(s)
- Cristopher Almarza
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Karla Villalobos-Nova
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María A Toro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo A López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Belén Gaete-Ramírez
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Verónica A Burzio
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Lilian Jara
- Programa de Genética, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Laboratorio de Transformación Celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, 8380453, Chile.
| |
Collapse
|
2
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
3
|
Chen L, Lu Y, Zhao M, Xu J, Wang Y, Xu Q, Cao Y, Liu H. A non-canonical role of endothelin converting enzyme 1 (ECE1) in promoting lung cancer development via directly targeting protein kinase B (AKT). J Gene Med 2024; 26:e3612. [PMID: 37897251 DOI: 10.1002/jgm.3612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Lung cancer is the second most common malignancy in the world, and lung adenocarcinoma (LUAD) in particular is the leading cause of cancer death worldwide. Endothelin converting enzyme 1 (ECE1) is a membrane-bound metalloprotease involved in endothelin-1 (ET-1) processing and regulates vasoconstriction. However, very few studies have reported the involvement of ECE1 in regulating tumor cell proliferation, and the mechanism remains poorly understood. Therefore, we aimed to determine the role of ECE1 in lung cancer development. METHODS The Cancer Genome Atlas database and Kaplan-Meier plotter were used to assess the association between ECE1 and lung cancer. The expression of ECE1 was detected using immunohistochemistry staining and western blotting. A variety of in vitro assays were performed to evaluate the effects of ECE1 on the colony formation, proliferation, migration and invasion using ECE1 knockdown lung cancer cells. The gene expression profiles regulated by ECE1 were investigated by RNA sequencing. An immunoprecipitation assay and immunofluorescence assay were used to evaluate the mechanism underlying the regulatory effect of ECE1 on protein kinase B (AKT). The effect of ECE1 on tumor development was assessed by xenografted lung cancer cells in either C57BL/6 mice or nude mice. RESULTS ECE1 was upregulated in LUAD and correlated with the poor prognosis of patients with LUAD. Functional studies showed that knockdown of ECE1 retarded the progression of tumors formed by lung cancer cells at least partly by inhibiting tumor cell proliferation. Moreover, ECE1 accelerated tumor cell proliferation through promoting AKT activation dispensable of its canonical target ET-1. Mechanically, ECE1 interacted with the pleckstrin homology (PH) domain of AKT and facilitated its translocation to the plasma membrane for activation. Furthermore, the inhibition of AKT activity counteracted the lung cancer cell growth inhibition observed both in vitro and in xenografts caused by ECE1 suppression. CONCLUSIONS The present study reveals a non-canonical function of ECE1 in regulating AKT activation and cell proliferation, which provides the basis for the development of a novel strategy for the intervention of cancer including LUAD by abrogating ECE1-AKT signaling.
Collapse
Affiliation(s)
- Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junfang Xu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinghua Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Lin SY, Xia W, Kim AK, Chen D, Schleyer S, Choi L, Wang Z, Hamilton JP, Luu H, Hann HW, Chang TT, Hu CT, Woodard A, Gade TP, Su YH. Novel urine cell-free DNA methylation markers for hepatocellular carcinoma. Sci Rep 2023; 13:21585. [PMID: 38062093 PMCID: PMC10703769 DOI: 10.1038/s41598-023-48500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
An optimized hepatocellular carcinoma (HCC)-targeted methylation next generation sequencing assay was developed to discover HCC-associated methylation markers directly from urine for HCC screening. Urine cell-free DNA (ucfDNA) isolated from a discovery cohort of 31 non-HCC and 30 HCC was used for biomarker discovery, identifying 29 genes with differentially methylated regions (DMRs). Methylation-specific qPCR (MSqPCR) assays were developed to verify the selected DMRs corresponding to 8 genes (GRASP, CCND2, HOXA9, BMP4, VIM, EMX1, SFRP1, and ECE). Using archived ucfDNA, methylation of GRASP, HOXA9, BMP4, and ECE1, were found to be significantly different (p < 0.05) between HCC and non-HCC patients. The four markers together with previously reported GSTP1 and RASSF1A markers were assessed as a 6-marker panel in an independent training cohort of 87 non-HCC and 78 HCC using logistic regression modeling. AUROC of 0.908 (95% CI, 0.8656-0.9252) was identified for the 6-marker panel with AFP, which was significantly higher than AFP-alone (AUROC 0.841 (95% CI, 0.778-0.904), p = 0.0026). Applying backward selection method, a 4-marker panel was found to exhibit similar performance to the 6-marker panel with AFP having 80% sensitivity compared to 29.5% by AFP-alone at a specificity of 85%. This study supports the potential use of methylated transrenal ucfDNA for HCC screening.
Collapse
Affiliation(s)
| | - Wei Xia
- JBS Science, Inc., Doylestown, PA, USA
| | - Amy K Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dion Chen
- JBS Science, Inc., Doylestown, PA, USA
- ClinPharma Consulting, Inc., Phoenixville, PA, USA
| | | | - Lin Choi
- JBS Science, Inc., Doylestown, PA, USA
| | | | - James P Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry Luu
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hie-Won Hann
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Tan Hu
- Division of Gastroenterology, Department of Internal Medicine, Hualien Tzu-Chi Hospital, Buddhist Tzu-Chi Medical Foundation, Hualien, Taiwan
| | - Abashai Woodard
- Department of Radiology, University of Pennsylvania College of Medicine, Philadelphia, PA, USA
| | - Terence P Gade
- Department of Radiology, University of Pennsylvania College of Medicine, Philadelphia, PA, USA
| | - Ying-Hsiu Su
- The Baruch S. Blumberg Institute, 805 Old Easton Rd, Doylestown, PA, USA.
| |
Collapse
|
5
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Gao P, Li T, Zhang K, Luo G. Recent advances in the molecular targeted drugs for prostate cancer. Int Urol Nephrol 2023; 55:777-789. [PMID: 36719528 DOI: 10.1007/s11255-023-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
CONTEXT Prostate cancer (PCa) is the second largest male tumor in the world and one of the most common malignant tumors in the urinary system. In recent years, the incidence rate of PCa in China has been increasing year by year. Meanwhile, refractory hormone resistance and adverse drug reactions of advanced PCa cause serious harm to patients. OBJECTIVE The present study aims to systematically review the recent advances in molecularly targeted drugs for prostate cancer and to use the retrieval and analysis of the literature library to summarize the adverse effects of different drugs so as to maximize the treatment benefits of targeted therapies. EVIDENCE ACQUISITION We performed a systematic literature search of the Medline, EMBASE, PubMed, and Cochrane databases up to March 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Medical Subject Heading (MeSH) terms and keywords such as (prostate cancer) AND (molecular target drugs) AND (side effect) were used. No language restrictions were set on the search process, and all these results were processed independently by two authors. Consensus was reached through discussion once met with any disagreements. The primary endpoint was differential features between different molecular targeted drugs. Secondary endpoints were side effects of different drugs on the body and corresponding prognostic values. EVIDENCE SYNTHESIS The Cochrane Collaboration risk of bias tool was used to assess the study quality in terms of sequence generation, allocation concealment, blinding, the completeness of outcome data, selective reporting and other biases. We retrieved 332 articles, of which 49 met the criteria for inclusion. Included studies show that prostatic tumor cells, tumor neovascularization and immune checkpoints are the main means for targeted therapy. Common drugs include 177 Lu-PSMA, Olaparib, Rucaparib, Bevacizumab, Pazopanib, Sorafenib, Cabozantinib, Aflibercept, Ipilimumab, Atezolizumab, Avelumab, Durvalumab. A series of publicly available data suitable for further analysis of side effects. An over-representation analysis of these datasets revealed reasonable dosage and usage is the key to controlling the side effects of targeted drugs. Important information such as the publication year, the first author, location and outcome observation of adverse effects was extracted from the original article. If the study data has some insufficient data, contacting the corresponding authors is necessary. All the studies included prospective nonrandomized and randomized research. Retrospective reviews were also screened according to the relevant to the purpose of this study. Meeting abstracts as well as letters to the editor and editorials were excluded. STATISTICAL ANALYSIS Data analysis was based on Cochrane's risk of bias tools to obtain the quality assessment. The included randomized studies used RoB2 and non-randomized ones corresponded to ROBINS-I. Standardized mean differences (SMD) were used to determine relative risk (RR) and side effects between groups. The eggers' test was used to check the publication bias from variable information in the included studies. All p < 0.05 were considered to be significant, and 95% was set as the confidence interval. CONCLUSIONS With the approval of a variety of targeted drugs, targeted therapy will be widely used in the treatment of advanced or metastatic prostate cancer. Despite the existence of adverse reactions related to targeted drug treatment, it is still meaningful to adjust the drug dosage or treatment cycle to reduce the occurrence of adverse reactions, improving the treatment benefits of patients.
Collapse
Affiliation(s)
- Pudong Gao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Tao Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Kuiyuan Zhang
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
7
|
Cancer Stem Cell and Aggressiveness Traits Are Promoted by Stable Endothelin-Converting Enzyme-1c in Glioblastoma Cells. Cells 2023; 12:cells12030506. [PMID: 36766848 PMCID: PMC9914402 DOI: 10.3390/cells12030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of brain tumor due to its elevated recurrence following treatments. This is mainly mediated by a subpopulation of cells with stemness traits termed glioblastoma stem-like cells (GSCs), which are extremely resistant to anti-neoplastic drugs. Thus, an advancement in the understanding of the molecular processes underlying GSC occurrence should contribute significantly towards progress in reducing aggressiveness. High levels of endothelin-converting enzyme-1 (ECE1), key for endothelin-1 (ET-1) peptide activation, have been linked to the malignant progression of GBM. There are four known isoforms of ECE1 that activate ET-1, which only differ in their cytoplasmic N-terminal sequences. Isoform ECE1c is phosphorylated at Ser-18 and Ser-20 by protein kinase CK2, which increases its stability and hence promotes aggressiveness traits in colon cancer cells. In order to study whether ECE1c exerts a malignant effect in GBM, we designed an ECE1c mutant by switching a putative ubiquitination lysine proximal to the phospho-serines Lys-6-to-Arg (i.e., K6R). This ECE1cK6R mutant was stably expressed in U87MG, T98G, and U251 GBM cells, and their behavior was compared to either mock or wild-type ECE1c-expressing clone cells. ECE1cK6R behaved as a highly stable protein in all cell lines, and its expression promoted self-renewal and the enrichment of a stem-like population characterized by enhanced neurospheroid formation, as well as increased expression of stem-like surface markers. These ECE1cK6R-derived GSC-like cells also displayed enhanced resistance to the GBM-related chemotherapy drugs temozolomide and gemcitabine and increased expression of the ABCG2 efflux pump. In addition, ECE1cK6R cells displayed enhanced metastasis-associated traits, such as the modulation of adhesion and the enhancement of cell migration and invasion. In conclusion, the acquisition of a GSC-like phenotype, together with heightened chemoresistance and invasiveness traits, allows us to suggest phospho-ECE1c as a novel marker for poor prognosis as well as a potential therapeutic target for GBM.
Collapse
|
8
|
Wang Y, Wang B, Zhou F, Lv K, Xu X, Cao W. CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J Transl Med 2023; 21:22. [PMID: 36635757 PMCID: PMC9837923 DOI: 10.1186/s12967-022-03852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/24/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM). METHODS CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established. RESULTS When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further. CONCLUSIONS According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.
Collapse
Affiliation(s)
- Yuhang Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Binbin Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Fengqi Zhou
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Kun Lv
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Xiupeng Xu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| | - Wenping Cao
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000 Jiangsu China
| |
Collapse
|
9
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
10
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
11
|
Chronic intermittent hypoxia, a hallmark of obstructive sleep apnea, promotes 4T1 breast cancer development through endothelin-1 receptors. Sci Rep 2022; 12:12916. [PMID: 35902610 PMCID: PMC9334573 DOI: 10.1038/s41598-022-15541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
The association between obstructive sleep apnea (OSA) and cancer is still debated and data are scarce regarding the link between OSA and breast cancer progression. Since conclusive epidemiological studies require large sample sizes and sufficient duration of exposure before incident cancer occurrence, basic science studies represent the most promising approach to appropriately address the topic. Here we assessed the impact of intermittent hypoxia (IH), the major hallmark of OSA, on the development of breast cancer and explored the specific involvement of the endothelin signaling pathway. Original in vitro and in vivo models were used where 3D-spheroids or cultures of murine 4T1 breast cancer cells were submitted to IH cycles, and nude NMRI mice, orthotopically implanted with 4T1 cells, were submitted to chronic IH exposure before and after implantation. The role of the endothelin-1 in promoting cancer cell development was investigated using the dual endothelin receptor antagonist, macitentan. In vitro exposure to IH significantly increased 4T1 cell proliferation and migration. Meta-analysis of 4 independent in vivo experiments showed that chronic IH exposure promoted tumor growth, assessed by caliper measurement (overall standardized mean difference: 1.00 [0.45-1.55], p < 0.001), bioluminescence imaging (1.65 [0.59-2.71]; p < 0.01) and tumor weight (0.86 [0.31-1.41], p < 0.01), and enhanced metastatic pulmonary expansion (0.77 [0.12-1.42]; p = 0.01). Both in vitro and in vivo tumor-promoting effects of IH were reversed by macitentan. Overall, these findings demonstrate that chronic intermittent hypoxia exposure promotes breast cancer growth and malignancy and that dual endothelin receptor blockade prevents intermittent hypoxia-induced tumor development.
Collapse
|
12
|
Qiu X, Zhou J, Xu Y, Liao L, Yang H, Xiang Y, Zhou Z, Sun Q, Chen M, Zhang J, Wu W, Zhu L, You B, He L, Luo Y, Li Z, Li C, Bai Y. Prophylactic exercise-derived circulating exosomal miR-125a-5p promotes endogenous revascularization after hindlimb ischemia by targeting endothelin converting enzyme 1. Front Cardiovasc Med 2022; 9:881526. [PMID: 35935623 PMCID: PMC9354753 DOI: 10.3389/fcvm.2022.881526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Prophylactic exercise improves clinical outcomes in patients experiencing severe ischemic diseases. Previous studies have shown that exercise could alter the amount or content of circulating exosomes. However, little is known about the role of precursory exercise-derived circulating exosomes (Exe-Exo) in ischemic diseases. We therefore aimed to explore the function and mechanism of Exe-Exo in endogenous revascularization and perfusion recovery in peripheral arterial disease. Methods and Results We first determined that 4 weeks of precursory treadmill exercise improved perfusion recovery on days 7, 14 and 21 after unilateral femoral artery ligation (FAL) but had no effect immediately after ligation. Then, local muscle delivery of Exe-Exo promotes arteriogenesis, angiogenesis and perfusion recovery, which could be abolished by GW4869, a well-recognized pharmacological agent inhibiting exosome release. This suggests that Exe-Exo mediated exercise-induced revascularization. In vitro, Exe-Exo enhanced endothelial cell proliferation, migration and tube formation. In addition, we identified miR-125a-5p as a novel exerkine through exosomal miRNA sequencing and RT-qPCR validation. Inhibition of miR-125a-5p abrogated the beneficial effects of Exe-Exo both in vivo and in vitro. Mechanistically, these exercise-afforded benefits were attributed to the exosomal miR-125a-5p downregulation of ECE1 expression and the subsequent activation of the AKT/eNOS downstream signaling pathway. Specifically, skeletal muscle may be a major tissue source of exercise-induced exosomal miR-125a-5p via fluorescence in situ hybridization. Conclusions Endogenous circulating exosomal miR-125a-5p promotes exercise-induced revascularization via targeting ECE1 and activating AKT/eNOS downstream signaling pathway. Identify exosomal miR-125a-5p as a novel exerkine, and highlight its potential therapeutic role in the prevention and treatment of peripheral arterial disease.
Collapse
Affiliation(s)
- Xueting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jipeng Zhou
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanying Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Longsheng Liao
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Huijun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Xiang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengshi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Sun
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Minghong Chen
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wanzhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lingping Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyang You
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lingfang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chuanchang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Chuanchang Li,
| | - Yongping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Yongping Bai,
| |
Collapse
|
13
|
Zhang YH, Zeng J, Liu XS, Gao Y, Kui XY, Liu XY, Zhang Y, Pei ZJ. ECE2 is a prognostic biomarker associated with m6A modification and involved in immune infiltration of lung adenocarcinoma. Front Endocrinol (Lausanne) 2022; 13:1013238. [PMID: 36299451 PMCID: PMC9588963 DOI: 10.3389/fendo.2022.1013238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The targeted therapy for lung cancer relies on prognostic genes and requires further research. No research has been conducted to determine the effect of endothelin-converting enzyme 2 (ECE2) in lung cancer. METHODS We analyzed the expression of ECE2 in lung adenocarcinoma (LUAD) and normal adjacent tissues and its relationship with clinicopathological characteristics from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO). Immunohistochemical staining was used to further validate the findings. GO/KEGG enrichment analysis and gene set enrichment analysis (GSEA) of ECE2 co-expression were performed using R software. Data from TIMER, the GEPIA database, and TCGA were analyzed to determine the relationship between ECE2 expression and LUAD immune infiltration. To investigate the relationship between ECE2 expression levels and LUAD m6A modification, TCGA data and GEO data were analyzed. RESULTS ECE2 is highly expressed in various cancers including LUAD. ECE2 showed high accuracy in distinguishing tumor and normal sample results. The expression level of ECE2 in LUAD was significantly correlated with tumor stage and prognosis. GO/KEGG enrichment analysis showed that ECE2 was closely related to mitochondrial gene expression, ATPase activity and cell cycle. GSEA analysis showed that ECE2-related differential gene enrichment pathways were related to mitotic cell cycle, MYC pathway, PLK1 pathway, DNA methylation pathway, HIF1A pathway and Oxidative stress-induced cellular senescence. Analysis of the TIMER, GEPIA database, and TCGA datasets showed that ECE2 expression levels were significantly negatively correlated with B cells, CD4+ cells, M2 macrophages, neutrophils, and dendritic cells. TCGA and GEO datasets showed that ECE2 was significantly associated with m6A modification-related genes HNRNPC, IGF2BP1, IGF2BP3 and RBM1. CONCLUSION ECE2 is associated with m6A modification and immune infiltration and is a prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Zeng
- Department of Infection Control, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Yu Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, China
- *Correspondence: Zhi-Jun Pei,
| |
Collapse
|
14
|
ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocr Regul 2021; 55:72-82. [PMID: 34020533 DOI: 10.2478/enr-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Collapse
|
15
|
Liang WG, Mancl JM, Zhao M, Tang WJ. Structural analysis of Mycobacterium tuberculosis M13 metalloprotease Zmp1 open states. Structure 2020; 29:709-720.e3. [PMID: 33378640 DOI: 10.1016/j.str.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/12/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022]
Abstract
Zinc metalloprotease 1 (Zmp1), a Mycobacterium tuberculosis 75 kDa secreted enzyme, mediates key stages of tuberculosis disease progression. The biological activity of Zmp1 presumably stems from its ability to degrade bacterium- and/or host-derived peptides. The crystal structures of Zmp1 and related M13 metalloproteases, such as neprilysin and endothelin-converting enzyme-1 were determined only in the closed conformation, which cannot capture substrates or release proteolytic products. Thus, the mechanisms of substrate binding and selectivity remain elusive. Here we report two open-state cryo-EM structures of Zmp1, revealed by our SAXS analysis to be the dominant states in solution. Our structural analyses reveal how ligand binding induces a conformational switch in four linker regions to drive the rigid body motion of the D1 and D2 domains, which form the sizable catalytic chamber. Furthermore, they offer insights into the catalytic cycle and mechanism of substrate recognition of M13 metalloproteases for future therapeutic innovations.
Collapse
Affiliation(s)
- Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jordan M Mancl
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy.. [DOI: 10.1101/2020.10.19.345975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractThe deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand based virtual screening to identify similar drug molecules using a large collection of 3,76,342 compounds from DrugBank. The results suggested that several structural analogs (e.g. Tramadol, Nabumetone, DGLA, Hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend furtherin vitroandin vivotrials for the experimental validation of the findings.
Collapse
|
17
|
Pérez-Moreno P, Quezada-Meza C, Chavez-Almarza C, Niechi I, Silva-Pavez E, Trigo-Hidalgo C, Aguayo F, Jara L, Cáceres-Verschae A, Varas-Godoy M, Díaz VM, García de Herreros A, Burzio VA, Tapia JC. Phosphorylation of Endothelin-Converting Enzyme-1c at Serines 18 and 20 by CK2 Promotes Aggressiveness Traits in Colorectal Cancer Cells. Front Oncol 2020; 10:1004. [PMID: 32850305 PMCID: PMC7406796 DOI: 10.3389/fonc.2020.01004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelin-converting enzyme-1 (ECE1) activates the endothelin-1 peptide, which upregulates pathways that are related to diverse hallmarks of cancer. ECE1 is expressed as four isoforms differing in their N-terminal domains. Protein kinase CK2 phosphorylates the N-terminus of isoform ECE1c, enhancing its stability and promoting invasiveness of colorectal cancer cells. However, the specific residues in ECE1c that are phosphorylated by CK2 and how this phosphorylation promotes invasiveness was unknown. Here we demonstrate that Ser-18 and Ser-20 are the bona fide residues phosphorylated by CK2 in ECE1c. Thus, biphospho-mimetic ECE1cDD and biphospho-resistant ECE1cAA mutants were constructed and stably expressed in different colorectal cancer cells through lentiviral transduction. Biphospho-mimetic ECE1cDD displayed the highest stability in cells, even in the presence of the specific CK2 inhibitor silmitasertib. Concordantly, ECE1cDD-expressing cells showed enhanced hallmarks of cancer, such as proliferation, migration, invasiveness, and self-renewal capacities. Conversely, cells expressing the less-stable biphospho-resistant ECE1cAA showed a reduction in these features, but also displayed an important sensitization to 5-fluorouracil, an antineoplastic agent traditionally used as therapy in colorectal cancer patients. Altogether, these findings suggest that phosphorylation of ECE1c at Ser-18 and Ser-20 by CK2 promotes aggressiveness in colorectal cancer cells. Therefore, phospho-ECE1c may constitute a novel biomarker of poor prognosis and CK2 inhibition may be envisioned as a potential therapy for colorectal cancer patients.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Camila Quezada-Meza
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Cristopher Chavez-Almarza
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Ignacio Niechi
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Eduardo Silva-Pavez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - César Trigo-Hidalgo
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- Programa de Virología, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Lilian Jara
- Programa de Genética, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| | - Albano Cáceres-Verschae
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Víctor M Díaz
- Unidad Asociada CSIC, Programa de Recerca en Cáncer, Departament de Ciéncies Experimentals i de la Salut, Institut Hospital del Mar d'Investigacions Médiques, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio García de Herreros
- Unidad Asociada CSIC, Programa de Recerca en Cáncer, Departament de Ciéncies Experimentals i de la Salut, Institut Hospital del Mar d'Investigacions Médiques, Universitat Pompeu Fabra, Barcelona, Spain
| | - Verónica A Burzio
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Fundación Ciencia & Vida, Andes Biotechnologies SpA, Santiago, Chile
| | - Julio C Tapia
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Pérez-Moreno P, Indo S, Niechi I, Huerta H, Cabello P, Jara L, Aguayo F, Varas-Godoy M, Burzio VA, Tapia JC. Endothelin-converting enzyme-1c promotes stem cell traits and aggressiveness in colorectal cancer cells. Mol Oncol 2019; 14:347-362. [PMID: 31788944 PMCID: PMC6998658 DOI: 10.1002/1878-0261.12609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Endothelin-1 is a mitogenic peptide that activates several proliferation, survival, and invasiveness pathways. The effects of endothelin-1 rely on its activation by endothelin-converting enzyme-1 (ECE1), which is expressed as four isoforms with different cytoplasmic N termini. Recently, isoform ECE1c has been suggested to have a role in cancer aggressiveness. The N terminus of ECE1c is phosphorylated by protein kinase CK2 (also known as casein kinase 2), and this enhances its stability and promotes invasiveness in colorectal cancer cells. However, it is not known how phosphorylation improves stability and why this is correlated with increased aggressiveness. We hypothesized that CK2 phosphorylation protects ECE1c from N-terminal ubiquitination and, consequently, from proteasomal degradation. Here, we show that lysine 6 is the bona fide residue involved in ubiquitination of ECE1c and its mutation to arginine (ECE1cK6R ) significantly impairs proteasomal degradation, thereby augmenting ECE1c stability, even in the presence of the CK2 inhibitor silmitasertib. Furthermore, colorectal cancer cells overexpressing ECE1cK6R displayed enhanced cancer stem cell (CSC) traits, including increased stemness gene expression, chemoresistance, self-renewal, and colony formation and spheroid formation in vitro, as well as enhanced tumor growth and metastasis in vivo. These findings suggest that CK2-dependent phosphorylation enhances ECE1c stability, promoting an increase in CSC-like traits. Therefore, phospho-ECE1c may be a biomarker of poor prognosis and a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Pablo Pérez-Moreno
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastián Indo
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hernán Huerta
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo Cabello
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lilian Jara
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Aguayo
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Verónica A Burzio
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Fundación Ciencia & Vida, Andes Biotechnologies SpA, Santiago, Chile
| | - Julio C Tapia
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul 2019; 53:250-262. [DOI: 10.2478/enr-2019-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Objective. The aim of the present investigation was to study the effect of hypoxia on the expression of genes encoding endothelin-1 (EDN1) and its cognate receptors (EDNRA and EDNRB) as well as endothelin converting enzyme 1 (ECE1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioma growth through ERN1 and hypoxia.
Methods. The expression level of EDN1, EDNRA, EDNRB, and ECE1 genes as well as micro-RNA miR-19, miR-96, and miR-206 was studied in control and ERN1 knockdown U87 glioma cells under hypoxia by quantitative polymerase chain reaction.
Results. It was shown that the expression level of EDN1, EDNRA, EDNRB, and ECE1 genes was up-regulated in ERN1 knockdown glioma cells in comparison with the control glioma cells, being more significant for endothelin-1. We also observed down-regulation of microRNA miR-206, miR-96, and miR-19a, which have specific binding sites in mRNA EDN1, EDNRA, and EDNRB, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Furthermore, inhibition of ERN1 endoribonuclease lead to up-regulation of EDNRA and ECE1 gene expressions and down-regulation of the expression level of EDN1 and EDNRB genes in glioma cells. Thus, the expression of EDNRA and ECE1 genes is regulated by ERN1 endoribonuclease, but EDN1 and EDNRB genes preferentially by ERN1 protein kinase. We have also shown that hypoxia enhanced the expression of EDN1, EDNRA, and ECE1 genes and that knockdown of ERN1 signaling enzyme function significantly modified the response of all studied gene expressions to hypoxia. Thus, effect of hypoxia on the expression level of EDN1 and ECE1 genes was significantly or completely reduced in ERN1 knockdown glioma cells since the expression of EDNRA gene was down-regulated under hypoxia. Moreover, hypoxia is induced the expression of EDNRB gene in ERN1 knockdown glioma cells.
Conclusions. Results of this investigation demonstrate that ERN1 knockdown significantly increased the expression of endothelin-1 and its receptors as well as ECE1 genes by different mechanisms and that all studied gene expressions were sensitive to hypoxia. It is possible that hypoxic regulation of the expression of these genes is a result of complex interaction of variable ERN1 related transcription and regulatory factors with HIF1A and possibly contributed to the control of glioma growth.
Collapse
|