1
|
Yu F, Hubrack S, Raynaud CM, Elmi A, Mackeh R, Agrebi N, Thareja G, Belkadi A, Al Saloos H, Ahmed AA, Purayil SC, Mohamoud YA, Suhre K, Abi Khalil C, Schmidt F, Lo B, Hassan A, Machaca K. Loss of the TRPM4 channel in humans causes immune dysregulation with defective monocyte migration. J Allergy Clin Immunol 2024; 154:792-806. [PMID: 38750824 DOI: 10.1016/j.jaci.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND TRPM4 is a broadly expressed, calcium-activated, monovalent cation channel that regulates immune cell function in mice and cell lines. Clinically, however, partial loss- or gain-of-function mutations in TRPM4 lead to arrhythmia and heart disease, with no documentation of immunologic disorders. OBJECTIVE To characterize functional cellular mechanisms underlying the immune dysregulation phenotype in a proband with a mutated TRPM4 gene. METHODS We employed a combination of biochemical, cell biological, imaging, omics analyses, flow cytometry, and gene editing approaches. RESULTS We report the first human cases to our knowledge with complete loss of the TRPM4 channel, leading to immune dysregulation with frequent bacterial and fungal infections. Single-cell and bulk RNA sequencing point to altered expression of genes affecting cell migration, specifically in monocytes. Inhibition of TRPM4 in T cells and the THP-1 monocyte cell line reduces migration. More importantly, primary T cells and monocytes from TRPM4 patients migrate poorly. Finally, CRISPR knockout of TRPM4 in THP-1 cells greatly reduces their migration potential. CONCLUSION Our results demonstrate that TRPM4 plays a critical role in regulating immune cell migration, leading to increased susceptibility to infections.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | | | | | - Asha Elmi
- Research Department, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Gaurav Thareja
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Abdelaziz Belkadi
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | - Saleema C Purayil
- Allergy & Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY; Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Charbel Abi Khalil
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Frank Schmidt
- Research Department, Sidra Medicine, Doha, Qatar; Department of Biochemistry, Weill Cornell Medicine, New York, NY
| | - Bernice Lo
- Research Department, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Amel Hassan
- Pediatric Allergy and Immunology Department, Sidra Medicine, Doha, Qatar.
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
2
|
Mizunuma M, Redon CE, Saha LK, Tran AD, Dhall A, Sebastian R, Taniyama D, Kruhlak MJ, Reinhold WC, Takebe N, Pommier Y. Acetalax (Oxyphenisatin Acetate, NSC 59687) and Bisacodyl Cause Oncosis in Triple-Negative Breast Cancer Cell Lines by Poisoning the Ion Exchange Membrane Protein TRPM4. CANCER RESEARCH COMMUNICATIONS 2024; 4:2101-2111. [PMID: 39041239 PMCID: PMC11322923 DOI: 10.1158/2767-9764.crc-24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is clinically aggressive and relatively unresponsive to current therapies. Therefore, the development of new anticancer agents is needed to satisfy clinical needs. Oxyphenisatin acetate (Acetalax), which had been used as a laxative, has recently been reported to have anticancer activity in murine models. In this study, we demonstrate that Acetalax and its diphenolic laxative structural analogue bisacodyl (Dulcolax) exhibit potent antiproliferative activity in TNBC cell lines and cause oncosis, a nonapoptotic cell death characterized by cellular and nuclear swelling and cell membrane blebbing, leading to mitochondrial dysfunction, ATP depletion, and enhanced immune and inflammatory responses. Mechanistically, we provide evidence that transient receptor potential melastatin member 4 (TRPM4) is poisoned by Acetalax and bisacodyl in MDA-MB468, BT549, and HS578T TNBC cells. MDA-MB231 and MDA-MB436 TNBC cells without endogenous TRPM4 expression as well as TRPM4-knockout TNBC cells were found to be Acetalax- and bisacodyl-resistant. Conversely, ectopic expression of TRPM4 sensitized MDA-MB231 and MDA-MB436 cells to Acetalax. TRPM4 was also lost in cells with acquired Acetalax resistance. Moreover, TRPM4 is rapidly degraded by the ubiquitin-proteasome system upon acute exposure to Acetalax and bisacodyl. Together, these results demonstrate that TRPM4 is a previously unknown target of Acetalax and bisacodyl and that TRPM4 expression in cancer cells is a predictor of Acetalax and bisacodyl efficacy and could be used for the clinical development of these drugs as anticancer agents. SIGNIFICANCE Acetalax and bisacodyl kill cancer cells by causing oncosis following poisoning of the plasma membrane sodium transporter TRPM4 and represent a new therapeutic approach for TNBC.
Collapse
Affiliation(s)
- Makito Mizunuma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Liton Kumar Saha
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Andy D. Tran
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Anjali Dhall
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Daiki Taniyama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Huang L, Lin R, Chen J, Qi Y, Lin L. Magnesium Ion: A New Switch in Tumor Treatment. Biomedicines 2024; 12:1717. [PMID: 39200180 PMCID: PMC11351748 DOI: 10.3390/biomedicines12081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The magnesium ion is an essential cation in the human body and participates in numerous physiological activities. A deficiency in magnesium ions is closely associated with tumor development, and supplementation with magnesium ions has been shown to partially inhibit tumor growth. However, the specific mechanisms by which magnesium ions suppress tumor proliferation remain unclear. Currently, studies have revealed that mitochondria may serve as a crucial intermediate link in the regulation of tumors by magnesium ions. Mitochondria might intervene in the proliferation and invasion of tumor cells by modulating energy metabolism and oxidative stress levels. Regrettably, there has been no comprehensive review of the role of magnesium in cancer therapy to date. Therefore, this article provides a comprehensive scrutiny of the relationship between magnesium ions and tumors, aiming to offer insights for clinical tumor treatment strategies involving magnesium ion intervention.
Collapse
Affiliation(s)
- Leyi Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China;
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Experimental Teaching Center of Basic Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Jiaxi Chen
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (R.L.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Liu H, Weng J, Huang CLH, Jackson AP. Voltage-gated sodium channels in cancers. Biomark Res 2024; 12:70. [PMID: 39060933 PMCID: PMC11282680 DOI: 10.1186/s40364-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Voltage-gated sodium channels (VGSCs) initiate action potentials in electrically excitable cells and tissues. Surprisingly, some VGSC genes are aberrantly expressed in a variety of cancers, derived from "non-excitable" tissues that do not generate classic action potentials, showing potential as a promising pharmacological target for cancer. Most of the previous review articles on this topic are limited in scope, and largely unable to provide researchers with a comprehensive understanding of the role of VGSC in cancers. Here, we review the expression patterns of all nine VGSC α-subunit genes (SCN1A-11A) and their four regulatory β-subunit genes (SCN1B-4B). We reviewed data from the Cancer Genome Atlas (TCGA) database, complemented by an extensive search of the published papers. We summarized and reviewed previous independent studies and analyzed the VGSC genes in the TCGA database regarding the potential impact of VGSC on cancers. A comparison between evidence gathered from independent studies and data review was performed to scrutinize potential biases in prior research and provide insights into future research directions. The review supports the view that VGSCs play an important role in diagnostics as well as therapeutics of some cancer types, such as breast, colon, prostate, and lung cancer. This paper provides an overview of the current knowledge on voltage-gated sodium channels in cancer, as well as potential avenues for further research. While further research is required to fully understand the role of VGSCs in cancer, the potential of VGSCs for clinical diagnosis and treatment is promising.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | - Jieling Weng
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Christopher L-H Huang
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Antony P Jackson
- Department of Biochemistry, Hopkins Building, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
5
|
Niu L, Liu H, Li X, Wang L, Hua H, Cao Q, Xiang Q, Cai T, Zhu D. Design, synthesis, and biological evaluation of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives as TRPM4 inhibitors for the treatment of prostate cancer. Bioorg Med Chem 2024; 98:117584. [PMID: 38168629 DOI: 10.1016/j.bmc.2023.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Transient receptor potential melastatin 4 (TRPM4) is considered to be a potential target for cancer and other human diseases. Herein, a series of 2-(naphthalen-1-yloxy)-N-phenylacetamide derivatives were designed and synthesized as new TRPM4 inhibitors, aiming to improve cellular potency. One of the most promising compounds, 7d (ZX08903), displayed promising antiproliferative activity against prostate cancer cell lines. 7d also suppressed colony formation and the expression of androgen receptor (AR) protein in prostate cancer cells. Furthermore, 7d can concentration-dependently induce cell apoptosis in prostate cancer cells. Collectively, these findings indicated that compound 7d may serve as a promising lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Le Niu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China; Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huina Liu
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Xiaomei Li
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Lin Wang
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Hua
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Qiaofeng Cao
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qiuping Xiang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Ting Cai
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo No.2 Hospital, Ningbo, 315010, China.
| | - Dongsheng Zhu
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, and Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
7
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
8
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
9
|
Chen B, Wei S, Low SW, Poore CP, Lee ATH, Nilius B, Liao P. TRPM4 Blocking Antibody Protects Cerebral Vasculature in Delayed Stroke Reperfusion. Biomedicines 2023; 11:biomedicines11051480. [PMID: 37239151 DOI: 10.3390/biomedicines11051480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Reperfusion therapy for acute ischemic stroke aims to restore the blood flow of occluded blood vessels. However, successful recanalization is often associated with disruption of the blood-brain barrier, leading to reperfusion injury. Delayed recanalization increases the risk of severe reperfusion injury, including severe cerebral edema and hemorrhagic transformation. The TRPM4-blocking antibody M4P has been shown to alleviate reperfusion injury and improve functional outcomes in animal models of early stroke reperfusion. In this study, we examined the role of M4P in a clinically relevant rat model of delayed stroke reperfusion in which the left middle cerebral artery was occluded for 7 h. To mimic the clinical scenario, M4P or control IgG was administered 1 h before recanalization. Immunostaining showed that M4P treatment improved vascular morphology after stroke. Evans blue extravasation demonstrated attenuated vascular leakage following M4P treatment. With better vascular integrity, cerebral perfusion was improved, leading to a reduction of infarct volume and animal mortality rate. Functional outcome was evaluated by the Rotarod test. As more animals with severe injuries died during the test in the control IgG group, we observed no difference in functional outcomes in the surviving animals. In conclusion, we identified the potential of TRPM4 blocking antibody M4P to ameliorate vascular injury during delayed stroke reperfusion. If combined with reperfusion therapy, M4P has the potential to improve current stroke management.
Collapse
Affiliation(s)
- Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Charlene Priscilla Poore
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Andy Thiam-Huat Lee
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
- Health and Social Sciences, Singapore Institute of Technology, Singapore 138683, Singapore
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
10
|
Chen Z, Zhao Y, Tian Y, Cao R, Shang D. Pan-Cancer Analysis of the TRP Family, Especially TRPV4 and TRPC4, and Its Expression Correlated with Prognosis, Tumor Microenvironment, and Treatment Sensitivity. Biomolecules 2023; 13:biom13020282. [PMID: 36830651 PMCID: PMC9953180 DOI: 10.3390/biom13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Transient receptor potential (TRP) channels are involved in various physiological, pathological, and tumorigenesis-related processes. However, only a few studies have comprehensively analyzed TRP family members and their association with prognosis and tumor microenvironment (TME) in various cancers. Thus, in this study, we focused on TRP channels in pan-cancer and screened two typical TRP channels, TRPV4 and TRPC4, as examples. METHODS Based on the latest public databases, we evaluated the expression level and prognostic value of TRP family genes in pan-cancer tissues via various bioinformatic analytical methods, and investigated the relationship between the expression of TRP family genes with TME, stemness score, immune subtype, drug sensitivity, and immunotherapy outcome in pan-cancer tissues. RESULTS Pan-cancer analysis revealed that the TRP family genes were differentially expressed in tumor and para-carcinoma tissues. A significant correlation existed between the expression of TRP family genes and prognosis. The expression of TRP family genes was significantly correlated with stromal, immune, RNA stemness, and DNA stemness scores in pan-cancer tissues. Our results indicated that the expression of TRP family genes correlated with the sensitivity to various drugs including PLX-4720, SB-590885, and HYPOTHEMYCIN, immunotherapy outcome, and immune-activation-related genes. Immunohistochemical analysis revealed significant differential expression of TRPV4 in bladder and para-carcinoma tissues. CONCLUSIONS Our study elucidated the possible role of TRP family genes in cancer progression and provided insights for further studies on TRP family genes as potential pan-cancer targets to develop diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Rui Cao
- Correspondence: (R.C.); (D.S.)
| | | |
Collapse
|
11
|
Bai S, Wei Y, Liu R, Chen Y, Ma W, Wang M, Chen L, Luo Y, Du J. The role of transient receptor potential channels in metastasis. Biomed Pharmacother 2023; 158:114074. [PMID: 36493698 DOI: 10.1016/j.biopha.2022.114074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the hallmark of failed tumor treatment and is typically associated with death due to cancer. Transient receptor potential (TRP) channels affect changes in intracellular calcium concentrations and participate at every stage of metastasis. Further, they increase the migratory ability of tumor cells, promote angiogenesis, regulate immune function, and promote the growth of tumor cells through changes in gene expression and function. In this review, we explore the potential mechanisms of action of TRP channels, summarize their role in tumor metastasis, compile inhibitors of TRP channels relevant in tumors, and discuss current challenges in research on TRP channels involved in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yuan Wei
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Rong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuhua Chen
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Wanling Ma
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Minghua Wang
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Li Chen
- Department of obstetrics and gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Zhenyuan Rd, Guangming Dist., Shenzhen, Guangdong 518107, China
| | - Yumei Luo
- Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
12
|
Wei S, Behn J, Poore CP, Low SW, Nilius B, Fan H, Liao P. Binding epitope for recognition of human TRPM4 channel by monoclonal antibody M4M. Sci Rep 2022; 12:19562. [PMID: 36380063 PMCID: PMC9666640 DOI: 10.1038/s41598-022-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mouse monoclonal antibody M4M was recently designed to block human TRPM4 channel. The polypeptide for generating M4M is composed of peptide A1 between the transmembrane segment 5 (S5) and the pore, and a second peptide A2 between the pore and the transmembrane segment 6 (S6). Using peptide microarray, a 4-amino acid sequence EPGF within the A2 was identified to be the binding epitope for M4M. Substitution of EPGF with other amino acids greatly reduced binding affinity. Structural analysis of human TRPM4 structure indicates that EPGF is located externally to the channel pore. A1 is close to the EPGF binding epitope in space, albeit separated by a 37-amino acid peptide. Electrophysiological study reveals that M4M could block human TRPM4, but with no effect on rodent TRPM4 which shares a different amino acid sequence ERGS for the binding motif. Our results demonstrate that M4M is a specific inhibitor for human TRPM4.
Collapse
Affiliation(s)
- Shunhui Wei
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Julian Behn
- grid.418325.90000 0000 9351 8132Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671 Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Charlene Priscilla Poore
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - See Wee Low
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Bernd Nilius
- grid.5596.f0000 0001 0668 7884Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hao Fan
- grid.418325.90000 0000 9351 8132Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, 138671 Singapore
| | - Ping Liao
- grid.276809.20000 0004 0636 696XCalcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore ,grid.486188.b0000 0004 1790 4399Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Identification of Calcium Channel-Related Gene P2RX2 for Prognosis and Immune Infiltration in Prostate Cancer. DISEASE MARKERS 2022; 2022:8058160. [PMID: 36246559 PMCID: PMC9553555 DOI: 10.1155/2022/8058160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is one of the most common malignancies in men. Calcium signaling is implicated in the progression of prostate cancer and plays a critical role in immune cell function. However, whether specific calcium channel-related genes play a crucial role in the immune cell infiltration levels of prostate cancer requires further research. In this study, we performed an integrated analysis of transcriptional, clinical, and somatic mutation data from The Cancer Genome Atlas database and identified the hub calcium channel-related gene P2RX2 to be associated with the prognosis and immune infiltration of prostate cancer. P2RX2 expression was positively correlated with immune cell infiltration levels and the expression of immune checkpoint genes, and downregulation of P2RX2 led to poor survival in patients with prostate cancer. Furthermore, we validated the molecular and clinical characteristics of P2RX2 by using multiple databases and conducting in-vitro experiments. Additionally, drug sensitivity analysis revealed that patients with low P2RX2 expression were sensitive to docetaxel and Bicalutamide. In conclusion, we revealed an association between calcium channel-related genes and prostate cancer, and identified P2RX2 as a biomarker for early diagnosis, prognosis prediction, and aiding treatment decisions for patients with prostate cancer.
Collapse
|
14
|
A Pancancer Study of PIEZO1 as a Prognosis and Immune Biomarker of Human Tumors. JOURNAL OF ONCOLOGY 2022; 2022:6725570. [PMID: 35747124 PMCID: PMC9213189 DOI: 10.1155/2022/6725570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
PIEZO1, a mechanosensitive ion channel protein, has been identified in the correlation between several cancers. However, the systematic pancancer study of PIEZO1 still lacks. We examined PIEZO1 across thirty-three types of cancers to explore its role in prognosis and immunological function for the first time. Based on the open databases TCGA, GTEx and CPTAC, PIEZO1 has been demonstrated to be differentially expressed in most cancers compared to adjacent normal tissues. The distinct correlation between PIEZO1 and prognosis of tumor patients was explored by GEPIA2. Genetic alteration of PIEZO1 in the TCGA tumors showed that mutation is the alteration which is linked to OS, DSS, DFS and PFS in some tumors. Alterations of protein phosphorylation levels were detected in some cancers based on the CPTAC dataset. PIEZO1 expression was linked with immune cell infiltration, such as endothelial cell and cancer-associated fibroblast. Finally, KEGG and GO enrichment analyses were applied to investigate the molecular mechanism of PIEZO1. Our first pancancer analysis illustrated the roles of PIEZO1 in different types of tumors.
Collapse
|
15
|
Zhang C, Xu C, Ma C, Zhang Q, Bu S, Zhang DL, Yu L, Wang H. TRPs in Ovarian Serous Cystadenocarcinoma: The Expression Patterns, Prognostic Roles, and Potential Therapeutic Targets. Front Mol Biosci 2022; 9:915409. [PMID: 35813831 PMCID: PMC9263218 DOI: 10.3389/fmolb.2022.915409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/05/2022] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (usually ovarian serous cystadenocarcinoma, or OV) is the fifth leading cause of cancer-related deaths in women, with more than 184,000 deaths reported worldwide annually, and is a highly malignant carcinoma. However, the mechanism of etiology remains unclear. The lack of prognostic and diagnostic biomarkers is a main limitation for clinical diagnosis and treatment. The transient receptor potential (TRP) channels play essential roles in the occurrence and development of cancers which may have the potential as a therapeutic target for OV. In our study, we used bioinformatic methods to study the potential effect and function of the TRP family in patients with OV. Differential expression analysis showed that the expression of TRPC7, TRPV4, and other TRP family members was significantly different between tumor and normal tissues. Through survival analysis, we screened out that the high expression of TRPC7, TRPV4, and TRPM (2,4,8) was negatively correlated with the prognosis of patients. In contrast, the low expression of TRPM3 was negatively associated with the prognosis. Cox regression analysis further indicated that TRPV4 was OV’s most likely therapeutic target. Finally, we conducted mRNA expression analysis, functional enrichment analysis, and immune infiltration analysis to confirm that TRPV4 was the most convincing therapeutic target of OV.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Cong Xu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chuanshun Ma
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qinghua Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, China
| | - Dao-Lai Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
- *Correspondence: Liting Yu, ; Hongmei Wang,
| | - Hongmei Wang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, China
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, China
- *Correspondence: Liting Yu, ; Hongmei Wang,
| |
Collapse
|
16
|
Zhou Q, Liu Y, Feng R, Zhang W. NUCB2: roles in physiology and pathology. J Physiol Biochem 2022; 78:603-617. [PMID: 35678998 DOI: 10.1007/s13105-022-00895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Nucleobindin2 (NUCB2) is a member of nucleobindin family which was first found in the nucleus of the hypothalamus, and had a relationship in diet and energy homeostasis. Its location in normal tissues such as stomach and islet further confirms that it plays a vital role in the regulation of physiological functions of the body. Besides, NUCB2 participates in tumorigenesis through activating various signal-pathways, more and more studies indicate that NUCB2 might impact tumor progression by promoting or inhibiting proliferation, apoptosis, autophagy, metastasis, and invasion of tumor cells. In this review, we comprehensively stated NUCB2's expression and functions, and introduced the role of NUCB2 in physiology and pathology and its mechanism. What is more, pointed out the potential direction of future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China. .,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
18
|
Zhu L, Miao B, Dymerska D, Kuswik M, Bueno-Martínez E, Sanoguera-Miralles L, Velasco EA, Paramasivam N, Schlesner M, Kumar A, Yuan Y, Lubinski J, Bandapalli OR, Hemminki K, Försti A. Germline Variants of CYBA and TRPM4 Predispose to Familial Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14030670. [PMID: 35158942 PMCID: PMC8833488 DOI: 10.3390/cancers14030670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Whole-genome sequencing and bioinformatics analysis on unique colorectal cancer families revealed two attractive candidate predisposition genes, CYBA and TRPM4, each with a loss-of-function variant. Supported by our functional studies, we suggest that the two gene defects mechanistically involve intestinal barrier integrity through reactive oxygen species and mucus biology, which converges in chronic bowel inflammation, a known risk factor for colorectal cancer. Abstract Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25–1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48–12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.
Collapse
Affiliation(s)
- Lizhen Zhu
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Beiping Miao
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Magdalena Kuswik
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (E.A.V.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Jan Lubinski
- Department of Genetics and Pathology, Hereditary Cancer Center, Pomeranian Medical University, Unii Lubelskiej 1, 71-252 Szczecin, Poland; (D.D.); (M.K.); (J.L.)
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Correspondence: (O.R.B.); (K.H.)
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany; (L.Z.); (B.M.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany
| |
Collapse
|
19
|
Investigation of Novel Small Molecular TRPM4 Inhibitors in Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13215400. [PMID: 34771564 PMCID: PMC8582472 DOI: 10.3390/cancers13215400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Transient receptor potential melastatin 4 (TRPM4) ion channel malfunction or aberrant expression is implicated in many diseases, including different cancers and cardiovascular diseases. Currently, there is a need for specific and potent TRPM4 inhibitors. They would allow to study the role of TRPM4 in disease models and to validate it as a potential target in therapies, including anti-cancer therapy. In colorectal cancer (CRC), TRPM4 is upregulated, and its conductivity plays a role in the regulation of viability and cell cycle of CRC cells. In this study, we tested three novel TRPM4 inhibitors, CBA, NBA, and LBA, in CRC cells. In HCT116 cells, we show that NBA inhibits TRPM4 currents in the micromolar range and alters proliferation and cell cycle. Furthermore, NBA decreases the viability of Colo205 cells. This makes NBA a promising candidate for further evaluation as a specific TRPM4 inhibitor in other cellular systems and disease models. Abstract (1) Background: Transient receptor potential melastatin (TRPM4) ion channel aberrant expression or malfunction contributes to different types of cancer, including colorectal cancer (CRC). However, TRPM4 still needs to be validated as a potential target in anti-cancer therapy. Currently, the lack of potent and selective TRPM4 inhibitors limits further studies on TRPM4 in cancer disease models. In this study, we validated novel TRPM4 inhibitors, CBA, NBA, and LBA, in CRC cells. (2) Methods: The potency to inhibit TRPM4 conductivity in CRC cells was assessed with the whole-cell patch clamp technique. Furthermore, the impact of TRPM4 inhibitors on cellular functions, such as viability, proliferation, and cell cycle, were assessed in cellular assays. (3) Results: We show that in CRC cells, novel TRPM4 inhibitors irreversibly block TRPM4 currents in a low micromolar range. NBA decreases proliferation and alters the cell cycle in HCT116 cells. Furthermore, NBA reduces the viability of the Colo205 cell line, which highly expresses TRPM4. (4) Conclusions: NBA is a promising new TRPM4 inhibitor candidate, which could be used to study the role of TRPM4 in cancer disease models and other diseases.
Collapse
|
20
|
Çoban G, Yildiz P, Doğan B, Şahin N, Gücin Z. Expression of transient receptor potential melastatin 4 in differential diagnosis of eosinophilic renal tumors. Mol Clin Oncol 2021; 15:230. [PMID: 34631055 DOI: 10.3892/mco.2021.2393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/02/2021] [Indexed: 11/05/2022] Open
Abstract
Immunohistochemical and molecular studies to differentiate eosinophilic kidney tumors are gradually increasing. The present study investigated the role of transient receptor potential cation channel subfamily M member 4 (TRPM4), a non-selective cation channel associated with migration, proliferation and invasion in cancer cells, in this differentiation. The aim was to investigate the effectiveness of TRPM4 in differentiation of eosinophilic kidney tumors. The study included a total of 112 patients, including 97 eosinophilic kidney tumors with the diagnoses of 33 eosinophilic clear cell renal cell carcinoma (CCRCC), 35 eosinophilic chromophobe renal cell carcinoma (ChRCC), 8 papillary renal cell carcinoma type 2 (P2RCC), 21 renal oncocytoma (RO), as well as 15 papillary renal cell carcinoma type 1 to differentiate from P2RCC. For TRPM4, diffuse staining (>10%) was observed in 2 CCRCC, 15 ChRCC, 20 RO and 4 P2RCC cases. There was a significant difference between eosinophilic CCRCC and other eosinophilic tumors (P<0.05). While basolateral staining was observed in papillary tumors, membrane staining was observed in other stained cases. It was hypothesized that the use of TRPM4 along with morphological findings, cytokeratin 7 and other markers may be useful for the differentiation of eosinophilic kidney tumors.
Collapse
Affiliation(s)
- Ganime Çoban
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Pelin Yildiz
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Bayram Doğan
- Department of Urology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Nurhan Şahin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Zühal Gücin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul 34093, Turkey
| |
Collapse
|
21
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
22
|
Arullampalam P, Preti B, Ross-Kaschitza D, Lochner M, Rougier JS, Abriel H. Species-Specific Effects of Cation Channel TRPM4 Small-Molecule Inhibitors. Front Pharmacol 2021; 12:712354. [PMID: 34335274 PMCID: PMC8321095 DOI: 10.3389/fphar.2021.712354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The Transient Receptor Potential Melastatin member 4 (TRPM4) gene encodes a calcium-activated non-selective cation channel expressed in several tissues. Mutations in TRPM4 have been reported in patients with different types of cardiac conduction defects. It is also linked to immune response and cancers, but the associated molecular mechanisms are still unclear. Thus far, 9-phenanthrol is the most common pharmacological compound used to investigate TRPM4 function. We recently identified two promising aryloxyacyl-anthranilic acid compounds (abbreviated CBA and NBA) inhibiting TRPM4. However, all aforementioned compounds were screened using assays expressing human TRPM4, whereas the efficacy of mouse TRPM4 has not been assessed. Mouse models are essential to investigate ion channel physiology and chemical compound efficacy. Aim: In this study, we performed comparative electrophysiology experiments to assess the effect of these TRPM4 inhibitors on human and mouse TRPM4 channels heterologously expressed in TsA-201 cells. Methods and Results: We identified striking species-dependent differences in TRPM4 responses. NBA inhibited both human and mouse TRPM4 currents when applied intracellularly and extracellularly using excised membrane patches. CBA inhibited human TRPM4, both intracellularly and extracellularly. Unexpectedly, the application of CBA had no inhibiting effect on mouse TRPM4 current when perfused on the extracellular side. Instead, its increased mouse TRPM4 current at negative holding potentials. In addition, CBA on the intracellular side altered the outward rectification component of the mouse TRPM4 current. Application of 9-phenanthrol, both intracellularly and extracellularly, inhibited human TRPM4. For mouse TRPM4, 9-phenanthrol perfusion led to opposite effects depending on the site of application. With intracellular 9-phenanthrol, we observed a tendency towards potentiation of mouse TRPM4 outward current at positive holding potentials. Conclusion: Altogether, these results suggest that pharmacological compounds screened using “humanised assays” should be extensively characterised before application in vivo mouse models.
Collapse
Affiliation(s)
- Prakash Arullampalam
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Barbara Preti
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniela Ross-Kaschitza
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Martin Lochner
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Jean-Sébastien Rougier
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Swiss National Centre of Competence in Research (NCCR) TransCure, Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Cui C, Zhang Y, Liu G, Zhang S, Zhang J, Wang X. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:266-291. [PMID: 36046433 PMCID: PMC9400724 DOI: 10.37349/etat.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
Metastasis is still the primary cause of cancer-related mortality. However, the underlying mechanisms of cancer metastasis are not yet fully understood. Currently, the epithelial-mesenchymal transition, metabolic remodeling, cancer cell intercommunication and the tumor microenvironment including diverse stromal cells, are reported to affect the metastatic process of cancer cells. Calcium ions (Ca2+) are ubiquitous second messengers that manipulate cancer metastasis by affecting signaling pathways. Diverse transporter/pump/channel-mediated Ca2+ currents form Ca2+ oscillations that can be decoded by Ca2+-binding proteins, which are promising prognostic biomarkers and therapeutic targets of cancer metastasis. This paper presents a review of the advances in research on the mechanisms underlying cancer metastasis and the roles of Ca2+-related signals in these events.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Shuhong Zhang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, College of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, Henan, China
| |
Collapse
|
24
|
Wang C, Maeda M, Chen J, Wang M, Naruse K, Takahashi K. Production of TRPM4 knockout cell line using rat cardiomyocyte H9c2. MethodsX 2021; 8:101404. [PMID: 34430300 PMCID: PMC8374525 DOI: 10.1016/j.mex.2021.101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
The method presented in this article are related to the research article entitled as "Role of the TRPM4 channel in mitochondrial function, calcium release, and ROS generation in oxidative stress" [1]. TRPM4, a non-selective monovalent cation channel, is not only involved in the generation of the action potential in cardiomyocytes, but also thought to be a key molecule in the development of the ischemia-reperfusion injury of the brain and the heart [2], [3], [4], [5]. However, existing pharmacological inhibitors for the TRPM4 channel have problems of non-specificity [6]. This article describes methods used for targeted genomic deletion in the rat cardiomyocyte H9c2 using the CRISPR-Cas9 genome editing system in order to suppress TRPM4 protein expression. Confocal microscopy, flow cytometry, Sanger sequencing, and western blotting are performed to confirm vector transfection and the subsequent knockout of the TRPM4 protein.•These data provide information on the comprehensive analyses for knocking out the rat TRPM4 channel using CRISPR/Cas9. The analyses include confocal microscopy, flow cytometry, Sanger sequencing, and western blotting.•This dataset will benefit biological and medical researchers studying the function of TRPM4-expressing cells including neurons, cardiomyocytes, and vascular endothelial cells. It is also useful to study the involvement of the TRPM4 channel in pathological processes such as cardiac arrhythmia and ischemia-reperfusion injury.•The dataset can be used to guide the experiment of knocking out the TRPM4 gene and its subsequent application to the study of disease process caused by the gene.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
| | | | - Jian Chen
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, China
| | - Mengxue Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
25
|
Low SW, Gao Y, Wei S, Chen B, Nilius B, Liao P. Development and characterization of a monoclonal antibody blocking human TRPM4 channel. Sci Rep 2021; 11:10411. [PMID: 34002002 PMCID: PMC8129085 DOI: 10.1038/s41598-021-89935-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
TRPM4 is a calcium-activated non-selective monovalent cation channel implicated in diseases such as stroke. Lack of potent and selective inhibitors remains a major challenge for studying TRPM4. Using a polypeptide from rat TRPM4, we have generated a polyclonal antibody M4P which could alleviate reperfusion injury in a rat model of stroke. Here, we aim to develop a monoclonal antibody that could block human TRPM4 channel. Two mouse monoclonal antibodies M4M and M4M1 were developed to target an extracellular epitope of human TRPM4. Immunohistochemistry and western blot were used to characterize the binding of these antibodies to human TRPM4. Potency of inhibition was compared using electrophysiological methods. We further evaluated the therapeutic potential on a rat model of middle cerebral artery occlusion. Both M4M and M4M1 could bind to human TRPM4 channel on the surface of live cells. Prolonged incubation with TRPM4 blocking antibody internalized surface TRPM4. Comparing to M4M1, M4M is more effective in blocking human TRPM4 channel. In human brain microvascular endothelial cells, M4M successfully inhibited TRPM4 current and ameliorated hypoxia-induced cell swelling. Using wild type rats, neither antibody demonstrated therapeutic potential on stroke. Human TRPM4 channel can be blocked by a monoclonal antibody M4M targeting a key antigenic sequence. For future clinical translation, the antibody needs to be humanized and a transgenic animal carrying human TRPM4 sequence is required for in vivo characterizing its therapeutic potential.
Collapse
Affiliation(s)
- See Wee Low
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yahui Gao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Shunhui Wei
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Bo Chen
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signalling Laboratory, Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Duke-NUS Medical School, Singapore, Singapore. .,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore.
| |
Collapse
|
26
|
Mapping the expression of transient receptor potential channels across murine placental development. Cell Mol Life Sci 2021; 78:4993-5014. [PMID: 33884443 PMCID: PMC8233283 DOI: 10.1007/s00018-021-03837-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.
Collapse
|
27
|
Lee S, Kim KM, Lee SY, Jung J. Estrogen Aggravates Tumor Growth in a Diffuse Gastric Cancer Xenograft Model. Pathol Oncol Res 2021; 27:622733. [PMID: 34257587 PMCID: PMC8262185 DOI: 10.3389/pore.2021.622733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Gastric cancer has the fifth-highest incidence rate and is the third leading cause of cancer-related deaths worldwide. The incidence of gastric cancer is higher in men than in women, but for the diffuse types of gastric cancer, the trend is opposite. Estrogen is considered the prime culprit behind these differences. Nevertheless, the action of estrogen in gastric cancers remains unclear. In this study, we investigated the effect of estrogen on diffuse-type gastric cancer. Human female diffuse gastric cancer SNU-16 cells were transplanted into male and female mice to analyze the effect of endogenous estrogen on tumor growth. Furthermore, the effect of exogenous estrogen was evaluated in ovariectomized mice. Expressed genes were compared between female and male xenograft models using RNA sequencing analysis. Furthermore, human gene expression omnibus databases were utilized to examine the effect of our target genes on overall survival. SNU-16-derived tumor growth was faster in female mice than in male mice. In total RNA sequencing, interferon gamma receptor 2 (IFNGR2), IQ motif containing E (IQCE), transient receptor potential cation channel subfamily M member 4 (TRPM4), and structure-specific endonuclease subunit SLX4 (SLX4) were found. These genes could be associated with the tumor growth in female diffuse-type gastric cancer which was affected by endogenous estrogen. In an ovariectomized gastric cancer xenograft model, exogenous estrogen promoted tumor growth. Especially, our results indicated that estrogen induced G protein-coupled estrogen receptor expression in these mice. These results suggest that estrogen aggravates tumor progression in female diffuse gastric cancer.
Collapse
Affiliation(s)
- Sunyi Lee
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Kyoung Mee Kim
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
| | - Seung Yeon Lee
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, Duksung Women’s University, Seoul, Korea
- College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
28
|
Li Y, Umbach DM, Krahn JM, Shats I, Li X, Li L. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics 2021; 22:272. [PMID: 33858332 PMCID: PMC8048084 DOI: 10.1186/s12864-021-07581-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Human cancer cell line profiling and drug sensitivity studies provide valuable information about the therapeutic potential of drugs and their possible mechanisms of action. The goal of those studies is to translate the findings from in vitro studies of cancer cell lines into in vivo therapeutic relevance and, eventually, patients’ care. Tremendous progress has been made. Results In this work, we built predictive models for 453 drugs using data on gene expression and drug sensitivity (IC50) from cancer cell lines. We identified many known drug-gene interactions and uncovered several potentially novel drug-gene associations. Importantly, we further applied these predictive models to ~ 17,000 bulk RNA-seq samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database to predict drug sensitivity for both normal and tumor tissues. We created a web site for users to visualize and download our predicted data (https://manticore.niehs.nih.gov/cancerRxTissue). Using trametinib as an example, we showed that our approach can faithfully recapitulate the known tumor specificity of the drug. Conclusions We demonstrated that our approach can predict drugs that 1) are tumor-type specific; 2) elicit higher sensitivity from tumor compared to corresponding normal tissue; 3) elicit differential sensitivity across breast cancer subtypes. If validated, our prediction could have relevance for preclinical drug testing and in phase I clinical design. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07581-7.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity & Structural Biology Laboratory, Research Triangle Park, Durham, NC, 27709, USA
| | - Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA.
| |
Collapse
|
29
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
He F, Yu J, Yang J, Wang S, Zhuang A, Shi H, Gu X, Xu X, Chai P, Jia R. m 6A RNA hypermethylation-induced BACE2 boosts intracellular calcium release and accelerates tumorigenesis of ocular melanoma. Mol Ther 2021; 29:2121-2133. [PMID: 33601055 DOI: 10.1016/j.ymthe.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Ocular melanoma, including uveal melanoma (UM) and conjunctival melanoma (CM), is the most common and deadly eye cancer in adults. Both UM and CM originate from melanocytes and exhibit an aggressive growth pattern with high rates of metastasis and mortality. The integral membrane glycoprotein beta-secretase 2 (BACE2), an enzyme that cleaves amyloid precursor protein into amyloid beta peptide, has been reported to play a vital role in vertebrate pigmentation and metastatic melanoma. However, the role of BACE2 in ocular melanoma remains unclear. In this study, we showed that BACE2 was significantly upregulated in ocular melanoma, and inhibition of BACE2 significantly impaired tumor progression both in vitro and in vivo. Notably, we identified that transmembrane protein 38B (TMEM38B), whose expression was highly dependent on BACE2, modulated calcium release from endoplasmic reticulum (ER). Inhibition of the BACE2/TMEM38B axis could trigger exhaustion of intracellular calcium release and inhibit tumor progression. We further demonstrated that BACE2 presented an increased level of N6-methyladenosine (m6A) RNA methylation, which led to the upregulation of BACE2 mRNA. To our knowledge, this study provides a novel pattern of BACE2-mediated intracellular calcium release in ocular melanoma progression, and our findings suggest that m6A/BACE2/TMEM38b could be a potential therapeutic axis for ocular melanoma.
Collapse
Affiliation(s)
- Fanglin He
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Jie Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Shaoyun Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Xiang Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Xiaofang Xu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Peiwei Chai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200001, China.
| |
Collapse
|
31
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
32
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
33
|
Bacsa B, Tiapko O, Stockner T, Groschner K. Mechanisms and significance of Ca 2+ entry through TRPC channels. CURRENT OPINION IN PHYSIOLOGY 2020; 17:25-33. [PMID: 33210055 PMCID: PMC7116371 DOI: 10.1016/j.cophys.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transient receptor potential (TRP) superfamily of plasma membrane cation channels has been recognized as a signaling hub in highly diverse settings of human physiopathology. In the past three decades of TRP research, attention was focused mainly on the channels Ca2+ signaling function, albeit additional cellular functions, aside of providing a Ca2+ entry pathway, have been identified. Our understanding of Ca2+ signaling by TRP proteins has recently been advanced by a gain in high-resolution structure information on these pore complexes, and by the development of novel tools to investigate their role in spatiotemporal Ca2+ handling. This review summarizes recent discoveries as well as remaining, unresolved aspects of the canonical subfamily of transient receptor potential channels (TRPC) research. We aim at a concise overview on current mechanistic concepts of Ca2+ entry through- and Ca2+ signaling by TRPC channels.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Gottfried-Schatz-Research-Center - Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/D04, 8010 Graz, Austria
| | - Oleksandra Tiapko
- Gottfried-Schatz-Research-Center - Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/D04, 8010 Graz, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr. 13A, 1090 Vienna, Austria
| | - Klaus Groschner
- Gottfried-Schatz-Research-Center - Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/D04, 8010 Graz, Austria
| |
Collapse
|
34
|
Rapetti-Mauss R, Berenguier C, Allegrini B, Soriani O. Interplay Between Ion Channels and the Wnt/β-Catenin Signaling Pathway in Cancers. Front Pharmacol 2020; 11:525020. [PMID: 33117152 PMCID: PMC7552962 DOI: 10.3389/fphar.2020.525020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence point out the important roles of ion channels in the physiopathology of cancers, so that these proteins are now considered as potential new therapeutic targets and biomarkers in this disease. Indeed, ion channels have been largely described to participate in many hallmarks of cancers such as migration, invasion, proliferation, angiogenesis, and resistance to apoptosis. At the molecular level, the development of cancers is characterised by alterations in transduction pathways that control cell behaviors. However, the interactions between ion channels and cancer-related signaling pathways are poorly understood so far. Nevertheless, a limited number of reports have recently addressed this important issue, especially regarding the interaction between ion channels and one of the main driving forces for cancer development: the Wnt/β-catenin signaling pathway. In this review, we propose to explore and discuss the current knowledge regarding the interplay between ion channels and the Wnt/β-catenin signaling pathway in cancers.
Collapse
|
35
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
36
|
Wong KK, Hussain FA. TRPM4 is overexpressed in breast cancer associated with estrogen response and epithelial-mesenchymal transition gene sets. PLoS One 2020; 15:e0233884. [PMID: 32484822 PMCID: PMC7266295 DOI: 10.1371/journal.pone.0233884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Ion channels form an important class of drug targets in malignancies. Transient receptor potential cation channel subfamily M member 4 (TRPM4) plays oncological roles in various solid tumors. Herein, we examined TRPM4 protein expression profile by immunohistochemistry (IHC) in breast cancer cases compared with normal breast ducts, its association with clinico-demographical parameters, and its potential function in breast cancers by Gene Set Enrichment Analysis (GSEA). Data-mining demonstrated that TRPM4 transcript levels were significantly higher in The Cancer Genome Atlas series of breast cancer cases (n = 1,085) compared with normal breast tissues (n = 112) (p = 1.03 x 10−11). Our IHC findings in tissue microarrays showed that TRPM4 protein was overexpressed in breast cancers (n = 83/99 TRPM4+; 83.8%) compared with normal breast ducts (n = 5/10 TRPM4+; 50%) (p = 0.022). Higher TRPM4 expression (median frequency cut-off) was significantly associated with higher lymph node status (N1-N2 vs N0; p = 0.024) and higher stage (IIb-IIIb vs I-IIa; p = 0.005). GSEA evaluation in three independent gene expression profiling (GEP) datasets of breast cancer cases (GSE54002, n = 417; GSE20685, n = 327; GSE23720, n = 197) demonstrated significant association of TRPM4 transcript expression with estrogen response and epithelial-mesenchymal transition (EMT) gene sets (p<0.01 and false discovery rate<0.05). These gene sets were not enriched in GEP datasets of normal breast epithelium cases (GSE10797, n = 5; GSE9574, n = 15; GSE20437, n = 18). In conclusion, TRPM4 protein expression is upregulated in breast cancers associated with worse clinico-demographical parameters, and TRPM4 potentially regulates estrogen receptor signaling and EMT progression in breast cancer.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
37
|
Aberrant TRPM4 expression in MLL-rearranged acute myeloid leukemia and its blockade induces cell cycle arrest via AKT/GLI1/Cyclin D1 pathway. Cell Signal 2020; 72:109643. [PMID: 32320859 DOI: 10.1016/j.cellsig.2020.109643] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023]
Abstract
Transient Receptor Potential Melastatin Subfamily Member 4 (TRPM4) has been demonstrated to be aberrantly expressed in several cancers but seldom reported in acute leukemia. Based on database mining and validated experiments, our present data show that TRPM4 is selectively overexpressed in AML patients and cell lines with the MLL gene rearrangement. We analyzed the correlation between TRPM4 expression and clinical parameters in a validated cohort of AML patients. Increased TRPM4 expression was associated with significant leukocytosis (p = .028), M4/M5 subtype (p = .000), FLT3-ITD mutation (p = .034), MLL status (p = .007) and a higher risk stratification (p = .001). Knockdown of TRPM4 mediated by siRNA impaired proliferation and arrested the cell cycle at the G0/G1 phase in MLL-rearranged leukemia cells. We suggested that TRPM4 may be involved in the pathogenesis of MLL-rearranged leukemia through regulating the AKT/GLI1/Cyclin D1 pathway. The transcription factor HOXA9 was found to be responsible for upregulation of TRPM4 expression by binding to its promoter. In conclusion, TRPM4 is overexpressed in MLL-rearranged AML and blockade of TRPM4 may be an alternative therapeutic approach in AML patients with high TRPM4 expression.
Collapse
|
38
|
Stokłosa P, Borgström A, Kappel S, Peinelt C. TRP Channels in Digestive Tract Cancers. Int J Mol Sci 2020; 21:E1877. [PMID: 32182937 PMCID: PMC7084354 DOI: 10.3390/ijms21051877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract are among the most prevalent types of cancer. These types of cancers are often diagnosed at a late stage, which results in a poor prognosis. Currently, many biomedical studies focus on the role of ion channels, in particular transient receptor potential (TRP) channels, in cancer pathophysiology. TRP channels show mostly non-selective permeability to monovalent and divalent cations. TRP channels are often dysregulated in digestive tract cancers, which can result in alterations of cancer hallmark functions, such as enhanced proliferation, migration, invasion and the inability to induce apoptosis. Therefore, TRP channels could serve as potential diagnostic biomarkers. Moreover, TRP channels are mostly expressed on the cell surface and ion channel targeting drugs do not need to enter the cell, making them attractive candidate drug targets. In this review, we summarize the current knowledge about TRP channels in connection to digestive tract cancers (oral cancer, esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer) and give an outlook on the potential of TRP channels as cancer biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Paulina Stokłosa
- Institute of Biochemistry and Molecular Medicine, National Center of Competence in Research NCCR TransCure, University of Bern, 3012 Bern, Switzerland; (A.B.); (S.K.); (C.P.)
| | | | | | | |
Collapse
|