1
|
Jalal D, Ali MY, Elkinaai N, Abdelaziz AS, Zekri W, Sayed AA. Methylation changes and INS-IGF2 expression predict progression in early-stage Wilms tumor. Clin Epigenetics 2024; 16:170. [PMID: 39593106 PMCID: PMC11590261 DOI: 10.1186/s13148-024-01775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Wilms tumor, the most common pediatric kidney cancer, accounts for 5% of childhood cancers and is classified by stage and histological subtype. Despite high survival rates (80-85%), approximately 15% of patients experience relapse, reducing survival to around 50%. Epigenetic changes, particularly DNA methylation, play a critical role in Wilms tumor pathogenesis. This study investigates the prognostic potential of DNA methylation in stage I and II patients with favorable histology, aiming to identify early relapse biomarkers. Genome-wide methylation was assessed using methylation microarrays in tumor tissues from relapsed patients (n = 9) and those with complete responses (n = 9), alongside normal tissues (n = 3 each). Differentially methylated probes and regions were analyzed, with additional ROC and survival analyses. Real-time PCR was used to measure IGF2 and INS-IGF2 gene expression. The analysis revealed hypomethylation in intergenic regions in remission patients, identifying 14 differentially methylated positions as potential biomarkers. Increased INS-IGF2 expression was associated with relapse, suggesting its role in disease progression. While the study concentrated on stages I and II patients, where relapse rates are lower, this focus inherently led to a smaller sample size. Despite this, the findings provide valuable insights into the potential role of DNA methylation markers for monitoring disease progression and guiding personalized treatment in Wilms tumor patients.
Collapse
Affiliation(s)
- Deena Jalal
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Mohamed Y Ali
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Naglaa Elkinaai
- Department of Pathology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Wael Zekri
- Department of Pediatric Oncology, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed A Sayed
- Genomics and Epigenomics Program, Department of Basic Research, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt.
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Buckley DN, Tew BY, Gooden C, Salhia B. A comprehensive analysis of minimally differentially methylated regions common to pediatric and adult solid tumors. NPJ Precis Oncol 2024; 8:125. [PMID: 38824198 PMCID: PMC11144230 DOI: 10.1038/s41698-024-00590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2024] [Indexed: 06/03/2024] Open
Abstract
Cancer is the second most common cause of death in children aged 1-14 years in the United States, with 11,000 new cases and 1200 deaths annually. Pediatric cancers typically have lower mutational burden compared to adult-onset cancers, however, the epigenomes in pediatric cancer are highly altered, with widespread DNA methylation changes. The rarity of pediatric cancers poses a significant challenge to developing cancer-type specific biomarkers for diagnosis, prognosis, or treatment monitoring. In the current study, we explored the potential of a DNA methylation profile common across various pediatric cancers. To do this, we conducted whole genome bisulfite sequencing (WGBS) on 31 recurrent pediatric tumor tissues, 13 normal tissues, and 20 plasma cell-free (cf)DNA samples, representing 11 different pediatric cancer types. We defined minimal focal regions that were differentially methylated across samples in the multiple cancer types which we termed minimally differentially methylated regions (mDMRs). These methylation changes were also observed in 506 pediatric and 5691 adult cancer samples accessed from publicly available databases, and in 44 pediatric cancer samples we analyzed using a targeted hybridization probe capture assay. Finally, we found that these methylation changes were detectable in cfDNA and could serve as potential cfDNA methylation biomarkers for early detection or minimal residual disease.
Collapse
Affiliation(s)
- David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Zhu S, Zhou R, Tang X, Fu W, Jia W. Hypoxia/inflammation-induced upregulation of HIF-1α and C/EBPβ promotes nephroblastoma cell EMT by improving HOXA11-AS transcription. Heliyon 2024; 10:e27654. [PMID: 38524550 PMCID: PMC10958367 DOI: 10.1016/j.heliyon.2024.e27654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Background Homeobox (HOX) A11 antisense RNA (HOXA11-AS) has been identified as a cancer promoting lncRNA and is overexpressed in nephroblastoma. However, how HOXA11-AS is regulated in a hypoxic inflammatory environment has not been studied. Methods In this study, gene expression and epithelial-mesenchymal transition (EMT) ability were detected in the nephroblastoma cell line WiT49 under conditions of hypoxia and inflammation. Next, HOXA11-AS transcription factors were predicted by datasets and subsequently confirmed by CHIP-QPCR, EMSA, and dual-luciferase reporter assays. Moreover, the regulatory relationships of HOXA11-AS and its transcription factors were further confirmed by rescue experiments. Results Our results showed that a hypoxic microenvironment promoted HOXA11-AS expression and nephroblastoma progression, induced EMT, and activated the Wnt signaling pathway. Combined hypoxia and inflammation had a more substantial effect on nephroblastoma than either hypoxia or inflammation alone. HIF-1α and C/EBPβ were confirmed to be the transcription factors for HOXA11-AS. Silencing of HIF-1α or C/EBPβ downregulated HOXA11-AS expression and suppressed EMT and the Wnt signaling pathway in nephroblastoma cells exposed to a hypoxic or inflammatory microenvironment. HOXA11-AS overexpression partly reversed the effect of HIF-1α or C/EBPβ knockdown. Conclusion We demonstrated that hypoxia/inflammation-induced upregulation of HIF-1α and C/EBPβ promoted nephroblastoma EMT by improving HOXA11-AS transcription. HOXA11-AS might be a therapy target for nephroblastoma.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Ricci AM, Emeny RT, Bagley PJ, Blunt HB, Butow ME, Morgan A, Alford-Teaster JA, Titus L, Walston RR, Rees JR. Causes of Childhood Cancer: A Review of the Recent Literature: Part I-Childhood Factors. Cancers (Basel) 2024; 16:1297. [PMID: 38610975 PMCID: PMC11011156 DOI: 10.3390/cancers16071297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE To review the childhood risk factors for pediatric cancer (diagnosis before age 20). METHODS We conducted literature searches using Ovid Medline and Scopus to find primary research studies, review articles, and meta-analyses published from 2014 to 3 March 2021. RESULTS Strong evidence indicates that an array of genetic and epigenetic phenomena, structural birth defects, and chromosomal anomalies are associated with an increased risk of various childhood cancers. Increased risk is also associated with prior cancer, likely due to previous treatment agents and therapeutic ionizing radiation. Convincing evidence supports associations between several pediatric cancers and ionizing radiation, immunosuppression, and carcinogenic virus infection both in healthy children and in association with immune suppression following organ transplantation. Breastfeeding and a childhood diet rich in fruits and vegetables appears to reduce the risk of pediatric leukemia but the evidence is less strong. Childhood vaccination against carcinogenic viruses is associated with a lower risk of several cancers; there is less strong evidence that other childhood vaccinations more broadly may also lower risk. Ultraviolet (UV) radiation is associated with increased melanoma risk, although most melanomas following childhood UV exposure occur later, in adulthood. Evidence is weak or conflicting for the role of body mass index, other childhood infections, allergies, and certain treatments, including immunomodulator medications and human growth therapy.
Collapse
Affiliation(s)
- Angela M. Ricci
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Dartmouth Health Childrens, Lebanon, NH 03756, USA
| | - Rebecca T. Emeny
- Department of Internal Medicine, Division of Molecular Medicine, UNM Comprehensive Cancer Center, Cancer Control & Population Sciences Research Program, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
| | - Pamela J. Bagley
- Biomedical Libraries, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (P.J.B.); (H.B.B.)
| | - Heather B. Blunt
- Biomedical Libraries, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (P.J.B.); (H.B.B.)
| | - Mary E. Butow
- New Hampshire Department of Environmental Services, Concord, NH 03302, USA
| | - Alexandra Morgan
- Department of Obstetrics and Gynecology, Dartmouth Health, Lebanon, NH 03756, USA
| | | | - Linda Titus
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Hanover, NH 03755, USA
| | - Raymond R. Walston
- Department of Pediatric Hematology Oncology, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Judy R. Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Silva MH. Investigating open access new approach methods (NAM) to assess biological points of departure: A case study with 4 neurotoxic pesticides. Curr Res Toxicol 2024; 6:100156. [PMID: 38404712 PMCID: PMC10891343 DOI: 10.1016/j.crtox.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Open access new approach methods (NAM) in the US EPA ToxCast program and NTP Integrated Chemical Environment (ICE) were used to investigate activities of four neurotoxic pesticides: endosulfan, fipronil, propyzamide and carbaryl. Concordance of in vivo regulatory points of departure (POD) adjusted for interspecies extrapolation (AdjPOD) to modelled human Administered Equivalent Dose (AEDHuman) was assessed using 3-compartment or Adult/Fetal PBTK in vitro to in vivo extrapolation. Model inputs were from Tier 1 (High throughput transcriptomics: HTTr, high throughput phenotypic profiling: HTPP) and Tier 2 (single target: ToxCast) assays. HTTr identified gene expression signatures associated with potential neurotoxicity for endosulfan, propyzamide and carbaryl in non-neuronal MCF-7 and HepaRG cells. The HTPP assay in U-2 OS cells detected potent effects on DNA endpoints for endosulfan and carbaryl, and mitochondria with fipronil (propyzamide was inactive). The most potent ToxCast assays were concordant with specific components of each chemical mode of action (MOA). Predictive adult IVIVE models produced fold differences (FD) < 10 between the AEDHuman and the measured in vivo AdjPOD. The 3-compartment model was concordant (i.e., smallest FD) for endosulfan, fipronil and carbaryl, and PBTK was concordant for propyzamide. The most potent AEDHuman predictions for each chemical showed HTTr, HTPP and ToxCast were mainly concordant with in vivo AdjPODs but assays were less concordant with MOAs. This was likely due to the cell types used for testing and/or lack of metabolic capabilities and pathways available in vivo. The Fetal PBTK model had larger FDs than adult models and was less predictive overall.
Collapse
|
6
|
Long noncoding RNA DLEU2 regulates the progression of Wilm's tumor via miR-539-3p/HOXB2 axis. J Pediatr Urol 2023; 19:25-32. [PMID: 36209036 DOI: 10.1016/j.jpurol.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wilm's tumor is the most common renal cancer in the pediatric age group. Long noncoding RNAs (lncRNAs) are a kind of RNA transcripts longer than ∼200 nucleotides, which have been revealed to be involved in the progression of Wilm's tumor. OBJECTIVE The purpose of this study was to investigate the function and molecular mechanism of deleted in lymphocytic leukemia 2 (DLEU2) lncRNA in Wilm's tumor progression. STUDY DESIGN Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of DLEU2, miR-539-3p and HOXB2 mRNA in Wilm's tumor tissues and cells. Cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, transwell assay, and flow cytometry were applied to explore the function of DLEU2 in Wilm's tumor cell malignant phenotypes and the regulatory mechanism among DLEU2, miR-539-3p and HOXB2 in Wilm's tumor cells. Western blot examined the protein levels of Bax, Bcl-2 and HOXB2. The relationship between miR-539-3p and DLEU2 or HOXB2 was verified by dual-luciferase reporter assay. Xenograft models of Wilm's tumor were established to study the role of DLEU2 in vivo. RESULTS DLEU2 and HOXB2 were significantly highly expressed in primary Wilm's tumor tissues and in vitro cell lines. Silencing of DLEU2 reduced the proliferation, migration and invasion of Wilm's tumor cells, and promoted cell apoptosis. MiR-539-3p was confirmed to be a target of DLEU2. DLEU2 silencing inhibited the malignant behaviors of Wilm's tumor cells by releasing miR-539-3p. In addition, HOXB2 was a target of miR-539-3p. Overexpression of HOXB2 partially restored the inhibitory effects of miR-539-3p on Wilm's tumor cell malignant behaviors. Animal experiments also confirmed the anti-tumor effects of DLEU2 silencing in vivo. CONCLUSION DLEU2 up-regulates the expression of HOXB2 by targetedly repressing miR-539-3p, thereby at least partially promoting the development of Wilm's tumor, these findings provided novel therapeutic targets for Wilm's tumor.
Collapse
|
7
|
Cao J, Yu U, Li L, Yuan X, Chen S, Xu H, Yi M, Liu S. circKL inhibits the growth and metastasis of kidney cancer by sponging miR‑182‑5p and upregulating FBXW7. Oncol Rep 2022; 47:75. [PMID: 35179220 PMCID: PMC8867257 DOI: 10.3892/or.2022.8286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA with important roles in the regulation of various biological processes involved in malignant progression. However, the potential molecular mechanisms and roles of circRNAs in kidney cancer have remained to be fully elucidated. In a previous study by our group, high-throughput microarray sequencing data were analyzed to determine the differentially expressed circRNAs in kidney cancer. In this analysis, a novel circRNA (hsa_circ_0100312, named circKL) was identified as a frequently downregulated circRNA in kidney cancer cells and tissues by reverse transcription-quantitative PCR. In the present study, Cell Counting Kit-8, colony formation, Transwell, wound-healing and mouse xenograft assays as well as a lung metastasis experiment were performed to confirm the functions of circKL. The experiments confirmed that circKL overexpression significantly inhibited the proliferation, migration, tumor growth and metastasis of kidney cancer both in vitro and in vivo. The potential molecular mechanisms of circKL were investigated by performing dual-luciferase and RNA immunoprecipitation assays. Western blot assays confirmed that overexpression of circKL significantly increased the protein level of F-box and WD repeat domain containing 7 (FBXW7). All results suggested that circKL suppressed the growth and migration of kidney cancer by sponging microRNA (miR)-182-5p and upregulating FBXW7 expression. Overall, the circKL/miR-182-5p/FBXW7 axis was indicated to have a key role in the growth and metastasis of kidney cancer and may be targeted as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Juan Cao
- Department of Pathology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Li Li
- Department of Pathology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Xiuli Yuan
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Senmin Chen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Huanli Xu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Meng Yi
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| |
Collapse
|
8
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|
9
|
Identification of Nephrogenic Therapeutic Biomarkers of Wilms Tumor Using Machine Learning. JOURNAL OF ONCOLOGY 2021; 2021:6471169. [PMID: 34422051 PMCID: PMC8371641 DOI: 10.1155/2021/6471169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 01/18/2023]
Abstract
Wilms tumor is the most common renal malignancy in children, with a survival rate of more than 90%; however, treatment outcomes for certain patient subgroups, such as those with bilateral and recurrent diseases, remain significantly below this survival rate. Therefore, it remains essential to identify new biomarkers and develop effective therapeutic strategies. Based on the Therapeutically Applicable Research to Generate Effective Treatments and Gene Expression Omnibus RNA microarray datasets, we have identified eight differentially expressed genes in Wilms tumors as renal-specific in 33 randomly selected adult tumors. The risk model, constructed using survival forest and multivariate Cox regression, can effectively predict the prognosis; the risk score is an independent prognostic factor in Wilms tumor. Gene set enrichment analysis showed that most of the signature genes were involved in regulating human development-related pathways. At the same time, patients in the high-risk group exhibited more sensitive immunological and chemotherapeutic properties than those in the low-risk group. These results provide new insights into personalized and precise Wilms tumor treatment strategies.
Collapse
|
10
|
Cao J, Huang Z, Ou S, Wen F, Yang G, Miao Q, Zhang H, Wang Y, He X, Shan Y, Liu S, Jiang L. circ0093740 Promotes Tumor Growth and Metastasis by Sponging miR-136/145 and Upregulating DNMT3A in Wilms Tumor. Front Oncol 2021; 11:647352. [PMID: 34168984 PMCID: PMC8217636 DOI: 10.3389/fonc.2021.647352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
As a research hotspot, circular RNAs (circRNAs) is one type of non-coding RNAs which have many different functions in biological processes. However, there is lack of study investigating the underlying molecular mechanism and the potential roles of circRNAs in Wilms tumor. We conducted a high-throughput microarray sequencing to screen differentially expressed circRNAs in Wilms tumor. A novel circRNA (circ0093740) was identified as a frequently upregulated circRNA in Wilms tumor cells and tissues. Suppression of circ0093740 remarkably inhibited the proliferation and migration ability in Wilms tumor, validated by several experiments. The molecular mechanism of circ0093740 was investigated by luciferase assays and RNA immunoprecipitation assays. The results revealed that circ0093740 promotes the growth and migration ability by sponging miR-136/145 and upregulating DNMT3A. In conclusion, our study discovered the biological role of the circ0093740-miR-136/145-DNMT3A axis in Wilms tumor growth and metastasis which is important for developing new treatment strategy.
Collapse
Affiliation(s)
- Juan Cao
- Shenzhen Children's Hospital, Shenzhen, China
| | - Zhongying Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shunling Ou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Feiqiu Wen
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | - Huang Zhang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yue Wang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaoxiao He
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Sixi Liu
- Shenzhen Children's Hospital, Shenzhen, China
| | - Lijuan Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| |
Collapse
|
11
|
Freschi A, Del Prete R, Pignata L, Cecere F, Manfrevola F, Mattia M, Cobellis G, Sparago A, Bartolomei MS, Riccio A, Cerrato F. The number of the CTCF binding sites of the H19/IGF2:IG-DMR correlates with DNA methylation and expression imprinting in a humanized mouse model. Hum Mol Genet 2021; 30:1509-1520. [PMID: 34132339 PMCID: PMC8330897 DOI: 10.1093/hmg/ddab132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1∆2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1∆1.8). The phenotype of these mice is different from that of the hIC1∆2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1Δ1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1Δ1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression.
Collapse
Affiliation(s)
- Andrea Freschi
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.,Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Rosita Del Prete
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Francesco Cecere
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Monica Mattia
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Angela Sparago
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples 80131, Italy
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy
| |
Collapse
|
12
|
Hol JA, Diets IJ, de Krijger RR, van den Heuvel-Eibrink MM, Jongmans MC, Kuiper RP. TRIM28 variants and Wilms' tumour predisposition. J Pathol 2021; 254:494-504. [PMID: 33565090 PMCID: PMC8252630 DOI: 10.1002/path.5639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
TRIM28 was recently identified as a Wilms' tumour (WT) predisposition gene, with germline pathogenic variants identified in around 1% of isolated and 8% of familial WT cases. TRIM28 variants are associated with epithelial WT, but the presence of other tumour components or anaplasia does not exclude the presence of a germline or somatic TRIM28 variant. In children with WT, TRIM28 acts as a classical tumour suppressor gene, with both alleles generally disrupted in the tumour. Therefore, loss of TRIM28 (KAP1/TIF1beta) protein expression in tumour tissue by immunohistochemistry is an effective strategy to identify patients carrying pathogenic TRIM28 variants. TRIM28 is a ubiquitously expressed corepressor that binds transcription factors in a context‐, species‐, and cell‐type‐specific manner to control the expression of genes and transposable elements during embryogenesis and cellular differentiation. In this review, we describe the inheritance patterns, histopathological and clinical features of TRIM28‐associated WT, as well as potential underlying mechanisms of tumourigenesis during embryonic kidney development. Recognizing germline TRIM28 variants in patients with WT can enable counselling, genetic testing, and potential early detection of WT in other children in the family. A further exploration of TRIM28‐associated WT will help to unravel the diverse and complex mechanisms underlying WT development. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janna A Hol
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marjolijn Cj Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
13
|
Liu H, Zhang M, Shi M, Zhang T, Zhang Z, Cui Q, Yang S, Li Z. A Survival-Related Competitive Endogenous RNA Network of Prognostic lncRNAs, miRNAs, and mRNAs in Wilms Tumor. Front Oncol 2021; 11:608433. [PMID: 33718161 PMCID: PMC7953909 DOI: 10.3389/fonc.2021.608433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Wilms tumor (WT) commonly occurs in infants and children. We evaluated clinical factors and the expression of multiple RNAs in WT samples in the TARGET database. Eight long non-coding RNAs (lncRNAs; AC079310.1, MYCNOS, LINC00271, AL445228.3, Z84485.1, AC091180.5, AP002518.2, and AC007879.3), two microRNAs (miRNAs; hsa-mir-152 andhsa-mir-181a), and nine messenger RNAs (mRNAs; TCTEX1D4, RNF133, VRK1, CCNE1, HEY1, C10orf71, SPRY1, SPAG11A, and MAGEB18) were screened from differentially expressed RNAs and used to construct predictive survival models. These models showed good prognostic ability and were highly correlated with tumor stage and histological classification. Additionally, survival-related ceRNA network was constructed using 35 RNAs (15 lncRNAs, eight miRNAs, and 12 mRNAs). KEGG pathway analysis suggested the "Wnt signaling pathway" and "Cellular senescence" as the main pathways. In conclusion, we established a multinomial predictive survival model and a survival-related ceRNA network, which provide new potential biomarkers that may improve the prognosis and treatment of WT patients.
Collapse
Affiliation(s)
- HengChen Liu
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - MingZhao Zhang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - ManYu Shi
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - TingTing Zhang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - ZeNan Zhang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - QingBo Cui
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - ShuLong Yang
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - ZhaoZhu Li
- Department of Pediatric Surgery, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Jia CY, Xiang W, Liu JB, Jiang GX, Sun F, Wu JJ, Yang XL, Xin R, Shi Y, Zhang DD, Li W, Zuberi Z, Zhang J, Lu GX, Wang HM, Wang PY, Yu F, Lv ZW, Ma YS, Fu D. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol Cancer Res Treat 2021; 20:15330338211041191. [PMID: 34520284 PMCID: PMC8445543 DOI: 10.1177/15330338211041191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.
Collapse
Affiliation(s)
- Cheng-You Jia
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Xiang
- Shanghai Punan Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Geng-Xi Jiang
- Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Sun
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, China
| | - Xiao-Li Yang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Xin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Zhang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zavuga Zuberi
- Dares Salaam Institute of Technology, Salaam, Tanzania
| | - Jie Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Gai-Xia Lu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Wei Lv
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shui Ma
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Da Fu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Jin Y, Lyu Q. Basic research in childhood cancer: Progress and future directions in China. Cancer Lett 2020; 495:156-164. [PMID: 32841714 DOI: 10.1016/j.canlet.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Childhood cancer is a leading cause of death in children. Some childhood cancers have a particularly high mortality rate. Following the World Health Organization's emphasis on child health, most governments worldwide have taken measures to facilitate childhood cancer research. Thus, the scientific community is showing increasing interest in this area. Chinese government has prominence in building a system for the diagnosis and treatment of childhood cancer, thereby promoting the development of childhood cancer research. This review summarizes the research progress, challenges, and perspectives in childhood cancer, and the increasing contributions of National Natural Science Foundation of China (NSFC) in the past decade (2008-2018).
Collapse
Affiliation(s)
- Yaqiong Jin
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qunyan Lyu
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
16
|
Pignata L, Palumbo O, Cerrato F, Acurzio B, de Álava E, Roma J, Gallego S, Mora J, Carella M, Riccio A, Verde G. Both Epimutations and Chromosome Aberrations Affect Multiple Imprinted Loci in Aggressive Wilms Tumors. Cancers (Basel) 2020; 12:cancers12113411. [PMID: 33217932 PMCID: PMC7698742 DOI: 10.3390/cancers12113411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
The embryonal renal cancer Wilms tumor (WT) accounts for 7% of all children's malignancies. Its most frequent molecular defect is represented by DNA methylation abnormalities at the imprinted 11p15.5 region. Multiple imprinted methylation alterations dictated by chromosome copy-number variations have been recently demonstrated in adult cancers, raising the question of whether multiple imprinted loci were also affected in WT. To address this issue, we analyzed DNA methylation and chromosome profiles of 7 imprinted loci in 48 WT samples. The results demonstrated that methylation abnormalities of multiple imprinted loci occurred in 35% of the cases, but that they were associated with either chromosome aberrations or normal chromosome profiles. Multiple imprinted methylation changes were correlated with tumor stage and presence of metastasis, indicating that these epimutations were more frequent in highly aggressive tumors. When chromosome profiles were affected, these alterations were extended to flanking cancer driver genes. Overall, this study demonstrates the presence of multiple imprinted methylation defects in aggressive WTs and suggests that the mechanism by which they arise in embryonal and adult cancers is different.
Collapse
Affiliation(s)
- Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo (FG), Italy; (O.P.); (M.C.)
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
| | - Basilia Acurzio
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
| | - Enrique de Álava
- Department of Pathology, Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 08035 Seville, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.R.); (S.G.)
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute-Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (J.R.); (S.G.)
| | - Jaume Mora
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain;
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo (FG), Italy; (O.P.); (M.C.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
- Correspondence: (A.R.); (G.V.)
| | - Gaetano Verde
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, 81100 Caserta, Italy; (L.P.); (F.C.)
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’ CNR, 80131-Napoli, Italy;
- Correspondence: (A.R.); (G.V.)
| |
Collapse
|
17
|
The Epigenetic Progenitor Origin of Cancer Reassessed: DNA Methylation Brings Balance to the Stem Force. EPIGENOMES 2020; 4:epigenomes4020008. [PMID: 34968242 PMCID: PMC8594692 DOI: 10.3390/epigenomes4020008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer initiation and progression toward malignant stages occur as the results of accumulating genetic alterations and epigenetic dysregulation. During the last decade, the development of next generation sequencing (NGS) technologies and the increasing pan-genomic knowledge have revolutionized how we consider the evolving epigenetic landscapes during homeostasis and tumor progression. DNA methylation represents the best studied mark and is considered as a common mechanism of epigenetic regulation in normal homeostasis and cancer. A remarkable amount of work has recently started clarifying the central role played by DNA methylation dynamics on the maintenance of cell identity and on cell fate decisions during the different steps of normal development and tumor evolution. Importantly, a growing number of studies show that DNA methylation is key in the maintenance of adult stemness and in orchestrating commitment in multiple ways. Perturbations of the normal DNA methylation patterns impair the homeostatic balance and can lead to tumor initiation. Therefore, DNA methylation represents an interesting therapeutic target to recover homeostasis in tumor stem cells.
Collapse
|
18
|
Comprehensive Analysis of lncRNA-Mediated ceRNA Crosstalk and Identification of Prognostic Biomarkers in Wilms' Tumor. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4951692. [PMID: 32149111 PMCID: PMC7057018 DOI: 10.1155/2020/4951692] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
Wilms' tumor (WT) is the most common type of childhood kidney cancer, and most cases present with favorable histology and respond well to standard treatment. However, a subset of patients with WT is diagnosed with bilateral, relapsed, and high-risk tumors which remain the leading cause of cancer-related death in children. Long noncoding RNAs (lncRNAs) and their aberrant expression have currently been attracting great attention as oncogenes or tumor suppressors during tumor initiation and progression. So far, their roles and related competitive endogenous RNA (ceRNA) network remain unelucidated in nephroblastoma pathogenesis. We comprehensively integrated lncRNA, microRNA (miRNA), and messenger RNA (mRNA) expression profiles from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and screened out differentially expressed mRNAs (DEMs), lncRNAs (DELs), and miRNAs (DEMis) to construct a ceRNA network based on the information generated from miRcode, miRTarBase, TargetScan, and miRDB. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to analyze the functional characteristics of DEMs in the ceRNA network. The interaction between protein molecules was also analyzed by establishing a protein-protein interaction network. Finally, prognosis-related biomarkers were identified via survival analysis. Initially, 1647 DELs, 115 DEMis, and 3280 DEMs (|log FC| > 2; FDR < 0.01) were obtained using the R package. Next, we constructed a lncRNA-miRNA-mRNA network (ceRNA network), in which 176 DELs, 24 DEMis, and 141 DEMs were identified. Furthermore, 148 functional enrichment terms from GO were identified and 29 KEGG pathways were found to be significantly enriched. We also integrated patient clinical information to analyze the association between DERNAs and patient prognosis. We found that high expression of 8 DELs (LINC00473, AL445228.2, DENND5B−AS1, DLEU2, AC123595.1, AC135178.1, LINC00535, and LMO7−AS1) and 4 DEMs (CEP55, DEPDC1, PHF19, and TRIM36) correlated with poor survival in a patient with WT, whereas high expression of 2 DELs (MEG3 and RMST), 1 DEM (KIAA0922), and 1 DEMi (hsa−mir−200a) could possibly lead to better clinical outcomes. For the first time, the present study provided a novel insight into lncRNA-related ceRNA networks and identified potential prognostic biomarkers in Wilms' tumor.
Collapse
|
19
|
Sparago A, Verma A, Patricelli MG, Pignata L, Russo S, Calzari L, De Francesco N, Del Prete R, Palumbo O, Carella M, Mackay DJG, Rezwan FI, Angelini C, Cerrato F, Cubellis MV, Riccio A. The phenotypic variations of multi-locus imprinting disturbances associated with maternal-effect variants of NLRP5 range from overt imprinting disorder to apparently healthy phenotype. Clin Epigenetics 2019; 11:190. [PMID: 31829238 PMCID: PMC6907351 DOI: 10.1186/s13148-019-0760-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A subset of individuals affected by imprinting disorders displays multi-locus imprinting disturbances (MLID). MLID has been associated with maternal-effect variants that alter the maintenance of methylation at germline-derived differentially methylated regions (gDMRs) in early embryogenesis. Pedigrees of individuals with MLID also include siblings with healthy phenotype. However, it is unknown if these healthy individuals have MLID themselves or if their methylation patterns differ from those associated with imprinting disorders, and in general, if MLID affects the clinical phenotype. METHODS We have investigated gDMR methylation by locus-specific and whole-genome analyses in a family with multiple pregnancy losses, a child with Beckwith-Wiedemann syndrome (BWS) and a further child with no clinical diagnosis of imprinting disorder or other pathologies. RESULTS We detected MLID with different methylation profiles in the BWS-affected and healthy siblings. Whole-exome sequencing demonstrated the presence of novel loss-of-function variants of NLRP5 in compound heterozygosity in the mother. The methylation profiles of the two siblings were compared with those of other cases with MLID and control groups by principal component analysis and unsupervised hierarchical clustering, but while their patterns were clearly separated from those of controls, we were unable to cluster those associated with specific clinical phenotypes among the MLID cases. CONCLUSION The identification of two novel maternal-effect variants of NLRP5 associated with poly-abortivity and MLID adds further evidence to the role of this gene in the maintenance of genomic imprinting in early embryos. Furthermore, our results demonstrate that within these pedigrees, MLID can also be present in the progeny with healthy phenotype, indicating that some sort of compensation occurs between altered imprinted loci in these individuals. The analysis of larger cohorts of patients with MLID is needed to formulate more accurate epigenotype-phenotype correlations.
Collapse
Affiliation(s)
- Angela Sparago
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Ankit Verma
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy ,0000 0004 1758 2860grid.419869.bInstitute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Maria Grazia Patricelli
- 0000000417581884grid.18887.3eMolecular Biology and Citogenetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pignata
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Silvia Russo
- 0000 0004 1757 9530grid.418224.9Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- 0000 0004 1757 9530grid.418224.9Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Naomi De Francesco
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rosita Del Prete
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Orazio Palumbo
- 0000 0004 1757 9135grid.413503.0Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Massimo Carella
- 0000 0004 1757 9135grid.413503.0Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Deborah J. G. Mackay
- 0000 0004 1936 9297grid.5491.9Faculty of Medicine, University of Southampton, Southampton, UK
| | - Faisal I. Rezwan
- 0000 0004 1936 9297grid.5491.9Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claudia Angelini
- 0000 0001 1940 4177grid.5326.2Institute for Applied Mathematics “Mauro Picone” (IAC), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Flavia Cerrato
- 0000 0001 2200 8888grid.9841.4Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy. .,Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| |
Collapse
|