1
|
Xi Y, Xu R, Chen S, Fang J, Duan X, Zhang Y, Zhong G, He Z, Guo Y, Li X, Tao W, Li Y, Li Y, Fang L, Niikura Y. TSG101 depletion dysregulates mitochondria and PML NBs, triggering MAD2-overexpressing interphase cell death (MOID) through AIFM1-PML-DAXX pathway. Cell Death Dis 2024; 15:838. [PMID: 39551802 PMCID: PMC11570632 DOI: 10.1038/s41419-024-07229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Overexpression of mitotic arrest deficiency 2 (MAD2/MAD2L1), a pivotal component of the spindle assembly checkpoint (SAC), resulted in many types of cancer. Here we show that the depletion of tumor susceptibility gene 101 (TSG101), causes synthetic dosage lethality (SDL) in MAD2-overexpressing cells, and we term this cell death MAD2-overexpressing interphase cell death (MOID). The induction of MOID depends on PML and DAXX mediating mitochondrial AIFM1-release. MAD2, TSG101, and AIF-PML-DAXX axis regulate mitochondria, PML nuclear bodies (NBs), and autophagy with close inter-dependent protein stability in survival cells. Loss of C-terminal phosphorylation(s) of TSG101 and closed (C-)MAD2-overexpression contribute to induce MOID. In survival cells, both MAD2 and TSG101 localize at PML NBs in interphase, and TSG101 Y390 phosphorylation is required for localization of TSG101 to PML NBs. PML release from PML NBs through PML deSUMOylation contributes to induce MOID. The post-transcriptional/translational cell death machinery and the non-canonical transcriptional regulation are intricately linked to MOID, and ER-MAM, may serve as a crucial intersection for MOID signaling.
Collapse
Affiliation(s)
- Yao Xi
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Rui Xu
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Shengnan Chen
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Jiezhu Fang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xiang Duan
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yidan Zhang
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Guoli Zhong
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Zhifei He
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Wenzhi Tao
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yang Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Yan Li
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| | - Yohei Niikura
- National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210032, China.
| |
Collapse
|
2
|
Bates M, Mohamed BM, Lewis F, O'Toole S, O'Leary JJ. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189224. [PMID: 39581234 DOI: 10.1016/j.bbcan.2024.189224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. HGSC patients typically present with advanced disease, which is often resistant to chemotherapy and recurs despite initial responses to therapy, resulting in the poor prognosis associated with this disease. There is a need to utilise biomarkers to manage the various aspects of HGSC patient care. In this review we discuss the current state of biomarkers in HGSC, focusing on the various available immunohistochemical (IHC) and blood-based biomarkers, which have been examined for their diagnostic, prognostic and theranostic potential in HGSC. These include various routine clinical IHC biomarkers such as p53, WT1, keratins, PAX8, Ki67 and p16 and clinical blood-borne markers and algorithms such as CA125, HE4, ROMA, RMI, ROCA, and others. We also discuss various components of the liquid biopsy as well as a number of novel IHC biomarkers and non-routine blood-borne biomarkers, which have been examined in various ovarian cancer studies. We also discuss the future of ovarian cancer biomarker research and highlight some of the challenges currently facing the field.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Faye Lewis
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Lindell E, Zhang X. Exploring the Enigma: The Role of the Epithelial Protein Lost in Neoplasm in Normal Physiology and Cancer Pathogenesis. Int J Mol Sci 2024; 25:4970. [PMID: 38732188 PMCID: PMC11084159 DOI: 10.3390/ijms25094970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.
Collapse
Affiliation(s)
| | - Xiaonan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden;
| |
Collapse
|
4
|
Bates M, Mullen D, Lee E, Costigan D, Heron EA, Kernan N, Barry-O'Crowley J, Martin C, Keegan H, Malone V, Brooks RD, Brooks DA, Logan JM, Martini C, Selemidis S, McFadden J, O'Riain C, Spillane CD, Gallagher MF, McCann A, O'Toole S, O'Leary JJ. P53 and TLR4 expression are prognostic markers informing progression free survival of advanced stage high grade serous ovarian cancer. Pathol Res Pract 2024; 253:155020. [PMID: 38103365 DOI: 10.1016/j.prp.2023.155020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE New prognostic biomarkers, and bio-signatures, are urgently needed to facilitate a precision medicine-based approach to more effectively treat patients with high-grade serous ovarian cancer (HGSC). In this study, we analysed the expression patterns of a series of candidate protein biomarkers. METHODS The panel of markers which included MyD88, TLR4, MAD2, PR, OR, WT1, p53, p16, CD10 and Ki67 was assessed using immunohistochemistry in a tissue microarray (TMA) cohort of n = 80 patients, composed of stage 3-4 HGSCs. Each marker was analysed for their potential to predict both overall survival (OS) and progression-free survival (PFS). RESULTS TLR4 and p53 were found to be individually predictive of poorer PFS (Log Rank, p = 0.017, p = 0.030 respectively). Cox regression analysis also identified high p53 and TLR4 expression as prognostic factors for reduced PFS (p53; HR=1.785, CI=1.036-3.074, p = 0.037 and TLR4; HR=2.175, CI=1.112-4.253, p = 0.023). Multivariate forward conditional Cox regression analysis, examining all markers, identified a combined signature composed of p53 and TLR4 as prognostic for reduced PFS (p = 0.023). CONCLUSION Combined p53 and TLR4 marker assessment may help to aid treatment stratification for patients diagnosed with advanced-stage HGSC.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Dorinda Mullen
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Eimear Lee
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Danielle Costigan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Elizabeth A Heron
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Niamh Kernan
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | | | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Julie McFadden
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Ciaran O'Riain
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - Cathy D Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin and UCD School of Medicine, University College Dublin, UCD, Belfield Dublin 4, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Jiang W, Yang X, Shi K, Zhang Y, Shi X, Wang J, Wang Y, Chenyan A, Shan J, Wang Y, Chang J, Chen R, Zhou T, Zhu Y, Yu Y, Li C, Li X. MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex. Oncogene 2023; 42:3344-3357. [PMID: 37752233 DOI: 10.1038/s41388-023-02849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Spindle assembly checkpoint (SAC) plays an essential part in facilitating normal cell division. However, the clinicopathological and biological significance of mitotic arrest deficient 2 like 1 (MAD2/MAD2L1), a highly conserved member of SAC in cholangiocarcinoma (CCA) remain unclear. We aim to determine the role and mechanism of MAD2 in CCA progression. In the study, we found up-regulated MAD2 facilitated CCA progression and induced lymphatic metastasis dependent on USP44/LIMA1/PI3K/AKT pathway. MAD2 interfered the binding of USP44 to LIMA1 by sequestrating more USP44 in nuclei, causing impaired formation of USP44/LIMA1 complex and enhanced LIMA1 K48 (Lys48)-linked ubiquitination. In therapeutic perspective, the data combined eleven cases of CCA PDTX model showed that high-MAD2 inhibits tumor necrosis and diminishes the inhibition of cell viability after treated with gemcitabine-based regimens. Immunohistochemistry (IHC) analysis of tissue microarray (TMA) for CCA patients revealed that high-MAD2, low-USP44 or low-LIMA1 level are correlated with worse survival for patients. Together, MAD2 activates PI3K/AKT pathway, promotes cancer progression and induces gemcitabine chemo-resistance in CCA. These findings suggest that MAD2 might be an excellent indicator in prognosis analysis and chemotherapy guidance for CCA patients.
Collapse
Affiliation(s)
- Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Anlan Chenyan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yirui Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Chang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruixiang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanping Zhu
- Personaloncology Biological Technology Co., Ltd, Nanjing, Jiangsu, China
| | - Yue Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Pan F, Chocarro S, Ramos M, Chen Y, Alonso de la Vega A, Somogyi K, Sotillo R. FOXM1 is critical for the fitness recovery of chromosomally unstable cells. Cell Death Dis 2023; 14:430. [PMID: 37452072 PMCID: PMC10349069 DOI: 10.1038/s41419-023-05946-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Tumor progression and evolution are frequently associated with chromosomal instability (CIN). Tumor cells often express high levels of the mitotic checkpoint protein MAD2, leading to mitotic arrest and cell death. However, some tumor cells are capable of exiting mitosis and consequently increasing CIN. How cells escape the mitotic arrest induced by MAD2 and proliferate with CIN is not well understood. Here, we explored loss-of-function screens and drug sensitivity tests associated with MAD2 levels in aneuploid cells and identified that aneuploid cells with high MAD2 levels are more sensitive to FOXM1 depletion. Inhibition of FOXM1 promotes MAD2-mediated mitotic arrest and exacerbates CIN. Conversely, elevating FOXM1 expression in MAD2-overexpressing human cell lines reverts prolonged mitosis and rescues mitotic errors, cell death and proliferative disadvantages. Mechanistically, we found that FOXM1 facilitates mitotic exit by inhibiting the spindle assembly checkpoint (SAC) and the expression of Cyclin B. Notably, we observed that FOXM1 is upregulated upon aneuploid induction in cells with dysfunctional SAC and error-prone mitosis, and these cells are sensitive to FOXM1 knockdown, indicating a novel vulnerability of aneuploid cells.
Collapse
Affiliation(s)
- Fan Pan
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Sara Chocarro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Maria Ramos
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Yuanyuan Chen
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alicia Alonso de la Vega
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Rocio Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
8
|
Li Q, Tong D, Jing X, Ma P, Li F, Jiang Q, Zhang J, Wen H, Cui M, Huang C, Zhang M. MAD2L1 is transcriptionally regulated by TEAD4 and promotes cell proliferation and migration in colorectal cancer. Cancer Gene Ther 2023; 30:727-737. [PMID: 36599972 DOI: 10.1038/s41417-022-00586-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
The molecular mechanism of network regulation in the occurrence and development of colorectal cancer (CRC) has been constantly improved. Here, we investigated the biological effects of TEAD4-MAD2L1 axis on proliferation and metastasis of human CRC cells. This study revealed that the expressions of MAD2L1 and TEAD4 in CRC tissues and CRC cell lines were significantly higher than those in adjacent epithelial tissues and normal intestinal epithelial cell line NCM460, and their expressions were significantly positively correlated; Moreover, inhibiting the expression of MAD2L1 or TEAD4 can inhibit the proliferation and migration of CRC cells and promote apoptosis. In addition, the promoter region of MAD2L1 gene has a TEAD4 binding site (motif sequence), and the transcription of MAD2L1 is positively regulated by TEAD4 protein; The inhibition of promotion/migration and promotion of apoptosis of CRC cells by silencing TEAD4 can be saved by the high expression of MAD2L1. In conclusion, our study suggests that the transcription and expression of MAD2L1 is regulated by TEAD4, which further promotes the proliferation and migration of CRC cells in vitro and in vivo, and inhibits apoptosis. MAD2L1 and TEAD4 are potential biomarkers for colorectal cancer.
Collapse
Affiliation(s)
- Qian Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China
| | - Dongdong Tong
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xintao Jing
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Peihan Ma
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Fang Li
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiuyu Jiang
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jinyuan Zhang
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hua Wen
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China
| | - Manli Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China.
| | - Chen Huang
- Institute of Genetics and Development Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Mingxin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China. .,Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
9
|
Siddique N, Cox B. Computational analysis identified accelerated senescence as a significant contribution to preeclampsia pathophysiology. Placenta 2022; 121:70-78. [DOI: 10.1016/j.placenta.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 01/08/2023]
|
10
|
Liu R, Liu Z, Guo M, Zeng W, Zheng Y. SETDB1 Regulates Porcine Spermatogonial Adhesion and Proliferation through Modulating MMP3/10 Transcription. Cells 2022; 11:cells11030370. [PMID: 35159180 PMCID: PMC8834347 DOI: 10.3390/cells11030370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
The transition from gonocytes into spermatogonia takes place during the homing process. A subpopulation of undifferentiated spermatogonia in niche then shifts to spermatogonial stem cells (SSCs), accompanied by the self-renewal ability to maintain life-long fertility in males. Enormous changes in cell morphology, gene expression, and epigenetic features have been reported during spermatogenesis. However, little is known about the difference of these features in SSCs during aging. Here, we examined the dynamics of SET domain bifurcated 1 (SETDB1) expression in porcine testes. SETDB1 was expressed in postnatal undifferentiated spermatogonia, while gradually disappeared after being packed within the basal compartment of seminiferous tubules. In addition, the cell-adhesion ability, proliferative activity, and trimethylation of the histone H3 lysine 9 (H3K9me3) level were significantly altered in SETDB1-deficient porcine SSCs. Moreover, the matrix metalloproteinases 3/10 (MMP3/10) was upregulated at both mRNA and protein levels. These results illustrate the significance of SETDB1 in modulating early male germ cell development.
Collapse
|
11
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
12
|
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76:120-131. [PMID: 33979676 PMCID: PMC8576067 DOI: 10.1016/j.semcancer.2021.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
13
|
NF2 Gene Participates in Regulation of the Cell Cycle of Meningiomas by Restoring Spindle Assembly Checkpoint Function and Inhibiting the Binding of Cdc20 Protein to Anaphase Promoting Complex/Cyclosome. World Neurosurg 2021; 158:e245-e255. [PMID: 34728400 DOI: 10.1016/j.wneu.2021.10.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The neurofibromatosis type 2 (NF2) gene mutation is the leading genetic event in meningiomas, usually accompanied by malignant features. Dysfunction of the spindle assembly checkpoint (SAC) induces tumorigenesis. However, the crosstalk between NF2 and SAC in meningiomas remains unclear. METHODS Cell proliferation, invasion, apoptosis, and cell cycle of meningiomas were determined by cell counting kit-8 assay, transwell assay, and flow cytometry, respectively. The expression of SAC in meningioma cells was detected by quantitative real-time polymerase chain reaction and Western blot. The interaction between anaphase promoting complex/cyclosome (APC/C) and cell division cycle 20 (Cdc20) protein in meningioma cells was further explored by co-immunoprecipitation. RESULTS We found that the expression of NF2/merlin was low or absent in malignant meningiomas. Overexpression of NF2 suppressed the proliferation and invasion of meningioma cells, prolonged the G2/M phase, and elevated the expression of SAC proteins at posttranscription. Furthermore, the interaction between APC/C and Cdc20 was inhibited by NF2. CONCLUSIONS Our findings suggested that NF2 might restore SAC function by impairing the binding of APC/C and Cdc20, thereby limiting the mitotic rate and inhibiting proliferation of meningiomas.
Collapse
|
14
|
Dishman AF, Peterson FC, Volkman BF. Specific binding-induced modulation of the XCL1 metamorphic equilibrium. Biopolymers 2021; 112:e23402. [PMID: 32986858 PMCID: PMC8004533 DOI: 10.1002/bip.23402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 01/25/2023]
Abstract
The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-β chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-β fold that binds glycosaminoglycans and has antimicrobial activity. Both of these functions are important for the biologic role of XCL1 in the immune system, and each structure is approximately equally populated under near-physiologic conditions. Recent work has begun to illuminate XCL1's role in combatting infection and cancer. However, without a way to control XCL1's dynamic structural interconversion, it is difficult to study the role of XCL1 fold-switching in human health and disease. Thus, a molecular tool that can regulate the fractional population of the two XCL1 structures is needed. Here, we find by heparin affinity chromatography and NMR that an engineered XCL1 variant called CC5 can trigger a dose-dependent shift in XCL1's metamorphic equilibrium such that the receptor binding structure is depleted, and the antimicrobial structure is more heavily populated. This shift likely occurs due to formation of XCL1-CC5 heterodimers in which both protomers occupy the β-sheet structure. These findings lay the groundwork for future studies seeking to understand the functional role of XCL1 metamorphosis, as well as studies screening for a drug-like molecule that can therapeutically target XCL1 by tuning its metamorphic equilibrium. Moreover, the proof of concept presented here suggests that protein metamorphosis is druggable, opening numerous avenues for controlling biological function of metamorphic proteins by altering the population of their multiple native states.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Li D, Guo J, Jia R. Histone code reader SPIN1 is a promising target of cancer therapy. Biochimie 2021; 191:78-86. [PMID: 34492335 DOI: 10.1016/j.biochi.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
SPIN1 is a histone methylation reader, which can epigenetically control multiple tumorigenesis-associated signaling pathways, including the Wnt, PI3K/AKT, and RET pathways. Considerable evidence has shown that SPIN1 is overexpressed in many cancers, which can promote cell proliferation, transformation, metastasis, and chemical or radiation resistance. With the growing understanding of the SPIN1 protein structure, some inhibitors have been developed to interfere with the recognition between SPIN1 and histone H3K4me3 and H3R8me2a methylation and block the oncogenic functions of SPIN1. Therefore, SPIN1 is a potential target of cancer therapy. However, the mechanism by which SPIN1-transformed cells overcome the significant mitotic spindle defects and the factors promoting SPIN1 overexpression in cancers remain unclear. In this review, we described the current understanding of the SPIN1 protein structure and its expression, functions, and regulatory mechanisms in carcinogenesis, and discussed the challenges faced in the mechanisms of SPIN1 overexpression and oncogenic functions, and the potential application of anti-SPIN1 treatment in human cancers.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
17
|
Sarkar S, Sahoo PK, Mahata S, Pal R, Ghosh D, Mistry T, Ghosh S, Bera T, Nasare VD. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosome Res 2021; 29:131-144. [PMID: 33409811 DOI: 10.1007/s10577-020-09646-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Loss of mitosis regulation is a common feature of malignant cells that leads to aberrant cell division with inaccurate chromosome segregation. The mitotic checkpoint is responsible for faithful transmission of genetic material to the progeny. Defects in this checkpoint, such as mutations and changes in gene expression, lead to abnormal chromosome content or aneuploidy that may facilitate cancer development. Furthermore, a defective checkpoint response is indicated in the development of drug resistance to microtubule poisons that are used in treatment of various blood and solid cancers for several decades. Mitotic slippage and senescence are important cell fates that occur even with an active mitotic checkpoint and are held responsible for the resistance. However, contradictory findings in both the scenarios of carcinogenesis and drug resistance have aroused questions on whether mitotic checkpoint defects are truly responsible for these dismal outcomes. Here, we discuss the possible contribution of the faulty checkpoint signaling in cancer development and drug resistance, followed by the latest research on this pathway for better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Pranab Kumar Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Dipanwita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
18
|
Bates M, Spillane CD, Gallagher MF, McCann A, Martin C, Blackshields G, Keegan H, Gubbins L, Brooks R, Brooks D, Selemidis S, O’Toole S, O’Leary JJ. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS One 2020; 15:e0243715. [PMID: 33370338 PMCID: PMC7769460 DOI: 10.1371/journal.pone.0243715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the use of front-line anticancer drugs such as paclitaxel for ovarian cancer treatment, mortality rates have remained almost unchanged for the past three decades and the majority of patients will develop recurrent chemoresistant disease which remains largely untreatable. Overcoming chemoresistance or preventing its onset in the first instance remains one of the major challenges for ovarian cancer research. In this study, we demonstrate a key link between senescence and inflammation and how this complex network involving the biomarkers MAD2, TLR4 and MyD88 drives paclitaxel resistance in ovarian cancer. This was investigated using siRNA knockdown of MAD2, TLR4 and MyD88 in two ovarian cancer cell lines, A2780 and SKOV-3 cells and overexpression of MyD88 in A2780 cells. Interestingly, siRNA knockdown of MAD2 led to a significant increase in TLR4 gene expression, this was coupled with the development of a highly paclitaxel-resistant cell phenotype. Additionally, siRNA knockdown of MAD2 or TLR4 in the serous ovarian cell model OVCAR-3 resulted in a significant increase in TLR4 or MAD2 expression respectively. Microarray analysis of SKOV-3 cells following knockdown of TLR4 or MAD2 highlighted a number of significantly altered biological processes including EMT, complement, coagulation, proliferation and survival, ECM remodelling, olfactory receptor signalling, ErbB signalling, DNA packaging, Insulin-like growth factor signalling, ion transport and alteration of components of the cytoskeleton. Cross comparison of the microarray data sets identified 7 overlapping genes including MMP13, ACTBL2, AMTN, PLXDC2, LYZL1, CCBE1 and CKS2. These results demonstrate an important link between these biomarkers, which to our knowledge has never before been shown in ovarian cancer. In the future, we hope that triaging patients into alterative treatment groups based on the expression of these three biomarkers or therapeutic targeting of the mechanisms they are involved in will lead to improvements in patient outcome and prevent the development of chemoresistance.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Cathy D. Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Michael F. Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Luke Gubbins
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Doug Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Sharon O’Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
19
|
Pajuelo-Lozano N, Alcalá S, Sainz B, Perona R, Sanchez-Perez I. Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines. Am J Cancer Res 2020; 10:9601-9618. [PMID: 32863948 PMCID: PMC7449921 DOI: 10.7150/thno.49270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Gastric cancer (GC) is a solid tumor that contains subpopulations of cancer stem cells (CSCs), which are considered drivers of tumor initiation and metastasis; responsible for therapeutic resistance; and promoters of tumor relapse. The balance between symmetric and asymmetric division is crucial for stem cell maintenance. The objective of this study is to evaluate the role of MAD2, a key protein for proper mitotic checkpoint activity, in the tumorigenesis of GC. Methods: Gastric cancer stem cells (GCSCs) were obtained from MKN45, SNU638 and ST2957 cell lines. Pluripotency and stemness markers were evaluated by RT-qPCR and autofluorescence and membrane markers by flow cytometry. Relevant signal transduction pathways were studied by WB. We analysed cell cycle progression, migration and invasion after modulation of MAD2 activity or protein expression levels in these in vitro models. In vivo assays were performed in a nude mouse subcutaneous xenograft model. Results: We found that NANOG, CXCR4 and autofluorescence are common and consistent markers for the GCSCs analysed, with other markers showing more variability. The three main signalling pathways (Wnt/β-catenin; Hedgehog and Notch) were activated in GCSCs. Downregulation of MAD2 in MKN45CSCs decreased the expression of markers CXCR4, CD133, CD90, LGR5 and VIM, without affecting cell cycle profile or therapy resistance. Moreover, migration, invasion and tumor growth were clearly reduced, and accordingly, we found that metalloprotease expression decreased. These results were accompanied by a reduction in the levels of transcription factors related with epithelial-to-mesenchymal transition. Conclusions: We can conclude that MAD2 is important for GCSCs stemness and its downregulation in MKN45CSCs plays a central role in GC tumorigenesis, likely through CXCR4-SNAI2-MMP1. Thus, its potential use in the clinical setting should be studied as its functions appear to extend beyond mitosis.
Collapse
|