1
|
Han Q, Yang F, Chen M, Zhang M, Wang L, Wang H, Liu J, Cao Z. Coating Dormant Collagenase-Producing Bacteria with Metal-Anesthetic Networks for Precision Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407402. [PMID: 39291426 DOI: 10.1002/advs.202407402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Tumor malignancy highly depends on the stiffness of tumor matrix, which mainly consists of collagen. Despite the destruction of tumor matrix is conducive to tumor therapy, it causes the risk of tumor metastasis. Here, metal-anesthetic network-coated dormant collagenase-producing Clostridium is constructed to simultaneously destruct tumor matrix and inhibit tumor metastasis. By metal-phenolic complexation and π-π stacking interactions, a Fe3+-propofol network is formed on bacterial surface. Coated dormant Clostridium can selectively germinate and rapidly proliferate in tumor sites due to the ability of carried Fe3+ ions to promote bacterial multiplication. Intratumoral colonization of Clostridium produces sufficient collagenases to degrade tumor collagen mesh and the loaded propofol restrains tumor metastasis by inhibiting tumor cell migration and invasion. Meanwhile, the delivered Fe3+ ions are reduced to the Fe2+ form by intracellular glutathione, thereby inducing potent Fenton reaction to trigger lipid peroxidation and ultimate ferroptosis of tumor cells. In addition to a satisfactory safety, a single intratumoral injection of coated dormant Clostridium not only effectively retards the growth of established large primary tumors, but also significantly suppresses distal lung metastasis in two different orthotopic tumor models. This work proposes a strategy to develop advanced therapeutics for malignant tumor treatment and metastasis prevention.
Collapse
Affiliation(s)
- Qiuju Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mian Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongxia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
2
|
Garg B, Khan S, Babu DS, Mose E, Gulay K, Sharma S, Sood D, Wenzel AT, Martsinkovskiy A, Patel J, Jaquish D, Lambies G, D'Ippolito A, Austgen K, Johnston B, Orlando D, Jang GH, Gallinger S, Goodfellow E, Brodt P, Commisso C, Tamayo P, Mesirov JP, Tiriac H, Lowy AM. MICAL2 Is a Super Enhancer Associated Gene that Promotes Pancreatic Cancer Growth and Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600548. [PMID: 38979336 PMCID: PMC11230455 DOI: 10.1101/2024.06.26.600548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers and thus identifying more effective therapies is a major unmet need. In this study we characterized the super enhancer (SE) landscape of human PDAC to identify novel, potentially targetable, drivers of the disease. Our analysis revealed that MICAL2 is a super enhancer-associated gene in human PDAC. MICAL2 is a flavin monooxygenase that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin related transcription factors (MRTF-A and MRTF-B). We found that MICAL2 is overexpressed in PDAC and correlates with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, we observed that MICAL2 promotes both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 expression also inhibited macropinocytosis. Through in vitro phenotypic analyses, we show that MICAL2, MRTF-A and MRTF-B influence PDAC cell proliferation, migration and promote cell cycle progression. Importantly, we demonstrate that MICAL2 is essential for in vivo tumor growth and metastasis. Interestingly, we find that MRTF-B, but not MRTF-A, phenocopies MICAL2-driven phenotypes in vivo . This study highlights the multiple ways in which MICAL2 impacts PDAC biology and suggests that its inhibition may impede PDAC progression. Our results provide a foundation for future investigations into the role of MICAL2 in PDAC and its potential as a target for therapeutic intervention.
Collapse
|
3
|
Guo F, Du Y, Wang Y, Wang M, Wang L, Yu N, Luo S, Wu F, Yang G. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: A review. Int J Biol Macromol 2024; 257:128658. [PMID: 38065446 DOI: 10.1016/j.ijbiomac.2023.128658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Nanodrug delivery systems based on tumor microenvironment responses have shown excellent performance in tumor-targeted therapy, given their unique targeting and drug-release characteristics. Matrix metalloproteinases (MMPs) have been widely explored owing to their high specificity and expression in various tumor microenvironments. The design of an enzyme-sensitive nanodelivery system using MMPs as targeted receptors could markedly improve the performance of drug targeting. The current review focuses on the development and application of MMP-responsive drug carriers, and summarizes the classification of single- and multi-target nanocarriers based on their MMP responsiveness. The potential applications and challenges of this nanodrug delivery system are discussed to provide a reference for designing high-performance nanodrug delivery systems.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Xu J, Gao F, Liu W, Guan X. Cell-cell communication characteristics in breast cancer metastasis. Cell Commun Signal 2024; 22:55. [PMID: 38243240 PMCID: PMC10799417 DOI: 10.1186/s12964-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024] Open
Abstract
Breast cancer, a highly fatal disease due to its tendency to metastasize, is the most prevalent form of malignant tumors among women worldwide. Numerous studies indicate that breast cancer exhibits a unique predilection for metastasis to specific organs including the bone, liver, lung, and brain. However, different types of, The understanding of the heterogeneity of metastatic breast cancer has notably improved with the recent advances in high-throughput sequencing techniques. Focusing on the modification in the microenvironment of the metastatic organs and the crosstalk between tumor cells and in situ cells, noteworthy research points include the identification of two distinct modes of tumor growth in bone metastases, the influence of type II pneumocyte on lung metastases, the paradoxical role of Kupffer cells in liver metastases, and the breakthrough of the blood-brain barrier (BBB) breach in brain metastases. Overall, this review provides a comprehensive overview of the characteristics of breast cancer metastases, shedding light on the pivotal roles of immune and resident cells in the development of distinct metastatic foci.
Collapse
Affiliation(s)
- Jingtong Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weici Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Xia T, Ye F, Zhao W, Min P, Qi C, Wang Q, Zhao M, Zhang Y, Du J. Comprehensive Analysis of MICALL2 Reveals Its Potential Roles in EGFR Stabilization and Ovarian Cancer Cell Invasion. Int J Mol Sci 2023; 25:518. [PMID: 38203692 PMCID: PMC10778810 DOI: 10.3390/ijms25010518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Molecules interacting with CasL (MICALs) are critical mediators of cell motility that act by cytoskeleton rearrangement. However, the molecular mechanisms underlying the regulation of cancer cell invasion remain elusive. The aim of this study was to investigate the potential role of one member of MICALs, i.e., MICALL2, in the invasion and function of ovarian cancer cells. We showed by bioinformatics analysis that MICALL2 expression was significantly higher in tissues of advanced-stage ovarian cancer and associated with poor overall survival of patients. MICALL2 was strongly correlated with the infiltration of multiple types of immune cells and T-cell exhaustion markers. Moreover, enrichment analyses showed that MICALL2 was involved in the tumor-related matrix degradation pathway. Mechanistically, MMP9 was identified as the target gene of MICALL2 for the regulation of invadopodium formation and SKOV3, HO-8910PM cell invasion. In addition, EGFR-AKT-mTOR signaling was identified as the downstream pathway of MICALL2 in the regulation of MMP9 expression. Furthermore, MICALL2 silencing promoted EGFR degradation; however, this effect was abrogated by treatment with the autophagy inhibitors acadesine and chloroquine diphosphate. Silencing of MICALL2 resulted in a suppressive activity of Rac1 while suppressing Rac1 activation attenuated the pro-EGFR, pro-MMP9, and proinvasive effects induced by the overexpression of MICALL2. Collectively, our results indicated that MICALL2 participated in the process of immune infiltration and invasion by ovarian cancer cells. Moreover, MICALL2 prevented EGFR degradation in a Rac1-dependent manner, consequently leading to EGFR-AKT-mTOR-MMP9 signaling activation and invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (T.X.); (F.Y.); (W.Z.); (P.M.); (C.Q.); (Q.W.); (M.Z.); (Y.Z.)
| |
Collapse
|
6
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
7
|
Salamanna F, Contartese D, Errani C, Sartori M, Borsari V, Giavaresi G. Role of bone marrow adipocytes in bone metastasis development and progression: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1207416. [PMID: 37711896 PMCID: PMC10497772 DOI: 10.3389/fendo.2023.1207416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose Bone marrow adipocytes (BMAs) are the most plentiful cells in the bone marrow and function as an endocrine organ by producing fatty acids, cytokines, and adipokines. Consequently, BMAs can interact with tumor cells, influencing both tumor growth and the onset and progression of bone metastasis. This review aims to systematically evaluate the role of BMAs in the development and progression of bone metastasis. Methods A comprehensive search was conducted on PubMed, Web of Science, and Scopus electronic databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement standards, to identify studies published from March 2013 to June 2023. Two independent reviewers assessed and screened the literature, extracted the data, and evaluated the quality of the studies. The body of evidence was evaluated and graded using the ROBINS-I tool for non-randomized studies of interventions and the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool for in vivo studies. The results were synthesized using descriptive methods. Results The search yielded a total of 463 studies, of which 17 studies were included in the final analysis, including 15 preclinical studies and two non-randomized clinical studies. Analysis of preclinical studies revealed that BMAs play a significant role in bone metastasis, particularly in prostate cancer followed by breast and malignant melanoma cancers. BMAs primarily influence cancer cells by inducing a glycolytic phenotype and releasing or upregulating soluble factors, chemokines, cytokines, adipokines, tumor-derived fatty acid-binding protein (FABP), and members of the nuclear receptor superfamily, such as chemokine (C-C motif) ligand 7 (CCL7), C-X-C Motif Chemokine Ligand (CXCL)1, CXCL2, interleukin (IL)-1β, IL-6, FABP4, and peroxisome proliferator-activated receptor γ (PPARγ). These factors also contribute to adipocyte lipolysis and regulate a pro-inflammatory phenotype in BMAs. However, the number of clinical studies is limited, and definitive conclusions cannot be drawn. Conclusion The preclinical studies reviewed indicate that BMAs may play a crucial role in bone metastasis in prostate, breast, and malignant melanoma cancers. Nevertheless, further preclinical and clinical studies are needed to better understand the complex role and relationship between BMAs and cancer cells in the bone microenvironment. Targeting BMAs in combination with standard treatments holds promise as a potential therapeutic strategy for bone metastasis.
Collapse
Affiliation(s)
- F. Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - D. Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C. Errani
- 3rd Orthopaedic and Traumatologic Clinic Prevalently Oncologic, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M. Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V. Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G. Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
8
|
Ishtiaq SM, Arshad MI, Khan JA. PPARγ signaling in hepatocarcinogenesis: Mechanistic insights for cellular reprogramming and therapeutic implications. Pharmacol Ther 2022; 240:108298. [PMID: 36243148 DOI: 10.1016/j.pharmthera.2022.108298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) is leading cause of cancer-related mortalities globally. The therapeutic approaches for chronic liver diseases-associated liver cancers aimed at modulating immune check-points and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway during multistep process of hepatocarcinogenesis that played a dispensable role in immunopathogenesis and outcomes of disease. Herein, the review highlights PPARγ-induced effects in balancing inflammatory (tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1) and anti-inflammatory cytokines (IL-10, transforming growth factor beta (TGF-β), and interplay of PPARγ, hepatic stellate cells and fibrogenic niche in cell-intrinsic and -extrinsic crosstalk of hepatocarcinogenesis. PPARγ-mediated effects in pre-malignant microenvironment promote growth arrest, cell senescence and cell clearance in liver cancer pathophysiology. Furthermore, PPARγ-immune cell axis of liver microenvironment exhibits an immunomodulation strategy of resident immune cells of the liver (macrophages, natural killer cells, and dendritic cells) in concomitance with current clinical guidelines of the European Association for Study of Liver Diseases (EASL) for several liver diseases. Thus, mechanistic insights of PPARγ-associated high value targets and canonical signaling suggest PPARγ as a possible therapeutic target in reprogramming of hepatocarcinogenesis to decrease burden of liver cancers, worldwide.
Collapse
Affiliation(s)
- Syeda Momna Ishtiaq
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Junaid Ali Khan
- Department of Pharmacology and Physiology, MNS University of Agriculture, Multan 60000, Pakistan.
| |
Collapse
|
9
|
Protective Function of Malus baccata (L.) Borkh Methanol Extract against UVB/Hydrogen Peroxide-Induced Skin Aging via Inhibition of MAPK and NF-κB Signaling. PLANTS 2022; 11:plants11182368. [PMID: 36145769 PMCID: PMC9500733 DOI: 10.3390/plants11182368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) irradiation induces ROS production, which activates activator protein (AP)-1 and nuclear factor (NF)-κB signaling and downstream molecules, ultimately triggering the generation of matrix metalloproteinases (MMPs) and degradation of collagen. The aim of this study was to investigate the protective effect of methanol extract from Malus baccata (L.) Borkh (Mb-ME) against aging. DPPH and ABTS assays showed that Mb-ME had a significant antioxidant capacity. Flow cytometry results indicated that Mb-ME attenuated UVB and H2O2-stimulated apoptosis and reactive oxygen species (ROS) generation. RT-PCR analysis in HaCaT and HDF cells suggested that Mb-ME treatment blocked the expression of MMPs, COX-2, IL-1β, IL-6, HYALs, and p53 while promoting the levels of TGM1, FLG, HASs, Sirt1, and Col1A1. Mechanically, Mb-ME inhibited the phosphorylation of MAP kinases and NF-κB signaling. Overall, these results strongly suggest that Mb-ME can be developed as an antiaging therapy.
Collapse
|
10
|
Xue F, Wang T, Shi H, Feng H, Feng G, Wang R, Yao Y, Yuan H. CD73 facilitates invadopodia formation and boosts malignancy of head and neck squamous cell carcinoma via the MAPK signaling pathway. Cancer Sci 2022; 113:2704-2715. [PMID: 35657703 PMCID: PMC9357645 DOI: 10.1111/cas.15452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Elevated adenosine generated by CD73 (ecto‐5′‐nucleotidase; NT5E) could boost immunosuppressive responses and promote immune evasion in the tumor microenvironment. However, despite the immune response, CD73 could also promote tumor progression in a variety of cancers, and the nonimmunologic role and corresponding molecular mechanism of CD73 involved in head and neck squamous cell carcinoma (HNSCC) progression are not well characterized. Here, we demonstrated that CD73/NT5E is overexpressed in HNSCC tissues and predicts poor prognosis. Suppression of CD73 inhibited the proliferation, migration, and invasion of HNSCC cell lines (CAL27 and HN4) in vitro and in vivo. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) predicted that CD73 may be involved in invadopodia formation and MAPK signaling activation. As expected, knockdown of CD73 inhibited the MAPK signaling pathway, and the suppressive effect of CD73 knockdown on proliferation, migration, invasion, and invadopodia formation was reversed by a MAPK signaling activator. Our results suggest that CD73 could promote the proliferation, migration, invasion, and invadopodia formation of HNSCC via the MAPK signaling pathway and provide new mechanistic insights into the nonimmunological role of CD73 in HNSCC.
Collapse
Affiliation(s)
- Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hao Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongjie Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yao Yao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
11
|
Guo J, Tong CY, Shi JG, Li XJ. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 7(CXCR7) regulates epithelial-mesenchymal transition process and promotes the metastasis of esophageal cancer by activating signal transducer and activator of transcription 3 (STAT3) pathway. Bioengineered 2022; 13:7425-7438. [PMID: 35264069 PMCID: PMC8973702 DOI: 10.1080/21655979.2022.2048984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Esophageal cancer is a malignant tumor of the digestive system that is prone to metastasis. Chemokines and their receptors act an essential role in the occurrence and development of tumors. Here, we investigated the regulatory mechanism of CXCL12/CXCR7 in the growth and metastasis of esophageal cancer. CXCR7 was found highly expressed in clinical tissues and cells of esophageal cancer. Knockdown of CXCR7 inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process of esophageal cancer cells. The knockdown of chemokine CXCL12 also inhibited the expression of EMT-related proteins and the mesenchymal morphology changes of esophageal cancer cells, but the knockdown of C-X-C motif chemokine receptor 4 (CXCR4) had no such effect. Furthermore, the knockdown of CXCR7 attenuated the enhanced EMT process induced by CXCL12 overexpression, while the knockdown of CXCR4 cannot inhibit this process. In addition, overexpressed CXCL12/CXCR7 activated the downstream STAT3 pathway, but had little effect on the extracellular regulated protein kinase (ERK) or serine-threonine kinase (AKT) pathways. Inhibition of the STAT3 pathway using AZD9150 weakened the accelerated effects of CXCL12/CXCR7 on the growth and metastasis of esophageal cancer in vitro and in vivo. In conclusion, our research revealed that CXCL12/CXCR7 regulates EMT and other malignant processes by activating the STAT3 pathway to accelerate the growth and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Chang-Yong Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Jian-Guang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Xin-Jian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| |
Collapse
|
12
|
Zhou H, Lin S, Hu Y, Guo D, Wang Y, Li X. miR‑125a‑5p and miR‑7 inhibits the proliferation, migration and invasion of vascular smooth muscle cell by targeting EGFR. Mol Med Rep 2021; 24:708. [PMID: 34396443 PMCID: PMC8383035 DOI: 10.3892/mmr.2021.12347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
The ectopic proliferation, migration and invasion of vascular smooth muscle cells (VSMCs) contributes to the progression of various human vascular diseases. Accumulating evidence has demonstrated that microRNAs (miRs) exert vital functions in the proliferation and invasion of VSMCs. The current study aimed to elucidate the functions of miR-125a-5p and miR-7 in VSMCs and investigate the associated molecular mechanisms. The results of EdU and reverse transcription-quantitative PCR assays revealed that platelet-derived growth factor (PDGF)-BB enhanced the proliferation of VSMCs and significantly reduced the expression of miR-125a-5p and miR-7. miR-125a-5p or miR-7 overexpression significantly ameliorated PDGF-BB-induced proliferation, migration and invasion of VSMCs. Furthermore, the results demonstrated that epidermal growth factor receptor (EGFR) may be a target mRNA of miR-125a-5p and miR-7 in VSMCs. The results of western blot analysis indicated that co-transfection of miR-125a-5p mimics or miR-7 mimics distinctly decreased the protein expression of EGFR in EGFR-overexpressed VSMCs. Moreover, rescue experiments indicated that EGFR overexpression alleviated the suppressive impact of the miR-125a-5p and miR-7 s on the growth, migration and invasion of VSMCs. In conclusion, the current study identified that miR-125a-5p and miR-7 repressed the growth, migration and invasion of PDGF-BB-stimulated VSMCs by, at least partially, targeting EGFR. The current study verified that miR-125a-5p and miR-7 may be used as feasible therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Hualan Zhou
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Sen Lin
- Clinical Laboratory, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Youdong Hu
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Dianxuan Guo
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Yun Wang
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Xia Li
- Department of Gerontology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
13
|
Liu R, Sun Y, Wu H, Ni S, Wang J, Li T, Bi Y, Feng X, Zhang C, Sun Y. In-depth investigation of the effective substances of traditional Chinese medicine formula based on the novel concept of co-decoction reaction-using Zuojin decoction as a model sample. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122869. [PMID: 34333214 DOI: 10.1016/j.jchromb.2021.122869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Zuojin decoction (ZJD) is a classic pair composed of Coptidis Rhizoma and Evodiae Fructus, which is suitable for treating gastrointestinal diseases and tumours, etc. In recent years, scientists have been widely focused on research into the treatment of liver cancer using ZJD; however, the effective substances have not yet been comprehensively elucidated. The difference between the co-decoction and the single decoction of ZJD is revealed in this paper based on the UPLC-QE-Orbitrap-MS, and the chemical components absorbed into the blood and liver of mice have been analyzed simultaneously. In addition, the combination of prototype components absorbed into the liver with liver cancer-related targets has been performed via molecular docking to explore the mechanism of ZJD in treating liver cancer. By comparing the co-decoction and single decoction of ZJD, 44 new components appeared during co-decoction and 76 known chemical compounds have been identified at the same time. It has been confirmed that 35 known components and 11 new components were absorbed into the blood. Furthermore, 20 known components were discovered from the sample of liver tissue. Molecular docking results showed that 3-O-feruloylquinic acid has good conjugation with Bcl-2, Stat3, mTOR, and mmp9. Catechin has the lowest binding energy with CDK6 and β-catenin. The study provides data for the further confirmation of the material basis and mechanism of ZJD in treating liver cancer, and provides a new idea for the researches on the compatibility mechanism of prescriptions of traditional Chinese medicine.
Collapse
Affiliation(s)
- Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiting Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuelin Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
14
|
Garde A, Sherwood DR. Fueling Cell Invasion through Extracellular Matrix. Trends Cell Biol 2021; 31:445-456. [PMID: 33549396 PMCID: PMC8122022 DOI: 10.1016/j.tcb.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Cell invasion through extracellular matrix (ECM) has pivotal roles in cell dispersal during development, immune cell trafficking, and cancer metastasis. Many elegant studies have revealed the specialized cellular protrusions, proteases, and distinct modes of migration invasive cells use to overcome ECM barriers. Less clear, however, is how invasive cells provide energy, specifically ATP, to power the energetically demanding membrane trafficking, F-actin polymerization, and actomyosin machinery that mediate break down, remodeling, and movement through ECMs. Here, we provide an overview of the challenges of examining ATP generation and delivery within invading cells and how recent studies using diverse invasion models, experimental approaches, and energy biosensors are revealing that energy metabolism is an integral component of cell invasive behavior that is dynamically tuned to overcome the ECM environment.
Collapse
Affiliation(s)
- Aastha Garde
- Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Li J, Tian L, Jing Z, Guo Z, Nan P, Liu F, Zou S, Yang L, Xie X, Zhu Y, Zhao Y, Sun W, Sun Y, Zhao X. Cytoplasmic RAD23B interacts with CORO1C to synergistically promote colorectal cancer progression and metastasis. Cancer Lett 2021; 516:13-27. [PMID: 34062216 DOI: 10.1016/j.canlet.2021.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancers (CRCs) are characterized by diffuse infiltration of tumor cells into the regional lymph nodes and metastasis to distant organs, and its highly invasive nature contributes to disease recurrence and poor outcomes. The molecular mechanisms underlying CRC cell invasion remain incompletely understood. Here, we identified the upregulation of DNA damage repair-related protein RAD23B in CRC cells and tissues and showed that it associates with coronin 1C or coronin 3 (CORO1C) to facilitate invasion. We found that knockdown of RAD23B expression significantly inhibited the proliferation, invasion, and migration abilities of CRC cells both in vitro and in vivo, and suppressed the talin1/2/integrin/FAK/RhoA/Rac1/CORO1C signaling pathways. Interestingly, RAD23B interacted and co-localized with CORO1C, and CORO1C aggregated toward the margin of cancer cells in both CRC cells and tissues when RAD23B overexpressed. Mechanistically, overexpression of RAD23B and/or CORO1C further increased invadopodia formation and matrix degradation in SW480 and HCT8 CRC cells. Conversely, silencing of RAD23B expression suppressed tumorigenesis and liver metastasis in xenotransplant murine models. Furthermore, we found that RAD23B was significantly overexpressed in tumor tissues (n = 720) compared to adjacent non-tumor tissues (n = 694) of patients with CRC. Finally, we identified a strong correlation between higher levels of cytoplasmic expression of RAD23B, and poor prognosis and liver metastasis in CRC patients. Taken together, our data highlight a novel RAD23B-CORO1C signaling axis in CRC cell invasion and metastasis that may be of clinical significance.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijun Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Zhu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instruments, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Zhao Q, Guo J, Wang G, Bi Y, Cheng X, Liao Y, Jin S, Li L, Guo Y, Pan L, Zhang X, Tan Y, Zhou G, Yu X. CXCL13 promotes intestinal tumorigenesis through the activation of epithelial AKT signaling. Cancer Lett 2021; 511:1-14. [PMID: 33894331 DOI: 10.1016/j.canlet.2021.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
The excessive release of proinflammatory chemokines promotes cell proliferation and tumor growth in colorectal cancer. However, their regulatory functions and molecular pathogenesis have not been well elucidated. Here, we observed the upregulation of chemokine (C-X-C motif) ligand 13 (CXCL13) in human colorectal cancers and mouse intestinal tumors. Both CXCL13 deficiency and blockade of CXCL13 signaling ameliorated disease progression. CXCL13 promoted intestinal tumorigenesis through the activation of the AKT signaling pathway in a C-X-C chemokine receptor type 5 (CXCR5)-dependent manner. Intestinal microbiota translocation drove CXCL13 production in dendritic cells through the activation of NF-κB signaling. Inhibition of microbiota translocation decreased CXCL13 production and ameliorated intestinal tumorigenesis. Together, the results of this study identify a role for the CXCL13-CXCR5 axis is involved in the crosstalk between chemokines and cell growth during the development of intestinal tumorigenesis, which also provides a therapeutic strategy for targeting CXCL13/CXCR5 in the future clinical treatment of intestinal tumors.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guizhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xinran Cheng
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yingying Liao
- Department of Gastroenterology, Renming Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Shu Jin
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Lian Li
- Department of Clinical Laboratory Medicine, Renming Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xudong Zhang
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
17
|
Abstract
Liver metastases are commonly detected in a range of malignancies including colorectal cancer (CRC), pancreatic cancer, melanoma, lung cancer and breast cancer, although CRC is the most common primary cancer that metastasizes to the liver. Interactions between tumour cells and the tumour microenvironment play an important part in the engraftment, survival and progression of the metastases. Various cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, parenchymal hepatocytes, dendritic cells, resident natural killer cells as well as other immune cells such as monocytes, macrophages and neutrophils are implicated in promoting and sustaining metastases in the liver. Four key phases (microvascular, pre-angiogenic, angiogenic and growth phases) have been identified in the process of liver metastasis. Imaging modalities such as ultrasonography, CT, MRI and PET scans are typically used for the diagnosis of liver metastases. Surgical resection remains the main potentially curative treatment among patients with resectable liver metastases. The role of liver transplantation in the management of liver metastasis remains controversial. Systemic therapies, newer biologic agents (for example, bevacizumab and cetuximab) and immunotherapeutic agents have revolutionized the treatment options for liver metastases. Moving forward, incorporation of genetic tests can provide more accurate information to guide clinical decision-making and predict prognosis among patients with liver metastases.
Collapse
|
18
|
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y, Peng Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45:809-823. [PMID: 33650640 PMCID: PMC7859922 DOI: 10.3892/or.2020.7906] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Ya Zheng
- Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| |
Collapse
|
19
|
The Chemokine Receptor CCR3 Is Potentially Involved in the Homing of Prostate Cancer Cells to Bone: Implication of Bone-Marrow Adipocytes. Int J Mol Sci 2021; 22:ijms22041994. [PMID: 33671469 PMCID: PMC7922974 DOI: 10.3390/ijms22041994] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis remains the most frequent and the deadliest complication of prostate cancer (PCa). Mechanisms leading to the homing of tumor cells to bone remain poorly characterized. Role of chemokines in providing navigational cues to migrating cancer cells bearing specific receptors is well established. Bone is an adipocyte-rich organ since 50 to 70% of the adult bone marrow (BM) volume comprise bone marrow adipocytes (BM-Ads), which are likely to produce chemokines within the bone microenvironment. Using in vitro migration assays, we demonstrated that soluble factors released by human primary BM-Ads are able to support the directed migration of PCa cells in a CCR3-dependent manner. In addition, we showed that CCL7, a chemokine previously involved in the CCR3-dependent migration of PCa cells outside of the prostate gland, is released by human BM-Ads. These effects are amplified by obesity and ageing, two clinical conditions known to promote aggressive and metastatic PCa. In human tumors, we found an enrichment of CCR3 in bone metastasis vs. primary tumors at mRNA levels using Oncomine microarray database. In addition, immunohistochemistry experiments demonstrated overexpression of CCR3 in bone versus visceral metastases. These results underline the potential importance of BM-Ads in the bone metastatic process and imply a CCR3/CCL7 axis whose pharmacological interest needs to be evaluated.
Collapse
|
20
|
Hussain S, Peng B, Cherian M, Song JW, Ahirwar DK, Ganju RK. The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Front Immunol 2020; 11:598532. [PMID: 33414786 PMCID: PMC7783453 DOI: 10.3389/fimmu.2020.598532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The intricate interplay between malignant cells and host cellular and non-cellular components play crucial role in different stages of tumor development, progression, and metastases. Tumor and stromal cells communicate to each other through receptors such as integrins and secretion of signaling molecules like growth factors, cytokines, chemokines and inflammatory mediators. Chemokines mediated signaling pathways have emerged as major mechanisms underlying multifaceted roles played by host cells during tumor progression. In response to tumor stimuli, host cells-derived chemokines further activates signaling cascades that support the ability of tumor cells to invade surrounding basement membrane and extra-cellular matrix. The host-derived chemokines act on endothelial cells to increase their permeability and facilitate tumor cells intravasation and extravasation. The tumor cells-host neutrophils interaction within the vasculature initiates chemokines driven recruitment of inflammatory cells that protects circulatory tumor cells from immune attack. Chemokines secreted by tumor cells and stromal immune and non-immune cells within the tumor microenvironment enter the circulation and are responsible for formation of a "pre-metastatic niche" like a "soil" in distant organs whereby circulating tumor cells "seed' and colonize, leading to formation of metastatic foci. Given the importance of host derived chemokines in cancer progression and metastases several drugs like Mogamulizumab, Plerixafor, Repertaxin among others are part of ongoing clinical trial which target chemokines and their receptors against cancer pathogenesis. In this review, we focus on recent advances in understanding the complexity of chemokines network in tumor microenvironment, with an emphasis on chemokines secreted from host cells. We especially summarize the role of host-derived chemokines in different stages of metastases, including invasion, dissemination, migration into the vasculature, and seeding into the pre-metastatic niche. We finally provide a brief description of prospective drugs that target chemokines in different clinical trials against cancer.
Collapse
Affiliation(s)
- Shahid Hussain
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Bo Peng
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mathew Cherian
- Division of Medical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan W Song
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Mechanical and Aerospace Engineering, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dinesh K Ahirwar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
21
|
QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Rep 2020; 33:108560. [DOI: 10.1016/j.celrep.2020.108560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/27/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
|
22
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
23
|
Tang L, Xu M, Zhang L, Qu L, Liu X. Role of αVβ3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target. Onco Targets Ther 2020; 13:7411-7422. [PMID: 32801764 PMCID: PMC7395689 DOI: 10.2147/ott.s258252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In prostate cancer, distant organ metastasis is the leading cause of patient death. Although the mechanism of malignant tumor metastasis is unclear, studies have confirmed that integrin αVβ3 plays an important role in this process. In prostate cancer, αVβ3 mediates adhesion, invasion, immune escape and neovascularization through interactions with different ligands. Among these ligands and in addition to proteins that are directly related to tumor invasion, other proteins that contain the RGD structure could also bind to αVβ3 and cause a number of biological effects. In this article, we summarized the ligand and downstream proteins related to αVβ3-mediated prostate cancer metastasis as well as some diagnostic and therapeutic measures targeting αVβ3.
Collapse
Affiliation(s)
- Lin Tang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, The Inner Mongol Autonomous Region 024005, People's Republic of China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China.,R&D Department, Seekgene Technology Co., Ltd, Beijing 100000, People's Republic of China
| | - Long Zhang
- Department of Hepatobiliary Surgery, Yidu Central Hospital, Weifang, Shandong 262500, People's Republic of China
| | - Lin Qu
- Department of Orthopaedic Surgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, Liaoning 114000, People's Republic of China
| | - Xiaoyan Liu
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, People's Republic of China
| |
Collapse
|
24
|
Geng X, Chen C, Huang Y, Hou J. The prognostic value and potential mechanism of Matrix Metalloproteinases among Prostate Cancer. Int J Med Sci 2020; 17:1550-1560. [PMID: 32669958 PMCID: PMC7359399 DOI: 10.7150/ijms.46780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Matrix Metalloproteinases (MMPs) play an indispensable role in the initial alteration and development of PCa. We tried to generate an MMP-related prognostic signature (MMPS) in prostate cancer (PCa). Methods: TCGA-PRAD, MSKCC/GSE21032, GSE116918, GSE70769 cohorts were enrolled to assess the prognostic value of MMPs. The least absolute shrinkage and selection operator (LASSO) Cox regression was employed to generate the MMPS signature. The log-rank test and Kaplan-Meier (K-M) survival curve were applied to show the difference RFS, The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) was plotted to predict the accuracy of signature. CIBERSORT was conducted to analyze the different immune infiltration in MMPS-H and MMPS-L groups. Potential signaling pathways activated in the MMPS-H groups by Metascape. Results: MMP1, MMP7, MMP11, MMP24 and MMP26 were selected by LASSO regression and established the MMPS predict signature. The MMPS showed the high prognostic value in TCGA-PRAD training cohort (AUC=0.714) and validation cohorts (GSE116918: AUC=0.976, GSE70769: AUC=0.738, MSKCC: AUC=0.793). Pid integrin1 pathway, G2M checkpoint, and response to growth factor signaling pathways were activated in MMPS-H group, patients with the high MMPS risk score and low M2 macrophage showed the worst recurrence-free survival (RFS). Conclusion: MMPs involved and played an essential role in the tumorigenesis and biochemical recurrence in PCa patients. The MMPS signature could accurately predict the recurrence of PCa patients and validated in several cohorts.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Disease-Free Survival
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Kaplan-Meier Estimate
- Male
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 11/genetics
- Matrix Metalloproteinase 11/metabolism
- Matrix Metalloproteinase 7/genetics
- Matrix Metalloproteinase 7/metabolism
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinases, Membrane-Associated/genetics
- Matrix Metalloproteinases, Membrane-Associated/metabolism
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Prognosis
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- ROC Curve
Collapse
Affiliation(s)
| | | | | | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, 215006, Suzhou, Jiangsu, China
| |
Collapse
|