1
|
Ma D, Liu S, Liu K, Kong L, Xiao L, Xin Q, Jiang C, Wu J. MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway. Cancer Biol Ther 2024; 25:2314324. [PMID: 38375821 PMCID: PMC10880501 DOI: 10.1080/15384047.2024.2314324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| |
Collapse
|
2
|
Holm M, Stepanauskaitė L, Bäckström A, Birgersson M, Socciarelli F, Archer A, Stadler C, Williams C. Spatial profiling of the mouse colonic immune landscape associated with colitis and sex. Commun Biol 2024; 7:1595. [PMID: 39613949 DOI: 10.1038/s42003-024-07276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
Inflammatory intestinal conditions are a major disease burden. Numerous factors shape the distribution of immune cells in the colon, but a spatial characterization of the homeostatic and inflamed colonic immune microenvironment is lacking. Here, we use the COMET platform for multiplex immunofluorescence to profile the infiltration of nine immune cell populations in mice of both sexes (N = 16) with full spatial context, including in regions of squamous metaplasia. Unsupervised clustering, neighborhood analysis, and manual quantification along the proximal-distal axis characterized the colonic immune landscape, quantified cell-cell interactions, and revealed sex differences. The distal colon was the most affected region during colitis, which was pronounced in males, who exhibited a sex-dependent increase of B cells and reduction of M2-like macrophages. Regions of squamous metaplasia exhibited strong infiltration of numerous immune cell populations, especially in males. Females exhibited more helper T cells and neutrophils at homeostasis and increased M2-like macrophage infiltration in the mid-colon upon colitis. Sex differences were corroborated by plasma cytokine profiles. Our results provide a foundation for future studies of inflammatory intestinal conditions.
Collapse
Affiliation(s)
- Matilda Holm
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Lina Stepanauskaitė
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Anna Bäckström
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Madeleine Birgersson
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amena Archer
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Charlotte Stadler
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Williams
- SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.
- Division of Biosciences and Nutrition, Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
3
|
Li W, Luo R, Liu Z, Li X, Zhang C, Huang J, Wang Z, Chen J, Ding H, Zhou X, Liu B. Anti-inflammatory effects of resveratrol in treating interstitial cystitis/bladder pain syndrome: a multi-faceted approach integrating network pharmacology, molecular docking, and experimental validation. Mol Divers 2024:10.1007/s11030-024-11004-6. [PMID: 39400868 DOI: 10.1007/s11030-024-11004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
This study aims to investigate the anti-inflammatory effects of Resveratrol (RES) in the treatment of Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) by integrating network pharmacology, molecular docking, and experimental validation. Potential targets of RES were identified using DrugBank and SwissTargetPrediction, while IC/BPS-related targets were obtained from DisGeNET and Genecards. Molecular docking was performed using UCSF Chimera and SwissDock to validate the binding affinity of RES to key targets. Experimental validation involved treating TNF-α induced urothelial cells with RES, followed by assessments using RT-qPCR, ELISA, and Western blotting. A total of 86 drug targets and 211 disease targets were analyzed, leading to the identification of 8 key therapeutic targets for RES in IC/BPS treatment. Molecular docking revealed a strong affinity of RES for ESR2, with notable interactions also observed with SHBG, PTGS2, PPARG, KIT, PI3KCA, and AKT1. In vitro experiments confirmed that RES significantly alleviated the inflammatory response in TNF-α-induced urothelial cells, normalizing the expression levels of ESR2, SHBG, PPARG, and AKT1. RES can modulate critical pathways involving ESR2, SHBG, PPARG, and AKT1, highlighting its potential as a therapeutic agent for IC/BPS. This study provides a theoretical foundation for the clinical application of RES in treating IC/BPS.
Collapse
Grants
- 82170786 and 81670688 to Xiangfu Zhou, 81800666 to Bolong Liu, 82100816 to Chi Zhang National Natural Science Foundation of China
- 82170786 and 81670688 to Xiangfu Zhou, 81800666 to Bolong Liu, 82100816 to Chi Zhang National Natural Science Foundation of China
- 82170786 and 81670688 to Xiangfu Zhou, 81800666 to Bolong Liu, 82100816 to Chi Zhang National Natural Science Foundation of China
- 2023A1515010422 to Bolong Liu, 2024A1515010461 and 2022A1515010250 to Xiangfu Zhou Natural Science Foundation of Guangdong Province
- 2023A1515010422 to Bolong Liu, 2024A1515010461 and 2022A1515010250 to Xiangfu Zhou Natural Science Foundation of Guangdong Province
- 202301-323 to Xiangfu Zhou Open Research Funds from Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital
- 2023A03J0201 to Bolong Liu Guangzhou Municipal Science and Technology Project
- 20231063 to Bolong Liu Scientific Research Project of Traditional Chinese Medicine Bureau of Guangdong Province
- 2024GZRPYMS03 to Bolong Liu Cultivation Special Project Foundation of The Third Affiliated Hospital of Sun Yat-Sen University
Collapse
Affiliation(s)
- Wenshuang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Ruixiang Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Zheng Liu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xiaoyang Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Junlong Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Ziqiao Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Honglu Ding
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, People's Republic of China.
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511500, People's Republic of China.
| |
Collapse
|
4
|
Hjelt A, Anttila S, Wiklund A, Rokka A, Al‐Ramahi D, Toivola DM, Polari L, Määttä J. Estrogen deprivation and estrogen receptor α antagonism decrease DSS colitis in female mice. Pharmacol Res Perspect 2024; 12:e1234. [PMID: 38961539 PMCID: PMC11222167 DOI: 10.1002/prp2.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.
Collapse
Affiliation(s)
- Anja Hjelt
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | - Anu Wiklund
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Rokka
- Turku BioscienceUniversity of TurkuTurkuFinland
| | - Darin Al‐Ramahi
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Bioanalytical LaboratoryUniversity of TurkuTurkuFinland
| | - Diana M. Toivola
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| | - Lauri Polari
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and Engineering, Department of Biosciences, Cell BiologyÅbo Akademi UniversityTurkuFinland
- InFLAMES Research Flagship CenterÅbo Akademi UniversityTurkuFinland
| | - Jorma Määttä
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Turku Centre for Disease ModelingUniversity of TurkuTurkuFinland
| |
Collapse
|
5
|
Wu J, Bai Y, Lu Y, Yu Z, Zhang S, Yu B, Chen L, Li J. Role of sex steroids in colorectal cancer: pathomechanisms and medical applications. Am J Cancer Res 2024; 14:3200-3221. [PMID: 39113870 PMCID: PMC11301278 DOI: 10.62347/oebs6893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Given that the colon represents the most extensive hormone-responsive tissue in the human body, it prompts a compelling inquiry into whether the progression of its cancer is intimately linked to hormonal dynamics. Consequently, the interplay between sex steroids - a pivotal constituent of hormones - and colorectal cancer has increasingly captivated scientific interest. Upon a comprehensive review of pertinent literature both domestically and internationally, this study delineates the present landscape of three pivotal steroids - estrogen, progestin, and androgen - in the context of colorectal cancer. More specifically, this investigation probes into the potential utility of these steroids in providing therapeutic interventions, diagnostic insights, and prognostic indicators. Furthermore, this study also delves into the mechanistic pathways through which sex steroid interventions exert influence on colorectal cancer. It was discovered that the trio of sex steroid hormones partakes in an array of biological processes, thereby influencing the onset and progression of colorectal cancer. In conclusion, this study posits that a profound interconnection exists between colorectal cancer and sex steroids, suggesting that elucidating the targets of their action mechanisms could unveil novel avenues for the diagnosis and prevention of colorectal cancer.
Collapse
Affiliation(s)
- Jianglan Wu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Yanan Bai
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Yuwen Lu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Zixuan Yu
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Shumeng Zhang
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Bin Yu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan University of Traditional Chinese MedicineChangsha 410007, Hunan, China
| | - Lingli Chen
- Hunan Provincial Key Laboratory of Pathogenic Biology Based on Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| | - Jie Li
- Hunan University of Traditional Chinese MedicineChangsha 410208, Hunan, China
| |
Collapse
|
6
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE, Morales-Montor J. Sexual dimorphism in colorectal cancer: molecular mechanisms and treatment strategies. Biol Sex Differ 2024; 15:48. [PMID: 38867310 PMCID: PMC11170921 DOI: 10.1186/s13293-024-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024] Open
Abstract
INTRODUCTION Sexual dimorphism significantly influences cancer incidence and prognosis. Notably, females exhibit a lower risk and favorable prognosis for non-reproductive cancers compared to males, a pattern observable beyond the scope of risk behaviors such as alcohol consumption and smoking. Colorectal cancer, ranking third in global prevalence and second in mortality, disproportionately affects men. Sex steroid hormones, particularly estrogens and androgens, play crucial roles in cancer progression, considering epidemiological in vivo and in vitro, in general estrogens imparting a protective effect in females and androgens correlating with an increasing risk of colorectal cancer development. MAIN BODY The hormonal impact on immune response is mediated by receptor interactions, resulting in heightened inflammation, modulation of NF-kB, and fostering an environment conducive to cancer progression and metastasis. These molecules also influence the enteric nervous system, that is a pivotal in neuromodulator release and intestinal neuron stimulation, also contributes to cancer development, as evidenced by nerve infiltration into tumors. Microbiota diversity further intersects with immune, hormonal, and neural mechanisms, influencing colorectal cancer dynamics. A comprehensive understanding of hormonal influences on colorectal cancer progression, coupled with the complex interplay between immune responses, microbiota diversity and neurotransmitter imbalances, underpins the development of more targeted and effective therapies. CONCLUSIONS Estrogens mitigate colorectal cancer risk by modulating anti-tumor immune responses, enhancing microbial diversity, and curbing the pro-tumor actions of the sympathetic and enteric nervous systems. Conversely, androgens escalate tumor growth by dampening anti-tumor immune activity, reducing microbial diversity, and facilitating the release of tumor-promoting factors by the nervous system. These findings hold significant potential for the strategic purposing of drugs to fine-tune the extensive impacts of sex hormones within the tumor microenvironment, promising advancements in colorectal cancer therapies.
Collapse
Affiliation(s)
- Yair Rodríguez-Santiago
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1er piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, México
| | - Claudia Angelica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, 04510, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Mexico City, 04510, México.
| |
Collapse
|
7
|
Nagandla H, Thomas C. Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor. RECEPTORS (BASEL, SWITZERLAND) 2024; 3:182-200. [PMID: 39175529 PMCID: PMC11340209 DOI: 10.3390/receptors3020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article.
Collapse
Affiliation(s)
- Harika Nagandla
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Christoforos Thomas
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
8
|
Choi Y, Kim N. Sex Difference of Colon Adenoma Pathway and Colorectal Carcinogenesis. World J Mens Health 2024; 42:256-282. [PMID: 37652658 PMCID: PMC10949019 DOI: 10.5534/wjmh.230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer morbidity in both sexes but shows sex differences. First, sex-specific differences in tumor recurrence and survival rates have been reported. For example, the development of CRC is found about 1.5 times higher and 4-8 years earlier in males compared to females, suggesting the protective role of estrogen in the disease. Furthermore, female patients have a higher risk of developing right-sided (proximal) colon cancer than male patients, which is known to have more aggressive clinical character compared to left-sided (distal) colon cancer. That is, left and right CRCs show differences in carcinogenic mechanism, that the chromosomal instability pathway is more common in left colon cancer while the microsatellite instability and serrated pathways are more common in right colon cancer. It is thought that there are sex-based differences on the background of carcinogenesis of CRC. Sex differences of CRC have two aspects, sexual dimorphism (biological differences in hormones and genes) and gender differences (non-biological differences in societal attitudes and behavior). Recently, sex difference of colon adenoma pathway and sexual dimorphism in the biology of gene and protein expression, and in endocrine cellular signaling in the CRC carcinogenesis have been accumulated. In addition, behavioral patterns can lead to differences in exposure to risk factors such as drinking or smoking, diet and physical activity. Therefore, understanding sex/gender-related biological and sociocultural differences in CRC risk will help in providing strategies for screening, treatment and prevention protocols to reduce the mortality and improve the quality of life. In this review, sex/gender differences in colon adenoma pathway and various aspects such as clinicopathological, biological, molecular, and socio-cultural aspects of CRC were described.
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Wu Z, Huang Y, Zhang R, Zheng C, You F, Wang M, Xiao C, Li X. Sex differences in colorectal cancer: with a focus on sex hormone-gut microbiome axis. Cell Commun Signal 2024; 22:167. [PMID: 38454453 PMCID: PMC10921775 DOI: 10.1186/s12964-024-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Sexual dimorphism has been observed in the incidence and prognosis of colorectal cancer (CRC), with men generally exhibiting a slightly higher incidence than women. Research suggests that this difference may be attributed to variations in sex steroid hormone levels and the gut microbiome. The gut microbiome in CRC shows variations in composition and function between the sexes, leading to the concept of 'microgenderome' and 'sex hormone-gut microbiome axis.' Conventional research indicates that estrogens, by promoting a more favorable gut microbiota, may reduce the risk of CRC. Conversely, androgens may have a direct pro-tumorigenic effect by increasing the proportion of opportunistic pathogens. The gut microbiota may also influence sex hormone levels by expressing specific enzymes or directly affecting gonadal function. However, this area remains controversial. This review aims to explore the differences in sex hormone in CRC incidence, the phenomenon of sexual dimorphism within the gut microbiome, and the intricate interplay of the sex hormone-gut microbiome axis in CRC. The objective is to gain a better understanding of these interactions and their potential clinical implications, as well as to introduce innovative approaches to CRC treatment.
Collapse
Affiliation(s)
- Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqing Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renyi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
10
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
11
|
Ben S, Li S, Gu D, Zhao L, Xu S, Ding Z, Chen S, Cheng Y, Xin J, Du M, Wang M. Benzo[a]pyrene exposure affects colorectal cancer susceptibility by regulating ERβ-mediated LINC02977 transcription. ENVIRONMENT INTERNATIONAL 2024; 184:108443. [PMID: 38277997 DOI: 10.1016/j.envint.2024.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Environmental pollutants known as polycyclic aromatic hydrocarbons (PAHs) are produced through the incomplete combustion of organic material. While PAHs have been investigated as genotoxicants, they can also operate through nongenotoxic pathways in estrogen-dependent malignancies, such as breast, cervical and ovarian cancer. However, whether PAHs induce colorectal cancer (CRC) risk through estrogenic effects is still illusive. Here, we systematically investigated the abnormal expression and activation of estrogen receptor beta (ERβ) regulated by PAHs in CRC as well as the underlying mechanisms of ERβ-mediated CRC risk. Based on the 300 plasma samples from CRC patients and healthy controls detected by GC-MS/MS, we found that the plasma concentrations of benzo[a]pyrene (BaP) were significantly higher in CRC cases than in healthy controls, with significant estrogenic effects. Moreover, histone deacetylase 2 (HDAC2)-induced deacetylation of the promoter decreases ERβ expression, which is associated with poor overall survival and advanced tumor stage. The study also revealed that BaP and estradiol (E2) had different carcinogenic effects, with BaP promoting cell proliferation and inhibiting apoptosis, while E2 had the opposite effects. Additionally, this study mapped ERβ genomic binding regions by performing ChIP-seq and ATAC-seq and identified genetic variants of rs1411680 and its high linkage disequilibrium SNP rs6477937, which were significantly associated with CRC risk through meta-analysis of two independent Chinese population genome-wide association studies comprising 2,248 cases and 3,173 controls and then validation in a large-scale European population. By integrating data from functional genomics, we validated the regulatory effect of rs6477937 as an ERβ binding-disrupting SNP that mediated allele-specific expression of LINC02977 in a long-range chromosomal interaction manner, which was found to be highly expressed in CRC tissues. Overall, this study suggests that the different active effects on ERβ by PAHs and endogenous E2 may play a crucial role in the development and progression of CRC and highlights the potential of targeting ERβ and its downstream targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing 210000, Jiangsu, China
| | - Lingyan Zhao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenya Xu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhutao Ding
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Cheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
12
|
Alake SE, Ice J, Robinson K, Price P, Hatter B, Wozniak K, Lin D, Chowanadisai W, Smith BJ, Lucas EA. Reduced estrogen signaling contributes to bone loss and cardiac dysfunction in interleukin-10 knockout mice. Physiol Rep 2024; 12:e15914. [PMID: 38217044 PMCID: PMC10787104 DOI: 10.14814/phy2.15914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/14/2024] Open
Abstract
Characterization of the interleukin (IL)-10 knockout (KO) mouse with chronic gut inflammation, cardiovascular dysfunction, and bone loss suggests a critical role for this cytokine in interorgan communication within the gut, bone, and cardiovascular axis. We sought to understand the role of IL-10 in the cross-talk between these systems. Six-week-old IL-10 KO mice and their wild type (WT) counterparts were maintained on a standard rodent diet for 3 or 6 months. Gene expression of proinflammatory markers and Fgf23, serum 17β-estradiol (E2), and cardiac protein expression were assessed. Ileal Il17a and Tnf mRNA increased while Il6 mRNA increased in the bone and heart by at least 2-fold in IL-10 KO mice. Bone Dmp1 and Phex mRNA were repressed at 6 months in IL-10 KO mice, resulting in increased Fgf23 mRNA (~4-fold) that contributed to increased fibrosis. In the IL-10 KO mice, gut bacterial β-glucuronidase activity and ovarian Cyp19a1 mRNA were lower (p < 0.05), consistent with reduced serum E2 and reduced cardiac pNOS3 (Ser1119 ) in these mice. Treatment of ileal lymphocytes with E2 reduced gut inflammation in WT but not IL-10 KO mice. In conclusion, our data suggest that diminished estrogen and defective bone mineralization increased FGF23 which contributed to cardiac fibrosis in the IL-10 KO mouse.
Collapse
Affiliation(s)
- Sanmi E. Alake
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - John Ice
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Kara Robinson
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Payton Price
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Bethany Hatter
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Karen Wozniak
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOklahomaUSA
| | - Dingbo Lin
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Winyoo Chowanadisai
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Brenda J. Smith
- Department of Obstetrics and GynecologyIndiana School of MedicineIndianapolisIndianaUSA
- Indiana Center for Musculoskeletal HealthIndiana School of MedicineIndianapolisIndianaUSA
| | - Edralin A. Lucas
- Department of Nutritional SciencesOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
13
|
Rawłuszko-Wieczorek AA, Lipowicz J, Nowacka M, Ostrowska K, Pietras P, Blatkiewicz M, Ruciński M, Jagodziński PP, Nowicki M. Estrogen receptor β affects hypoxia response in colorectal cancer cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166894. [PMID: 37748565 DOI: 10.1016/j.bbadis.2023.166894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The occurrence of colorectal cancer (CRC) is inversely correlated with estrogen receptor beta (ERβ) presence. Additionally, multiple studies associate low ERβ expression with poorer overall survival of CRC patients. Molecular pathways involved in ERβ - related reduced tumorigenesis include enhanced apoptosis, decreased proliferation, or repression of oncogenes. Moreover, the development of solid tumors, such as CRC, is often associated with an increased tumor mass that results in decreased oxygen partial tension, known as hypoxia, clinically associated with decreased prognosis and therapeutic resistance. Our high-throughput study suggests that ERβ also represses a hypoxic response in CRC cells. We observed a significantly altered transcriptional profile in HCT116 ERβ overexpressing cells that was further stimulated by E2 treatment under hypoxic conditions. The achieved data for downregulation of VEGFA, PDGFA and ANGPTL4 were validated in a time course experiment in DLD-1 cells. In addition, using an ERβ construct with a mutated DNA binding domain we observed that the downregulation of selected genes is dependent on the direct binding of this receptor to regulatory region genes. In addition, we observed that ERβ may affect the expression of the main hypoxia regulator, HIF1A, at the transcriptional and translational levels. In summary, ERβ alters the hypoxic outcome in CRC cells.
Collapse
Affiliation(s)
| | - Julia Lipowicz
- Department of Histology, Poznań University of Medical Sciences, Poland
| | - Marta Nowacka
- Department of Histology, Poznań University of Medical Sciences, Poland
| | - Kamila Ostrowska
- Department of Histology, Poznań University of Medical Sciences, Poland; Department of Head and Neck Oncology, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poland
| | - Paulina Pietras
- Department of Histology, Poznań University of Medical Sciences, Poland
| | | | - Marcin Ruciński
- Department of Histology, Poznań University of Medical Sciences, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Poland
| | - Michał Nowicki
- Department of Histology, Poznań University of Medical Sciences, Poland
| |
Collapse
|
14
|
Ramezani F, Pourghazi F, Eslami M, Gholami M, Mohammadian Khonsari N, Ejtahed HS, Larijani B, Qorbani M. Dietary fiber intake and all-cause and cause-specific mortality: An updated systematic review and meta-analysis of prospective cohort studies. Clin Nutr 2024; 43:65-83. [PMID: 38011755 DOI: 10.1016/j.clnu.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Accumulating evidence supports the effects of dietary fiber on the risk of non-communicable diseases (NCDs). However, there is no updated systematic review and meta-analysis that compares and pools the effect of different types of fiber on mortality. METHODS In this systematic review and meta-analysis, all prospective cohort studies that evaluated the relationship between dietary fiber intake and all-cause or cause-specific mortality were included. The PubMed, SCOPUS, and Web of Science databases were searched up to October 2022. Data extraction and quality assessment were performed by two researchers independently. Heterogeneity between studies was assessed using Chi-square based test. Random/fixed effect meta-analysis was used to pool the hazard ratios (HR) or relative risks (RR) and 95 % confidence intervals (CI) for the association between different types of fiber and mortality. RESULTS This systematic review included 64 eligible studies, with a total sample size of 3512828 subjects, that investigated the association between dietary fiber intake and mortality from all-cause, cardiovascular disease (CVD), and cancer. Random-effect meta-analysis shows that higher consumption of total dietary fiber, significantly decreased the risk of all-cause mortality, CVD-related mortality, and cancer-related mortality by 23, 26 and 22 % (HR:0.77; 95%CI (0.73,0.82), HR:0.74; 95%CI (0.71,0.77) and HR:0.78; 95%CI (0.68,0.87)), respectively. The consumption of insoluble fiber tended to be more effective than soluble fiber intake in reducing the risk of total mortality and mortality due to CVD and cancer. Additionally, dietary fiber from whole grains, cereals, and vegetables was associated with a reduced risk of all-cause mortality, while dietary fiber from nuts and seeds reduced the risk of CVD-related death by 43 % (HR:0.57; 95 % CI (0.38,0.77)). CONCLUSION This comprehensive meta-analysis provides additional evidence supporting the protective association between fiber intake and all-cause and cause-specific mortality rates.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Pourghazi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maysa Eslami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Gholami
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
15
|
Harvey BJ, Harvey HM. Sex Differences in Colon Cancer: Genomic and Nongenomic Signalling of Oestrogen. Genes (Basel) 2023; 14:2225. [PMID: 38137047 PMCID: PMC10742859 DOI: 10.3390/genes14122225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Colon cancer (CRC) is a prevalent malignancy that exhibits distinct differences in incidence, prognosis, and treatment responses between males and females. These disparities have long been attributed to hormonal differences, particularly the influence of oestrogen signalling. This review aims to provide a comprehensive analysis of recent advances in our understanding of the molecular mechanisms underlying sex differences in colon cancer and the protective role of membrane and nuclear oestrogen signalling in CRC development, progression, and therapeutic interventions. We discuss the epidemiological and molecular evidence supporting sex differences in colon cancer, followed by an exploration of the impact of oestrogen in CRC through various genomic and nongenomic signalling pathways involving membrane and nuclear oestrogen receptors. Furthermore, we examine the interplay between oestrogen receptors and other signalling pathways, in particular the Wnt/β-catenin proliferative pathway and hypoxia in shaping biological sex differences and oestrogen protective actions in colon cancer. Lastly, we highlight the potential therapeutic implications of targeting oestrogen signalling in the management of colon cancer and propose future research directions to address the current gaps in our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Brian J. Harvey
- Faculty of Medicine, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Harry M. Harvey
- Princess Margaret Cancer Centre, Toronto, ON M5G 1Z5, Canada;
| |
Collapse
|
16
|
Birgersson M, Indukuri R, Lindquist L, Stepanauskaite L, Luo Q, Deng Q, Archer A, Williams C. Ovarian ERβ cistrome and transcriptome reveal chromatin interaction with LRH-1. BMC Biol 2023; 21:277. [PMID: 38031019 PMCID: PMC10688478 DOI: 10.1186/s12915-023-01773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Estrogen receptor beta (ERβ, Esr2) plays a pivotal role in folliculogenesis and ovulation, yet its exact mechanism of action is mainly uncharacterized. RESULTS We here performed ERβ ChIP-sequencing of mouse ovaries followed by complementary RNA-sequencing of wild-type and ERβ knockout ovaries. By integrating the ERβ cistrome and transcriptome, we identified its direct target genes and enriched biological functions in the ovary. This demonstrated its strong impact on genes regulating organism development, cell migration, lipid metabolism, response to hypoxia, and response to estrogen. Cell-type deconvolution analysis of the bulk RNA-seq data revealed a decrease in luteal cells and an increased proportion of theca cells and a specific type of cumulus cells upon ERβ loss. Moreover, we identified a significant overlap with the gene regulatory network of liver receptor homolog 1 (LRH-1, Nr5a2) and showed that ERβ and LRH-1 extensively bound to the same chromatin locations in granulosa cells. Using ChIP-reChIP, we corroborated simultaneous ERβ and LRH-1 co-binding at the ERβ-repressed gene Greb1 but not at the ERβ-upregulated genes Cyp11a1 and Fkbp5. Transactivation assay experimentation further showed that ERβ and LRH-1 can inhibit their respective transcriptional activity at classical response elements. CONCLUSIONS By characterizing the genome-wide endogenous ERβ chromatin binding, gene regulations, and extensive crosstalk between ERβ and LRH-1, along with experimental corroborations, our data offer genome-wide mechanistic underpinnings of ovarian physiology and fertility.
Collapse
Affiliation(s)
- Madeleine Birgersson
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
| | - Linnéa Lindquist
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Lina Stepanauskaite
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Qing Luo
- Department of Physiology and Pharmacology, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory (SciLifeLab), Department of Protein Science, KTH Royal Institute of Technology, 171 21, Solna, Sweden.
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
17
|
Herrera-Orozco H, García-Castillo V, López-Urrutia E, Martinez-Gutierrez AD, Pérez-Yepez E, Millán-Catalán O, Cantú de León D, López-Camarillo C, Jacobo-Herrera NJ, Rodríguez-Dorantes M, Ramos-Payán R, Pérez-Plasencia C. Somatic Copy Number Alterations in Colorectal Cancer Lead to a Differentially Expressed ceRNA Network (ceRNet). Curr Issues Mol Biol 2023; 45:9549-9565. [PMID: 38132443 PMCID: PMC10742218 DOI: 10.3390/cimb45120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) represents the second deadliest malignancy worldwide. Around 75% of CRC patients exhibit high levels of chromosome instability that result in the accumulation of somatic copy number alterations. These alterations are associated with the amplification of oncogenes and deletion of tumor-ppressor genes and contribute to the tumoral phenotype in different malignancies. Even though this relationship is well known, much remains to be investigated regarding the effect of said alterations in long non-coding RNAs (lncRNAs) and, in turn, the impact these alterations have on the tumor phenotype. The present study aimed to evaluate the role of differentially expressed lncRNAs coded in regions with copy number alterations in colorectal cancer patient samples. We downloaded RNA-seq files of the Colorectal Adenocarcinoma Project from the The Cancer Genome Atlas (TCGA) repository (285 sequenced tumor tissues and 41 non-tumor tissues), evaluated differential expression, and mapped them over genome sequencing data with regions presenting copy number alterations. We obtained 78 differentially expressed (LFC > 1|< -1, padj < 0.05) lncRNAs, 410 miRNAs, and 5028 mRNAs and constructed a competing endogenous RNA (ceRNA) network, predicting significant lncRNA-miRNA-mRNA interactions. Said network consisted of 30 lncRNAs, 19 miRNAs, and 77 mRNAs. To understand the role that our ceRNA network played, we performed KEGG and GO analysis and found several oncogenic and anti-oncogenic processes enriched by the molecular players in our network. Finally, to evaluate the clinical relevance of the lncRNA expression, we performed survival analysis and found that C5orf64, HOTAIR, and RRN3P3 correlated with overall patient survival. Our results showed that lncRNAs coded in regions affected by SCNAs form a complex gene regulatory network in CCR.
Collapse
Affiliation(s)
- Héctor Herrera-Orozco
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D. Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Verónica García-Castillo
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
| | - Antonio Daniel Martinez-Gutierrez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - Eloy Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - David Cantú de León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Calle Dr. García Diego 168, Cuauhtémoc, Mexico City 06720, Mexico;
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga 15, Tlalpan, Mexico City 14080, Mexico;
| | | | - Rosalío Ramos-Payán
- Faculty of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México. Av. De los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico; (H.H.-O.); (V.G.-C.); (E.L.-U.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Tlalpan, Mexico City 14080, Mexico; (A.D.M.-G.); (E.P.-Y.); (O.M.-C.); (D.C.d.L.)
| |
Collapse
|
18
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
19
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
20
|
Song X, Wu W, Dai Y, Warner M, Nalvarte I, Antonson P, Varshney M, Gustafsson JÅ. Loss of ERβ in Aging LXRαβ Knockout Mice Leads to Colitis. Int J Mol Sci 2023; 24:12461. [PMID: 37569842 PMCID: PMC10419301 DOI: 10.3390/ijms241512461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Liver X receptors (LXRα and LXRβ) are oxysterol-activated nuclear receptors that play key roles in cholesterol homeostasis, the central nervous system, and the immune system. We have previously reported that LXRαβ-deficient mice are more susceptible to dextran sodium sulfate (DSS)-induced colitis than their WT littermates, and that an LXR agonist protects against colitis in mice mainly via the regulation of the immune system in the gut. We now report that both LXRα and LXRβ are expressed in the colonic epithelium and that in aging LXRαβ-/- mice there is a reduction in the intensity of goblet cells, mucin (MUC2), TFF3, and estrogen receptor β (ERβ) levels. The cytoplasmic compartment of the surface epithelial cells was markedly reduced and there was a massive invasion of macrophages in the lamina propria. The expression and localization of β-catenin, α-catenin, and E-cadherin were not changed, but the shrinkage of the cytoplasm led to an appearance of an increase in staining. In the colonic epithelium there was a reduction in the expression of plectin, a hemidesmosome protein whose loss in mice leads to spontaneous colitis, ELOVL1, a fatty acid elongase protein coding gene whose overexpression is found in colorectal cancer, and non-neuronal choline acetyltransferase (ChAT) involved in the regulation of epithelial cell adhesion. We conclude that in aging LXRαβ-/- mice, the phenotype in the colon is due to loss of ERβ expression.
Collapse
Affiliation(s)
- Xiaoyu Song
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Wanfu Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Yubing Dai
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Mukesh Varshney
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; (X.S.); (W.W.); (Y.D.); (M.W.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 14186 Huddinge, Sweden; (I.N.); (P.A.); (M.V.)
| |
Collapse
|
21
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
22
|
Das PK, Saha J, Pillai S, Lam AKY, Gopalan V, Islam F. Implications of estrogen and its receptors in colorectal carcinoma. Cancer Med 2023; 12:4367-4379. [PMID: 36207986 PMCID: PMC9972078 DOI: 10.1002/cam4.5242] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancer types, including colorectal carcinoma (CRC). Estrogen receptors such as ERα and ERβ activate intracellular signaling cascades followed by binding to estrogen, resulting in important changes in cellular behaviors. The nuclear estrogen receptors, i.e. ERβ and ERα are responsible for the genomic actions of estrogens, whereas the other receptor, such as G protein-coupled estrogen receptor (GPER) regulates rapid non-genomic actions, which lead to secondary gene expression changes in cells. ERβ, the predominant estrogen receptor expressed in both normal and non-malignant colonic epithelium, has protective roles in colon carcinogenesis. ERβ may exert the anti-tumor effect through selective activation of pro-apoptotic signaling, increasing DNA repair, inhibiting expression of oncogenes, regulating cell cycle progression, and also by changing the micro-RNA pool and DNA-methylation. Thus, a better understanding of the underlying mechanisms of estrogen and its receptors in CRC pathogenesis could provide a new horizon for effective therapeutic development. Furthermore, using synthetic or natural compounds as ER agonists may induce estrogen-mediated anti-cancer activities against colon cancer. In this study, we report the most recent pre-clinical and experimental evidences related to ERs in CRC development. Also, we reviewed the actions of naturally occurring and synthetic compounds, which have a protective role against CRC development by acting as ER agonist.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Joti Saha
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Alfred K-Y Lam
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.,Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
23
|
High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun Biol 2023; 6:20. [PMID: 36624306 PMCID: PMC9829864 DOI: 10.1038/s42003-022-04406-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
Collapse
|
24
|
GPER Agonist G1 Prevents Wnt-Induced JUN Upregulation in HT29 Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms232012581. [PMID: 36293473 PMCID: PMC9603962 DOI: 10.3390/ijms232012581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Women consistently show lower incidence and mortality rates for colorectal cancer (CRC) compared to men. Epidemiological evidence supports a pivotal role for estrogen in protecting women against CRC. Estrogen protective effects in CRC have been mainly attributed to the estrogen receptor beta (ERβ) however its expression is lost during CRC progression. The role of the G-protein coupled membrane estrogen receptor (GPER/GPER1/GPR30), which remains expressed after ERβ loss in CRC, is currently under debate. We hypothesise that estrogen can protect against CRC progression via GPER by modulating the Wnt/β-catenin proliferative pathway which is commonly hyperactivated in CRC. We sought evidence of sexual dimorphism within the Wnt/β-catenin pathway by conducting Kaplan–Meier analyses based on gene expression of the Wnt receptor FZD1 (Frizzled 1) in multiple public domain CRC patient data sets. High expression of FZD1 was associated with poor relapse-free survival rates in the male but not the female population. In female-derived HT29 CRC cell lines, we show that β-catenin nuclear translocation was not affected by treatment with the GPER agonist G1. However, G1 prevented the Wnt pathway-induced upregulation of the JUN oncogene. These novel findings indicate a mechanistic role for GPER in protecting against CRC progression by selectively reducing the tumorigenic effects of hyperactive Wnt/β-catenin signalling pathways in CRC.
Collapse
|
25
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E, Park JG, Aziz N, Parameswaran N, Cho JY. Syk promotes phagocytosis by inducing reactive oxygen species generation and suppressing SOCS1 in macrophage-mediated inflammatory responses. Int J Immunopathol Pharmacol 2022; 36:3946320221133018. [PMID: 36214175 PMCID: PMC9548688 DOI: 10.1177/03946320221133018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Inflammation, a vital innate immune response against infection and injury, is mediated by macrophages. Spleen tyrosine kinase (Syk) regulates inflammatory responses in macrophages; however, its role and underlying mechanisms are uncertain. MATERIALS AND METHODS In this study, overexpression and knockout (KO) cell preparations, phagocytosis analysis, confocal microscopy, reactive oxygen species (ROS) determination, mRNA analysis, and immunoprecipitation/western blotting analyses were used to investigate the role of Syk in phagocytosis and its underlying mechanisms in macrophages during inflammatory responses. RESULTS Syk inhibition by Syk KO, Syk-specific small interfering RNA (siSyk), and a selective Syk inhibitor (piceatannol) significantly reduced the phagocytic activity of RAW264.7 cells. Syk inhibition also decreased cytochrome c generation by inhibiting ROS-generating enzymes in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and ROS scavenging suppressed the phagocytic activity of RAW264.7 cells. LPS induced the tyrosine nitration (N-Tyr) of suppressor of cytokine signaling 1 (SOCS1) through Syk-induced ROS generation in RAW264.7 cells. On the other hand, ROS scavenging suppressed the N-Tyr of SOCS1 and phagocytosis. Moreover, SOCS1 overexpression decreased phagocytic activity, and SOCS1 inhibition increased the phagocytic activity of RAW264.7 cells. CONCLUSION These results suggest that Syk plays a critical role in the phagocytic activity of macrophages by inducing ROS generation and suppressing SOCS1 through SOCS1 nitration during inflammatory responses.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Department of Life Sciences, Kyonggi University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea,Young-Su Yi, Department of Life Sciences, Kyonggi University,154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16227, Korea. Jae Youl Cho, Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon Gyeonggi-do 16419, Korea.
| |
Collapse
|
26
|
Hases L, Birgersson M, Indukuri R, Archer A, Williams C. Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice. Int J Mol Sci 2022; 23:ijms231810408. [PMID: 36142324 PMCID: PMC9499483 DOI: 10.3390/ijms231810408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NFκB signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Madeleine Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
27
|
Fan W, Liu S, Wu Y, Cao X, Lu T, Huang C, Shi X, Song S. Genistein-based reactive oxygen species-responsive nanomaterial site-specifically relieves the intestinal toxicity of endocrine-disrupting chemicals. Int J Pharm 2022; 615:121478. [PMID: 35041916 DOI: 10.1016/j.ijpharm.2022.121478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) can disrupt the gastrointestinal endocrine system and induce oxidative stress, which eventually leads to intestinal toxicity. Genistein (Gen) has a beneficial effect on the physiological functions of the gastrointestinal tract and can alleviate EDCs damage. As an estrogen-like substance, Gen may also synergize the deleterious influence of EDCs. Therefore, the targeting and concentration of Gen must be controlled during its application. In this study, a novel reactive oxygen species (ROS)-responsive nanomaterial (Gen-NM-2) containing Tempol conjugated β-cyclodextrin and Gen was prepared. The nano-polymer exhibits a uniform rod-like morphology with an average diameter of 833±12 nm and a negative zeta-potential of -20.3±3.7 mV. Gen-NM-2 protected Gen from rapid metabolism in gastrointestinal tract and displayed a strong ROS scavenging ability. In response to high ROS levels, this material can effectively locate the target site and release Gen, which then exerted its effect by reducing the ROS content and regulating the ERβ signaling pathway. Owing to its high bioavailability, Gen-NM-2 at relatively low doses can reduce the intestinal cytotoxicity of EDCs, thus providing a basis for the development of EDCs detoxification therapy.
Collapse
Affiliation(s)
- Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiuyun Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, P. R. China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
28
|
Tang K, Wu Z, Sun M, Huang X, Sun J, Shi J, Wang X, Miao Z, Gao P, Song Y, Wang Z. Elevated MMP10/13 mediated barrier disruption and NF-κB activation aggravate colitis and colon tumorigenesis in both individual or full miR-148/152 family knockout mice. Cancer Lett 2022; 529:53-69. [PMID: 34979166 DOI: 10.1016/j.canlet.2021.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
Dynamic miRNA alteration is known to occur in colitis-associated colon cancer (CAC), while the molecular mechanisms underpinning how miRNAs modulate the development from chronic inflammation to CAC is lacking. For the first time, we constructed knockout (KO) mice for individual miR-148/152 family members and entire miR-148/152 family. Based on these KO mice, we conduct the first comprehensive analysis of miR-148/152 family, demonstrating that deficiency of any member of miR-148/152 family aggravate colitis and CAC. Loss of individual miR-148/152 family members or full-family enhance MMP10 and MMP13 expression, causing disruption of intestinal barrier and cleaving pro-TNF-α into bioactive TNF-α fragments to activate NF-κB signaling, thereby aggravating colitis. Individual and full-family deletion also increase accumulation of IKKα and IKKβ, resulting in further hyperactivation of NF-κB signaling, exacerbating colitis and CAC. Moreover, blocking NF-κB signaling exerts a restorative effect on colitis and CAC models only in KO mice. Taken together, these findings demonstrate deleting the full miR-148/152 family or individual members exhibit similar effects in colitis and CAC. Mechanically, miR-148/152 family members deficiency in mice elevates MMP10 and MMP13 to accelerate colitis and CAC via disrupting intestinal barrier function and activating NF-κB signaling, suggesting a potential therapeutic strategy for colitis and CAC.
Collapse
Affiliation(s)
- Kaiwen Tang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Mingwei Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Jinxin Shi
- Department of Gastrointestinal Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| |
Collapse
|
29
|
ERβ and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:213-225. [DOI: 10.1007/978-3-031-11836-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
31
|
Singla S, Sahu C, Jena G. Association of Type 1 diabetes with ulcerative colitis in BALB/c mice: Investigations on sex-specific differences. J Biochem Mol Toxicol 2021; 36:e22980. [PMID: 34964214 DOI: 10.1002/jbt.22980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Diabetes comorbidity in ulcerative colitis (UC) has relevant clinical and therapeutic implications. The link between hyperglycemia and intestinal barrier function with respect to infection and inflammation consequences exists in diabetes. The present study was designed to decipher the molecular mechanisms associated with Type 1 Diabetes mellitus and the UC in both male and female BALB/c mice. Dextran sulfate sodium (DSS; 2.5%w/v) dissolved in drinking water was given for three cycles (each cycle; 7 days) with 7 days recovery period in-between to both male and female BALB/c mice. At the first recovery period, Streptozotocin (40 mg/kg; i.p.) was administered for 5 consecutive days in the case of male BALB/c mice; whereas the same procedure was repeated at the beginning of each recovery period in female animals. In the DSS + DB group of male animals, disease activity index, myeloperoxidase activity, nitrite level, plasma lipopolysaccharides, interleukin-1β, histological score, % fibrotic area, % TUNEL positive cells were significantly increased. Furthermore, protein expression of phosphorylated nuclear factor kappa light chain enhancer of activated B cells (pNFκB65), proliferating cell nuclear antigen, interleukin-6, apoptosis-associated speck-like protein containing a caspase-recruitment domain, and cysteine-containing aspartate-specific proteases-1 (caspase-1) significantly increased in the DSS + DB group of male animals as compared to female. The present study findings proved that hyperglycemic conditions exacerbated the pathological conditions in UC of male animals; whereas milder conditions developed in females.
Collapse
Affiliation(s)
- Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| |
Collapse
|
32
|
p-Hydroxybenzoic acid alleviates inflammatory responses and intestinal mucosal damage in DSS-induced colitis by activating ERβ signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Fan W, Zhang S, Wu Y, Lu T, Liu J, Cao X, Liu S, Yan L, Shi X, Liu G, Huang C, Song S. Genistein-Derived ROS-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40249-40266. [PMID: 34424682 DOI: 10.1021/acsami.1c09215] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated β-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor β (ERβ), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.
Collapse
Affiliation(s)
- Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xiuyun Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xizhi Shi
- School of Marine Sciences, Ningbo University, Ningbo 315211, P. R. China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
34
|
Simin J, Liu Q, Wang X, Fall K, Williams C, Callens S, Engstrand L, Brusselaers N. Prediagnostic use of estrogen-only therapy is associated with improved colorectal cancer survival in menopausal women: a Swedish population-based cohort study. Acta Oncol 2021; 60:881-887. [PMID: 33861686 DOI: 10.1080/0284186x.2021.1909747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Menopausal hormone therapy (MHT) reduces the risk of developing colorectal cancer (CRC), yet it is largely unclear whether it could also influence survival in women with CRC. Therefore, we aimed to investigate the influence of prediagnostic MHT use on CRC-specific and all-cause mortality in women with CRC. METHODS This nationwide nested cohort study, within a large population-based matched cohort, included all women diagnosed with incident CRC between January 2006 and December 2012 (N = 7814). A total of 1529 women had received at least one dispensed prescription of systemic MHT before CRC diagnosis, and 6285 CRC women with CRC did not receive MHT during the study period, as ascertained from the Swedish Prescribed Drug Registry. Multivariable Cox regression models provided adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for CRC-specific mortality and all-cause mortality. RESULTS Past use of prediagnostic estrogen-only therapy (E-MHT) was associated with lower CRC-specific (HR = 0.67, 95%CI 0.44-0.99) and all-cause mortality (HR = 0.68, 95%CI 0.59-0.93). However, all-cause mortality (HR = 1.23, 95%CI 1.02-1.48) was elevated among current prediagnostic E-MHT users who were 70+ years at diagnosis. Current estrogen combined progestin therapy (EP-MHT) was associated with higher CRC-specific mortality (HR = 1.61, 95%CI 1.06-2.44) in older women, but no association was shown for all-cause mortality. CONCLUSIONS Our findings suggest that E-MHT, but not EP-MHT use, might be associated with improved CRC survival, indicating a potential role of estrogens in sex hormone-related cancers. However, association of MHT use with grade of cancer remains unclear.
Collapse
Affiliation(s)
- Johanna Simin
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Reseaarch (CTMR), Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Qing Liu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Reseaarch (CTMR), Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Xinchen Wang
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Reseaarch (CTMR), Stockholm, Sweden
| | - Katja Fall
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Epidemiology and Biostatistics School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Solna, Sweden
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Reseaarch (CTMR), Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Reseaarch (CTMR), Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), Stockholm, Sweden
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
35
|
Ma YS, Yang XL, Xin R, Wu TM, Shi Y, Dan Zhang D, Wang HM, Wang PY, Liu JB, Fu D. The power and the promise of organoid models for cancer precision medicine with next-generation functional diagnostics and pharmaceutical exploitation. Transl Oncol 2021; 14:101126. [PMID: 34020369 PMCID: PMC8144479 DOI: 10.1016/j.tranon.2021.101126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dan Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.
| |
Collapse
|
36
|
Xiang D, Yang J, Xu Y, Lan L, Li G, Zhang C, Liu D. Estrogen cholestasis induces gut and liver injury in rats involving in activating PI3K/Akt and MAPK signaling pathways. Life Sci 2021; 276:119367. [PMID: 33775691 DOI: 10.1016/j.lfs.2021.119367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUNDS Estrogen and its metabolites often lead to intrahepatic cholestasis in susceptible women with pregnancy, administration of oral contraceptives and postmenopausal hormone replacement therapy. Recently, dysfunction of the gut-liver axis has been suggested to play a pivotal role in the progression of cholestasis, but details about estrogen cholestasis (EC)-induced gut and liver injury are still largely unknown. This study aims to gain insight into EC-induced gut and liver injury and cell signaling implicated. METHODS Male rats were exposed to 5 and 10 mg/kg of 17α-ethinylestradiol via subcutaneous injection for 5 successive days to simulate human EC. RESULTS By detection of these estrogen cholestatic rats, we found that EC induced inflammation in the liver but not in the intestine through activating NF-κB signaling pathway. EC strongly induced oxidative stress in both the liver and intestine, and activated the hepatic Nrf2/Gclm/Gclc pathway and the intestinal Nrf2/Ho-1 pathway, respectively, for adaptively regulating oxidative stress. EC increased cell apoptosis in both the liver and intestine. Additionally, EC elevated phosphorylation of Akt, ERK1/2, and p38 in the liver and increased phosphorylation of p38 in the intestine. CONCLUSIONS EC induces liver inflammation, both gut and liver oxidative stress and apoptosis, involving in activating PI3K/Akt and MAPK signaling pathways. Investigation of EC-induced gut and liver injury contributes to the development of new potential therapeutic strategies.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
37
|
Hases L, Ibrahim A, Chen X, Liu Y, Hartman J, Williams C. The Importance of Sex in the Discovery of Colorectal Cancer Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22031354. [PMID: 33572952 PMCID: PMC7866425 DOI: 10.3390/ijms22031354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths. Advances within bioinformatics, such as machine learning, can improve biomarker discovery and ultimately improve CRC survival rates. There are clear sex differences in CRC characteristics, but the impact of sex has not been considered with regards to CRC biomarkers. Our aim here was to investigate sex differences in the transcriptome of a normal colon and CRC, and between paired normal and tumor tissue. Next, we attempted to identify CRC diagnostic and prognostic biomarkers and investigate if they are sex-specific. We collected paired normal and tumor tissue, performed RNA-seq, and applied feature selection in combination with machine learning to identify the top CRC diagnostic biomarkers. We used The Cancer Genome Atlas (TCGA) data to identify sex-specific CRC diagnostic biomarkers and performed an overall survival analysis to identify sex-specific prognostic biomarkers. We found transcriptomic sex differences in both the normal colon tissue and in CRC. Forty-four of the top-ranked biomarkers were sex-specific and 20 biomarkers showed a sex-specific prognostic value. Our data show the importance of sex in the discovery of CRC biomarkers. We propose 20 sex-specific CRC prognostic biomarkers, including ESM1, GUCA2A, and VWA2 for males and CLDN1 and FUT1 for females.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Ahmed Ibrahim
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.C.); (J.H.)
| | - Yanghong Liu
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.C.); (J.H.)
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
38
|
Wang X, Xia X, Xu E, Yang Z, Shen X, Du S, Chen X, Lu X, Jin W, Guan W. Estrogen Receptor Beta Prevents Signet Ring Cell Gastric Carcinoma Progression in Young Patients by Inhibiting Pseudopodia Formation via the mTOR-Arpc1b/EVL Signaling Pathway. Front Cell Dev Biol 2021; 8:592919. [PMID: 33553141 PMCID: PMC7859346 DOI: 10.3389/fcell.2020.592919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Signet ring cell gastric carcinoma (SRCGC) is a poorly differentiated malignancy, and can be highly dangerous in the progression stage. There is a higher male to female ratio among patients with signet ring cell carcinoma as compared to patients with non-SRCGC. ERβ has been found to express in stomach adenocarcinoma, but how it affects tumor progression remains unclear. Here, we studied estrogen receptor beta (ERβ) to explore the role of sex-associated factors in SRCGC. We analyzed the clinicopathological statistics of patients with SRCGC, and conducted a series of in vitro experiments. Immunohistochemistry showed that patients with low ERβ expression were at risk of poor prognosis and higher T stage. In vitro assays indicated that ERβ might prevent SRCGC progression by inhibiting cell proliferation and invasiveness and by promoting anoikis. Western blotting and quantitative RT-PCR proved that the mTOR-Arpc1b/EVL signaling pathway might participate in the negative regulatory role of ERβ. In conclusion, our findings show that ERβ might inhibit the malignancy of signet ring cells in patients with SRCGC, indicating that ERβ might be a potential target in adjuvant treatment.
Collapse
Affiliation(s)
- Xingzhou Wang
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Neurosurgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuefeng Xia
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - En Xu
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhi Yang
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shangce Du
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiaotong Chen
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaofeng Lu
- Department of General Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Wei Jin
- Department of Neurosurgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Neurosurgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
39
|
Indukuri R, Hases L, Archer A, Williams C. Estrogen Receptor Beta Influences the Inflammatory p65 Cistrome in Colon Cancer Cells. Front Endocrinol (Lausanne) 2021; 12:650625. [PMID: 33859619 PMCID: PMC8042384 DOI: 10.3389/fendo.2021.650625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 11/15/2022] Open
Abstract
Inflammation is a primary component of both initiation and promotion of colorectal cancer (CRC). Cytokines secreted by macrophages, including tumor necrosis factor alpha (TNFα), activates the pro-survival transcription factor complex NFκB. The precise mechanism of NFκB in CRC is not well studied, but we recently reported the genome-wide transcriptional impact of TNFα in two CRC cell lines. Further, estrogen signaling influences inflammation in a complex manner and suppresses CRC development. CRC protective effects of estrogen have been shown to be mediated by estrogen receptor beta (ERβ, ESR2), which also impacts inflammatory signaling of the colon. However, whether ERβ impacts the chromatin interaction (cistrome) of the main NFκB subunit p65 (RELA) is not known. We used p65 chromatin immunoprecipitation followed by sequencing (ChIP-Seq) in two different CRC cell lines, HT29 and SW480, with and without expression of ERβ. We here present the p65 colon cistrome of these two CRC cell lines. We identify that RELA and AP1 motifs are predominant in both cell lines, and additionally describe both common and cell line-specific p65 binding sites and correlate these to transcriptional changes related to inflammation, migration, apoptosis and circadian rhythm. Further, we determine that ERβ opposes a major fraction of p65 chromatin binding in HT29 cells, but enhances p65 binding in SW480 cells, thereby impacting the p65 cistrome differently in the two cell lines. However, the biological functions of the regulated genes appear to have similar roles in both cell lines. To our knowledge, this is the first time the p65 CRC cistrome is compared between different cell lines and the first time an influence by ERβ on the p65 cistrome is investigated. Our work provides a mechanistic foundation for a better understanding of how estrogen influences inflammatory signaling through NFκB in CRC cells.
Collapse
Affiliation(s)
- Rajitha Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- *Correspondence: Cecilia Williams, ;
| |
Collapse
|
40
|
Abancens M, Bustos V, Harvey H, McBryan J, Harvey BJ. Sexual Dimorphism in Colon Cancer. Front Oncol 2020; 10:607909. [PMID: 33363037 PMCID: PMC7759153 DOI: 10.3389/fonc.2020.607909] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
A higher incidence of colorectal cancer (CRC) is found in males compared to females. Young women (18-44 years) with CRC have a better survival outcome compared to men of the same age or compared to older women (over 50 years), indicating a global incidence of sexual dimorphism in CRC rates and survival. This suggests a protective role for the sex steroid hormone estrogen in CRC development. Key proliferative pathways in CRC tumorigenesis exhibit sexual dimorphism, which confer better survival in females through estrogen regulated genes and cell signaling. Estrogen regulates the activity of a class of Kv channels (KCNQ1:KCNE3), which control fundamental ion transport functions of the colon and epithelial mesenchymal transition through bi-directional interactions with the Wnt/β-catenin signalling pathway. Estrogen also modulates CRC proliferative responses in hypoxia via the novel membrane estrogen receptor GPER and HIF1A and VEGF signaling. Here we critically review recent clinical and molecular insights into sexual dimorphism of CRC biology modulated by the tumor microenvironment, estrogen, Wnt/β-catenin signalling, ion channels, and X-linked genes.
Collapse
Affiliation(s)
- Maria Abancens
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Viviana Bustos
- Departamento de Acuicultura y Recursos Agroalimentarios, Programa Fitogen, Universidad de Los Lagos, Osorno, Chile
| | - Harry Harvey
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland
| | - Jean McBryan
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Brian J. Harvey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
- Centro de Estudios Cientificos CECs, Valdivia, Chile
| |
Collapse
|
41
|
Hases L, Archer A, Indukuri R, Birgersson M, Savva C, Korach-André M, Williams C. High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner. Sci Rep 2020; 10:16160. [PMID: 32999402 PMCID: PMC7527340 DOI: 10.1038/s41598-020-73166-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
Collapse
Affiliation(s)
- L Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - A Archer
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - R Indukuri
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - M Birgersson
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - C Savva
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Korach-André
- Department of Medicine, Metabolism Unit and Integrated CardioMetabolic Center (ICMC), Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - C Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden. .,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|