1
|
Wang D, Chu WK, Yam JCS, Pang CP, Leung YC, Shum ASW, Chan SO. GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. Cancer Metab 2024; 12:31. [PMID: 39462426 PMCID: PMC11515237 DOI: 10.1186/s40170-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Arginine deprivation was previously shown to inhibit retinoblastoma cell proliferation and induce cell death in vitro. However, the mechanisms by which retinoblastoma cells respond to arginine deprivation remain to be elucidated. METHODS The human-derived retinoblastoma cell lines Y79 and WERI-Rb-1 were subjected to arginine depletion, and the effects on inhibiting cell growth and survival were evaluated. This study investigated potential mechanisms, including autophagy, cell cycle arrest and apoptosis. Moreover, the roles of the general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways in these processes were examined. RESULTS We demonstrated that arginine deprivation effectively inhibited the growth of retinoblastoma cells in vitro. This treatment caused an increase in the autophagic response. Additionally, prolonged arginine deprivation induced G2 cell cycle arrest and was accompanied by an increase in early apoptotic cells. Importantly, arginine depletion also induced the activation of GCN2 and the inhibition of mTOR signaling. We also discovered that the activation of SLC7A11 was regulated by GCN2 upon arginine deprivation. Knockdown of SLC7A11 rendered retinoblastoma cells partially resistant to arginine deprivation. Furthermore, we found that knockdown of GCN2 led to a decrease in the autophagic response in WERI-Rb-1 cells and arrested more cells in S phase, which was accompanied by fewer apoptotic cells. Moreover, knockdown of GCN2 induced the constant expression of ATF4 and the phosphorylation of 70S6K and 4E-BP1 regardless of arginine deprivation. CONCLUSIONS Collectively, our findings suggest that the GCN2‒SLC7A11 axis regulates cell growth and survival upon arginine deprivation through coordinating autophagy, cell cycle arrest, and apoptosis in retinoblastoma cells. This work paves the way for the development of a novel treatment for retinoblastoma.
Collapse
Affiliation(s)
- Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Cheuk Sing Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Chung Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Alisa Sau Wun Shum
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Sun-On Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Abudouaini H, Zhang X, Dai Y, Meng Y, Lu Q, Ren Q, Sun H, Ma Y, He B, Wang S. Activating the iNOS regulatory pathway by arginine deprivation targets energy metabolism to induce autophagy-dependent apoptosis against spinal echinococcosis. Biochem Pharmacol 2024; 227:116453. [PMID: 39059773 DOI: 10.1016/j.bcp.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Spinal echinococcosis is one of the most overlooked zoonotic parasitic diseases worldwide. There is currently no safe and effective treatment to eradicate it, and research based on the physiological-metabolic signature of the disease is lacking. Herein, we repurposed agrimol B as a potent anti-hydatid compound and validated its pharmacological mechanism based on arginine uptake as a target through multi-omics sequencing. This herbal component suppressed energy metabolism and activated ROS aggregation by inducing mitochondrial membrane potential depolarization, which subsequently triggered autophagy-dependent apoptosis leading to parasite death. Moreover, we discovered that arginine deprivation induced metabolic changes led to a shift from ornithine to nitrogen oxide synthesis, thus boosting the iNOS enzyme-regulated dominant metabolic pathway. The excess NO targeted the mitochondrial respiratory chain complex IV to disrupt energy metabolic homeostasis and induced a downstream pathological waterfall effect to kill the hydatid. A novel metabolic regulatory mechanism targeting mitochondrial damage for arginine starvation therapy was discovered. Finally, arginine depletion was found to be superior to the anti-spinal echinococcosis effect of albendazole and accompanied by the potential for disc protection. This study unveils the role of arginine in the physiological metabolism of Echinococcus granulosus and reveals the value of targeting arginine metabolism as a potential therapy. In addition, agrimol B is proposed as a promising therapeutic strategy for spinal echinococcosis to block arginine uptake and break this parasite's metabolic balance.
Collapse
Affiliation(s)
- Haimiti Abudouaini
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China
| | - Xuefang Zhang
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China
| | - Yi Dai
- The First Affiliated Hospital of Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City, 832000, China
| | - Yibin Meng
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China
| | - Qing Lu
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China
| | - Qian Ren
- The First Affiliated Hospital of Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City, 832000, China
| | - Haohao Sun
- The First Affiliated Hospital of Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City, 832000, China
| | - Yibo Ma
- The First Affiliated Hospital of Shihezi University, Xinjiang Uygur Autonomous Region, Shihezi City, 832000, China
| | - Baorong He
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China.
| | - Sibo Wang
- Department of Spine Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Beilin District, Xi'an, Shanxi Province, 710000, China.
| |
Collapse
|
3
|
Hu N, Li H, Tao C, Xiao T, Rong W. The Role of Metabolic Reprogramming in the Tumor Immune Microenvironment: Mechanisms and Opportunities for Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:5584. [PMID: 38891772 PMCID: PMC11171976 DOI: 10.3390/ijms25115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
As one of the emerging hallmarks of tumorigenesis and tumor progression, metabolic remodeling is common in the tumor microenvironment. Hepatocellular carcinoma (HCC) is the third leading cause of global tumor-related mortality, causing a series of metabolic alterations in response to nutrient availability and consumption to fulfill the demands of biosynthesis and carcinogenesis. Despite the efficacy of immunotherapy in treating HCC, the response rate remains unsatisfactory. Recently, research has focused on metabolic reprogramming and its effects on the immune state of the tumor microenvironment, and immune response rate. In this review, we delineate the metabolic reprogramming observed in HCC and its influence on the tumor immune microenvironment. We discuss strategies aimed at enhancing response rates and overcoming immune resistance through metabolic interventions, focusing on targeting glucose, lipid, or amino acid metabolism, as well as systemic regulation.
Collapse
Affiliation(s)
- Nan Hu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (N.H.); (H.L.); (C.T.)
| |
Collapse
|
4
|
Prasad YR, Anakha J, Pande AH. Treating liver cancer through arginine depletion. Drug Discov Today 2024; 29:103940. [PMID: 38452923 DOI: 10.1016/j.drudis.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue. Arg-depleting enzymes show efficacy against Arg-auxotrophic cancers, including hepatocellular carcinoma (HCC). Thus, in this review, we explore the limitations of current therapies and highlight the potential of Arg depletion, emphasizing various Arg-hydrolyzing enzymes in clinical development.
Collapse
Affiliation(s)
- Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
5
|
Tang X, Zhang L, Huang M, Wang F, Xie G, Huo R, Gao R. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J Nanobiotechnology 2024; 22:53. [PMID: 38326899 PMCID: PMC10848425 DOI: 10.1186/s12951-024-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Enzyme therapy based on differential metabolism of cancer cells has demonstrated promising potential as a treatment strategy. Nevertheless, the therapeutic benefit of reported enzyme drugs is compromised by their uncontrollable activity and weak stability. Additionally, thermozymes with high thermal-stability suffer from low catalytic activity at body temperature, preventing them from functioning independently. RESULTS Herein, we have developed a novel thermo-enzymatic regulation strategy for near-infrared (NIR)-triggered precise-catalyzed photothermal treatment of breast cancer. Our strategy enables efficient loading and delivery of thermozymes (newly screened therapeutic enzymes from thermophilic bacteria) via hyaluronic acid (HA)-coupled gold nanorods (GNRs). These nanocatalysts exhibit enhanced cellular endocytosis and rapid enzyme activity enhancement, while also providing biosafety with minimized toxic effects on untargeted sites due to temperature-isolated thermozyme activity. Locally-focused NIR lasers ensure effective activation of thermozymes to promote on-demand amino acid deprivation and photothermal therapy (PTT) of superficial tumors, triggering apoptosis, G1 phase cell cycle arrest, inhibiting migration and invasion, and potentiating photothermal sensitivity of malignancies. CONCLUSIONS This work establishes a precise, remotely controlled, non-invasive, efficient, and biosafe nanoplatform for accurate enzyme therapy, providing a rationale for promising personalized therapeutic strategies and offering new prospects for high-precision development of enzyme drugs.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Mingwang Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Chen YY, Fei F, Ding LL, Wen SY, Ren CF, Gong AH. Integrated gut microbiome and metabolome analysis reveals the inhibition effect of Lactobacillus plantarum CBT against colorectal cancer. Food Funct 2024; 15:853-865. [PMID: 38164977 DOI: 10.1039/d3fo04806c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The microecological stability of the gut microbiota plays a pivotal role in both preventing and treating colorectal cancer (CRC). This study investigated whether Lactobacillus plantarum CBT (LP-CBT) prevents CRC by inducing alterations in the gut microbiota composition and associated metabolites. The results showed that LP-CBT inhibited colorectal tumorigenesis in azoxymethane/dextran sulfate sodium (AOM/DSS)-treated mice by repairing the intestinal barrier function. Furthermore, LP-CBT decreased pro-inflammatory cytokines and anti-inflammatory cytokines. Importantly, LP-CBT remodeled intestinal homeostasis by increasing probiotics (Coprococcus, Mucispirillum, and Lactobacillus) and reducing harmful bacteria (Dorea, Shigella, Alistipes, Paraprevotella, Bacteroides, Sutterella, Turicibacter, Bifidobacterium, Clostridium, Allobaculum), significantly influencing arginine biosynthesis. Therefore, LP-CBT treatment regulated invertases and metabolites associated with the arginine pathway (carbamoyl phosphate, carboxymethyl proline, L-lysine, 10,11-epoxy-3-geranylgeranylindole, n-(6)-[(indol-3-yl)acetyl]-L-lysine, citrulline, N2-succinyl-L-ornithine, and (5-L-glutamyl)-L-glutamate). Furthermore, the inhibitory effect of LP-CBT on colorectal cancer was further confirmed using the MC38 subcutaneous tumor model. Collectively, these findings offer compelling evidence supporting the potential of LP-CBT as a viable preventive strategy against CRC.
Collapse
Affiliation(s)
- Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212003, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, SAR 999078, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212003, China
| | - Fei Fei
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212003, China.
| | - Ling-Ling Ding
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212003, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China.
| | - Cai-Fang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212003, China.
| | - Ai-Hua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212003, China.
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212003, China
| |
Collapse
|
7
|
Kim B, Kim G, Kim H, Song YS, Jung J. Modulation of Cisplatin Sensitivity through TRPML1-Mediated Lysosomal Exocytosis in Ovarian Cancer Cells: A Comprehensive Metabolomic Approach. Cells 2024; 13:115. [PMID: 38247807 PMCID: PMC10814698 DOI: 10.3390/cells13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The lysosome has emerged as a promising target for overcoming chemoresistance, owing to its role in facilitating the lysosomal sequestration of drugs. The lysosomal calcium channel TRPML1 not only influences lysosomal biogenesis but also coordinates both endocytosis and exocytosis. This study explored the modulation of cisplatin sensitivity by regulating TRPML1-mediated lysosomal exocytosis and identified the metabolomic profile altered by TRPML1 inhibition. METHODS We used four types of ovarian cancer cells: two cancer cell lines (OVCAR8 and TOV21G) and two patient-derived ovarian cancer cells. Metabolomic analyses were conducted to identify altered metabolites by TRPML1 inhibition. RESULTS Lysosomal exocytosis in response to cisplatin was observed in resistant cancer cells, whereas the phenomenon was absent in sensitive cancer cells. Through the pharmacological intervention of TRPML1, lysosomal exocytosis was interrupted, leading to the sensitization of resistant cancer cells to cisplatin treatment. To assess the impact of lysosomal exocytosis on chemoresistance, we conducted an untargeted metabolomic analysis on cisplatin-resistant ovarian cancer cells with TRPML1 inhibition. Among the 1446 differentially identified metabolites, we focused on 84 significant metabolites. Metabolite set analysis revealed their involvement in diverse pathways. CONCLUSIONS These findings collectively have the potential to enhance our understanding of the interplay between lysosomal exocytosis and chemoresistance, providing valuable insights for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Heeyeon Kim
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; (H.K.); (Y.S.S.)
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; (H.K.); (Y.S.S.)
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| |
Collapse
|
8
|
Tam SY, Chung SF, Kim CF, To JC, So PK, Cheung KK, Chung WH, Wong KY, Leung YC. Development of a bioengineered Erwinia chrysanthemi asparaginase to enhance its anti-solid tumor potential for treating gastric cancer. Int J Biol Macromol 2023; 253:127742. [PMID: 37923039 DOI: 10.1016/j.ijbiomac.2023.127742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.
Collapse
Affiliation(s)
- Suet-Ying Tam
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sai-Fung Chung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi-Fai Kim
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jeffrey C To
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pui-Kin So
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wai-Hong Chung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yun-Chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Huang Y, Li C, Li Z, Xie Y, Chen H, Li S, Liang Y, Wu Z. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]-Labeled Arginine Derivative for Tumor Imaging. Pharmaceuticals (Basel) 2023; 16:1477. [PMID: 37895948 PMCID: PMC10610273 DOI: 10.3390/ph16101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
To better diagnose and treat tumors related to arginine metabolism, (2S,4S)-2-amino-4-(4-(2-(fluoro-18F)ethoxy)benzyl)-5-guanidinopentanoic acid ([18F]7) was designed and prepared by introducing [18F]fluoroethoxy benzyl on carbon-4 of arginine. [18F]7 and 7 were successfully prepared using synthesis methods similar to those used for (2S,4S)-4-[18F]FEBGln and (2S,4S)-4-FEBGln, respectively. In vitro experiments on cell transport mechanisms showed that [18F]7 was similar to (2S,4S)4-[18F]FPArg and was transported into tumor cells by cationic amino acid transporters. However, [18F]7 can also enter MCF-7 cells via ASC and ASC2 amino acid transporters. Further microPET-CT imaging showed that the initial uptake and retention properties of [18F]7 in MCF-7 subcutaneous tumors were good (2.29 ± 0.09%ID/g at 2.5 min and 1.71 ± 0.09%ID/g at 60 min after administration), without significant defluorination in vivo. However, compared to (2S,4S)4-[18F]FPArg (3.06 ± 0.59%ID/g at 60 min after administration), [18F]7 exhibited lower tumor uptake and higher nonspecific uptake. When further applied to U87MG imaging, [18F]7 can quickly visualize brain gliomas (tumor-to-brain, 1.85 at 60 min after administration). Therefore, based on the above results, [18F]7 will likely be applied for the diagnosis of arginine nutrition-deficient tumors and efficacy evaluations.
Collapse
Affiliation(s)
- Yong Huang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Yi Xie
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Shengli Li
- Department of Laboratory Animal Science, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Jawalekar SS, Kawathe PS, Sharma N, Anakha J, Tikoo K, Pande AH. Development and characterization of fused human arginase I for cancer therapy. Invest New Drugs 2023; 41:652-663. [PMID: 37532976 DOI: 10.1007/s10637-023-01387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Recombinant human arginase I (rhArg I) have emerged as a potential candidate for the treatment of varied pathophysiological conditions ranging from arginine-auxotrophic cancer, inflammatory conditions and microbial infection. However, rhArg I have a low circulatory half-life, leading to poor pharmacokinetic and pharmacodynamic properties, which necessitating the rapid development of modifications to circumvent these limitations. To address this, polyethylene glycol (PEG)ylated-rhArg I variants are being developed by pharmaceutical companies. However, because of the limitations associated with the clinical use of PEGylated proteins, there is a dire need in the art to develop rhArg I variant(s) which is safe (devoid of limitations of PEGylated counterpart) and possess increased circulatory half-life. In this study, we described the generation and characterization of a fused human arginase I variant (FHA-3) having improved circulatory half-life. FHA-3 protein was engineered by fusing rhArg I with a half-life extension partner (domain of human serum albumin) via a peptide linker and was produced using P. pastoris expression system. This purified biopharmaceutical (FHA-3) exhibits (i) increased arginine-hydrolyzing activity in buffer, (ii) cofactor - independency, (iii) increased circulatory half-life (t1/2) and (iv) potent anti-cancer activity against human cancer cell lines under in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Snehal Sainath Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Priyanka Sugriv Kawathe
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
11
|
Jiao YL, Shen PQ, Wang SF, Chen J, Zhou XH, Ma GZ. Arginase from Priestia megaterium and the Effects of CMCS Conjugation on Its Enzymological Properties. Curr Microbiol 2023; 80:292. [PMID: 37466752 DOI: 10.1007/s00284-023-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Arginase has shown promising potential in treating cancers by arginine deprivation therapy; however, low enzymatic activity and stability of arginase are impeding its development. This study was aimed to improve the enzymological properties of a marine bacterial arginase by carboxymethyl chitosan (CMCS) conjugation. An arginase producing marine bacterium Priestia megaterium strain P6 was isolated and identified. The novel arginase PMA from the strain was heterologously expressed, purified, and then conjugated to CMCS by ionic gelation with calcium chloride as the crosslinking agent. Enzymological properties of both PMA and CMCS-PMA conjugate were determined. The optimum temperature for PMA and CMCS-PMA at pH 7 were 60 °C and 55 °C, respectively. The optimum pH for PMA and CMCS-PMA at 37 °C were pH 10 and 9, respectively. CMCS-PMA showed higher thermostability than PMA over 55-70 °C and higher pH stability over pH 4-11 with the highest pH stability at pH 7. At 37 °C and pH of 7, i.e., around the human blood temperature and pH, CMCS-PMA was higher than the free PMA in enzymatic activity and stability by 24% and 21%, respectively. CMCS conjugation not only changed the optimum temperature, optimum pH, and enzymatic activity of PMA, but also improved its pH stability and temperature stability, and thus made it more favorable for medical application.
Collapse
Affiliation(s)
- Yu Liang Jiao
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China.
| | - Pin Quan Shen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Shu Fang Wang
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Jing Chen
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Xiang Hong Zhou
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| | - Gui Zhen Ma
- School of Marine Sciences and Fisheries, Jiangsu Ocean University, Cangwu Road, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Redmond WL. Challenges and opportunities in the development of combination immunotherapy with OX40 agonists. Expert Opin Biol Ther 2023; 23:901-912. [PMID: 37587644 PMCID: PMC10530613 DOI: 10.1080/14712598.2023.2249396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Costimulatory members of the tumor necrosis factor receptor family, such as OX40 (CD134), provide essential survival and differentiation signals that enhance T cell function. Specifically, OX40 (CD134) agonists stimulate potent anti-tumor immunity in a variety of preclinical models but their therapeutic impact in patients with advanced malignancies has been limited thus far. AREAS COVERED In this review, we discuss the current state of combination immunotherapy with OX40 agonists including preclinical studies and recent clinical trials. We also discuss the strengths and limitations of these approaches and provide insight into alternatives that may help enhance the efficacy of combination OX40 agonist immunotherapy. EXPERT OPINION OX40 agonist immunotherapy has not yet demonstrated significant clinical activity as a monotherapy or in combination with immune checkpoint blockade (ICB), likely due to several factors including the timing of administration, drug potency, and selection of agents for combination therapy clinical trials. We believe that careful consideration of the biological mechanisms regulating OX40 expression and function may help inform new approaches, particularly in combination with novel agents, capable of increasing the therapeutic efficacy of this approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, 4805 NE Glisan St., 2N35, Portland, OR, 97213
| |
Collapse
|
13
|
Chu YD, Lai MW, Yeh CT. Unlocking the Potential of Arginine Deprivation Therapy: Recent Breakthroughs and Promising Future for Cancer Treatment. Int J Mol Sci 2023; 24:10668. [PMID: 37445845 DOI: 10.3390/ijms241310668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Arginine is a semi-essential amino acid that supports protein synthesis to maintain cellular functions. Recent studies suggest that arginine also promotes wound healing, cell division, ammonia metabolism, immune system regulation, and hormone biosynthesis-all of which are critical for tumor growth. These discoveries, coupled with the understanding of cancer cell metabolic reprogramming, have led to renewed interest in arginine deprivation as a new anticancer therapy. Several arginine deprivation strategies have been developed and entered clinical trials. The main principle behind these therapies is that arginine auxotrophic tumors rely on external arginine sources for growth because they carry reduced key arginine-synthesizing enzymes such as argininosuccinate synthase 1 (ASS1) in the intracellular arginine cycle. To obtain anticancer effects, modified arginine-degrading enzymes, such as PEGylated recombinant human arginase 1 (rhArg1-PEG) and arginine deiminase (ADI-PEG 20), have been developed and shown to be safe and effective in clinical trials. They have been tried as a monotherapy or in combination with other existing therapies. This review discusses recent advances in arginine deprivation therapy, including the molecular basis of extracellular arginine degradation leading to tumor cell death, and how this approach could be a valuable addition to the current anticancer arsenal.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou Branch and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
14
|
Zhang Q, Luo H, Xun J, Ma Y, Yang L, Zhang L, Wang X, Yu X, Wang B. Targeting PYCR2 inhibits intraperitoneal metastatic tumors of mouse colorectal cancer in a proline-independent approach. Cancer Sci 2023; 114:908-920. [PMID: 36308281 PMCID: PMC9986086 DOI: 10.1111/cas.15635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Whether proline deficiency is a metabolic vulnerability in colorectal tumors is unknown. The aim of this study was to investigate the effects of proline metabolism-related genes and exogenous proline on the progression of colorectal cancer (CRC). We aimed to further clarify the role of pyrroline-5-carboxylate reductase (PYCR) 2, a key enzyme of proline synthesis, in the regulation of colorectal intraperitoneal metastatic tumors. This study was carried out based on The Cancer Genome Atlas (TCGA) data, database analysis, single-cell functional analysis, tissue microarray, cell experiments, and animal models. We found that, PYCR2 mRNA and protein levels were upregulated in CRC. The mRNA level of PYCR2 was closely related to the prognosis and tumor metastasis of CRC patients. The upregulated PYCR2 expression was at least partly due to low promoter methylation levels. The nomogram constructed based on PYCR2 expression and clinical characteristics of CRC showed good accuracy in predicting lymph node metastasis. Pycr2 knockdown inhibited epithelial-mesenchymal transition (EMT) of mouse CRC cells. Proline supplementation did not rescue the inhibition of mouse CRC cell proliferation and migration by Pycr2 knockdown. Proline supplementation also did not rescue the suppression of subcutaneous tumors and intraperitoneal metastatic tumors in mice by Pycr2 knockdown. PYCR2 co-expressed genes in TCGA-CRC were enriched in epigenetic modification-related biological processes and molecular functions. Four small molecules with the lowest binding energy to the PYCR2 protein were identified. Collectively, Pycr2 knockdown inhibited mouse CRC progression in a proline-independent approach. PYCR2 may be a promising tumor metastasis predictor and therapeutic target in CRC.
Collapse
Affiliation(s)
- Qi Zhang
- Nankai Hospital, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Hai Luo
- Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuan Ma
- Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Botao Wang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
15
|
Liu T, Wang X, Jia P, Liu C, Wei Y, Song Y, Li S, Liu L, Wang B, Shi H. Association between serum arginine levels and cancer risk: A community-based nested case-control study. Front Nutr 2022; 9:1069113. [PMID: 36466394 PMCID: PMC9712959 DOI: 10.3389/fnut.2022.1069113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE The effect of arginine on tumors appears to be bidirectional. The association of serum arginine with the risk of incident cancer remains uncovered at present. We aimed to investigate the prospective relationship of baseline serum arginine concentrations with the risk of incident cancer in hypertensive participants. MATERIALS AND METHODS A nested, case-control study with 1,389 incident cancer cases and 1,389 matched controls was conducted using data from the China H-Type Hypertension Registry Study (CHHRS). Conditional logistic regression analyses were performed to evaluate the association between serum arginine and the risk of the overall, digestive system, non-digestive system, and site-specific cancer. RESULTS Compared with matched controls, cancer patients had higher levels of arginine (21.41 μg/mL vs. 20.88 μg/mL, p < 0.05). When serum arginine concentrations were assessed as quartiles, compared with participants in the lowest arginine quartile, participants in the highest arginine quartile had a 32% (OR = 1.32, 95% CI: 1.03 to 1.71), and 68% (OR = 1.68, 95% CI: 1.09 to 2.59) increased risk of overall and digestive system cancer, respectively, in the adjusted models. In the site-specific analysis, each standard deviation (SD) increment of serum arginine was independently and positively associated with the risk of colorectal cancer (OR = 1.35, 95% CI: 1.01 to 1.82) in the adjusted analysis. CONCLUSION We found that hypertensive individuals with higher serum arginine levels exhibited a higher risk of overall, digestive system, and colorectal cancer.
Collapse
Affiliation(s)
- Tong Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Xiaomeng Wang
- Department of Education, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Pingping Jia
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Shuqun Li
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Lishun Liu
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| |
Collapse
|
16
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
17
|
Obstacles for T-lymphocytes in the tumour microenvironment: Therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine 2022; 83:104216. [PMID: 35986950 PMCID: PMC9403334 DOI: 10.1016/j.ebiom.2022.104216] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
The tumour microenvironment (TME) imposes a major obstacle to infiltrating T-lymphocytes and suppresses their function. Several immune checkpoint proteins that interfere with ligand/receptor interactions and impede T-cell anti-tumour responses have been identified. Immunotherapies that block immune checkpoints have revolutionized the treatment paradigm for many patients with advanced-stage tumours. However, metabolic constraints and soluble factors that exist within the TME exacerbate the functional exhaustion of tumour-infiltrating T-cells. Here we review these multifactorial constraints and mechanisms – elevated immunosuppressive metabolites and enzymes, nutrient insufficiency, hypoxia, increased acidity, immense amounts of extracellular ATP and adenosine, dysregulated bioenergetic and purinergic signalling, and ionic imbalance - that operate in the TME and collectively suppress T-cell function. We discuss how scientific advances could help overcome the complex TME obstacles for tumour-infiltrating T-lymphocytes, aiming to stimulate further research for developing new therapeutic strategies by harnessing the full potential of the immune system in combating cancer.
Collapse
|
18
|
Huang Y, Zhang L, Wang M, Li C, Zheng W, Chen H, Liang Y, Wu Z. Optimization of Precursor Synthesis Conditions of (2S,4S)4–[18F]FPArg and Its Application in Glioma Imaging. Pharmaceuticals (Basel) 2022; 15:ph15080946. [PMID: 36015094 PMCID: PMC9416586 DOI: 10.3390/ph15080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Although the tracer (2S,4S)4–[18F]FPArg is expected to provide a powerful imaging method for the diagnosis and treatment of clinical tumors, it has not been realized due to the low yield of chemical synthesis and radiolabeling. A simple synthetic method for the radiolabeled precursor of (2S,4S)4–[18F]FPArg in stable yield was obtained by adjusting the sequence of the synthetic steps. Furthermore, the biodistribution experiments confirmed that (2S,4S)4–[18F]FPArg could be cleared out quickly in wild type mouse. Cell uptake experiments and U87MG tumor mouse microPET–CT imaging experiments showed that the tumor had high uptake of (2S,4S)4–[18F]FPArg and the clearance was slow, but (2S,4S)4–[18F]FPArg was rapidly cleared in normal brain tissue. MicroPET–CT imaging of nude mice bearing orthotopic HS683–Luc showed that (2S,4S)4–[18F]FPArg can penetrate blood–brain barrier and image gliomas with a high contrast. Therefore, (2S,4S)4–[18F]FPArg is expected to be further applied in the diagnosis and efficacy evaluation of clinical glioma.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; (Y.H.); (C.L.)
- Correspondence: (Y.L.); (Z.W.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.); (H.C.)
- Correspondence: (Y.L.); (Z.W.)
| |
Collapse
|
19
|
Sun N, Zhao X. Argininosuccinate synthase 1, arginine deprivation therapy and cancer management. Front Pharmacol 2022; 13:935553. [PMID: 35910381 PMCID: PMC9335876 DOI: 10.3389/fphar.2022.935553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of tumor cells. In order to survive in the nutrient-deprived environment, tumor cells rewire their metabolic phenotype to provide sufficient energy and build biomass to sustain their transformed state and promote malignant behaviors. Amino acids are the main compositions of protein, which provide key intermediate substrates for the activation of signaling pathways. Considering that cells can synthesize arginine via argininosuccinate synthase 1 (ASS1), arginine is regarded as a non-essential amino acid, making arginine depletion as a promising therapeutic strategy for ASS1-silencing tumors. In this review, we summarize the current knowledge of expression pattern of ASS1 and related signaling pathways in cancer and its potential role as a novel therapeutic target in cancer. Besides, we outline how ASS1 affects metabolic regulation and tumor progression and further discuss the role of ASS1 in arginine deprivation therapy. Finally, we review approaches to target ASS1 for cancer therapies.
Collapse
Affiliation(s)
- Naihui Sun
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xing Zhao,
| |
Collapse
|
20
|
Qu J, Ke F, Liu Z, Yang X, Li X, Xu H, Li Q, Bi K. Uncovering the mechanisms of dandelion against triple-negative breast cancer using a combined network pharmacology, molecular pharmacology and metabolomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153986. [PMID: 35183931 DOI: 10.1016/j.phymed.2022.153986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Taraxacum mongolicum, also called dandelion, has been used for thousands of years as a remedy for mammary abscess, mammary gland hyperplasia, and various other diseases afflicting the breast. In modern pharmacological research, dandelion has been proven to be effective against triple-negative breast cancer (TNBC). However, the mechanisms of this anti-tumor effect have not been fully elucidated. PURPOSE The aim of this investigation was to understand the multi-target mechanisms through which dandelion counteracts TNBC via a network pharmacology strategy as well as to validate its effectiveness by means of molecular pharmacology and metabolomics assessments. METHODS A liquid chromatography coupled with quadrupole time-of-flight mass spectrometer (LC-Q-TOF/MS) was employed to identify the absorbed components of dandelion in rat plasma. The network pharmacology-based prediction was utilized to uncover the potential mechanisms through which dandelion counteracts TNBC, during which potential targets were identified and pathway enrichment analysis was performed. Subsequently, TNBC cells and 4T1 tumor-bearing mice were used to further verify the molecular mechanisms of dandelion. RESULTS Twelve active compounds were identified in rat plasma, which were connected with 50 TNBC-related targets. The pathway enrichment showed that dandelion could treat TNBC through regulating a series of biological processes involving cell cycle and metabolism. Experimentally, flow cytometry analysis revealed that dandelion could arrest the G0/G1 and G2/M cell cycles in 4T1 cells. Further western blot analysis evidenced that the protein expression of kinase 6 (CDK6) as well as cyclins B1 and B2 in mice tumor tissue were suppressed by dandelion. In addition, cell metabolomics analysis revealed the changes in the endogenous metabolite levels that result from dandelion treatments, such as the downregulation of arginine and spermine levels. All these findings were consistent with the predicted targets and pathways. CONCLUSION This study comprehensively demonstrates the multi-target mechanisms of dandelion against TNBC using network pharmacology, molecular pharmacology, and metabolomics approaches. These findings will provide important stepping stones for further mechanism investigations and may lead to the development of highly effective dandelion-based treatments for TNBC.
Collapse
Affiliation(s)
- Jiameng Qu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Ke
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ziru Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianzhe Li
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
21
|
Fan K, Liu Z, Gao M, Tu K, Xu Q, Zhang Y. Targeting Nutrient Dependency in Cancer Treatment. Front Oncol 2022; 12:820173. [PMID: 35178349 PMCID: PMC8846368 DOI: 10.3389/fonc.2022.820173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolic reprogramming is one of the hallmarks of tumor. Growing evidence suggests metabolic changes that support oncogenic progression may cause selective vulnerabilities that can be exploited for cancer treatment. Increasing demands for certain nutrients under genetic determination or environmental challenge enhance dependency of tumor cells on specific nutrient, which could be therapeutically developed through targeting such nutrient dependency. Various nutrients including several amino acids and glucose have been found to induce dependency in genetic alteration- or context-dependent manners. In this review, we discuss the extensively studied nutrient dependency and the biological mechanisms behind such vulnerabilities. Besides, existing applications and strategies to target nutrient dependency in different cancer types, accompanied with remaining challenges to further exploit these metabolic vulnerabilities to improve cancer therapies, are reviewed.
Collapse
Affiliation(s)
- Kexin Fan
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, China
| | - Min Gao
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, China
| | - Yilei Zhang
- The Institute of Molecular and Translational Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
22
|
Kung KKY, Xu CF, O WY, Yu Q, Chung SF, Tam SY, Leung YC, Wong MK. Functionalized quinolizinium-based fluorescent reagents for modification of cysteine-containing peptides and proteins. RSC Adv 2022; 12:6248-6254. [PMID: 35424586 PMCID: PMC8981741 DOI: 10.1039/d1ra08329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Abstract
A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.
Collapse
Affiliation(s)
- Karen Ka-Yan Kung
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Cai-Fung Xu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Wa-Yi O
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Suet-Ying Tam
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Hong Kong China
| |
Collapse
|
23
|
Microbial arginine deiminase: A multifaceted green catalyst in biomedical sciences. Int J Biol Macromol 2022; 196:151-162. [PMID: 34920062 DOI: 10.1016/j.ijbiomac.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma. Recently, ADIs have attained immense importance in several other biomedical applications, namely treatment of Alzheimer's, as an antiviral drug, bioproduction of nutraceutical L-citrulline and bio-analytics involving L-arginine detection. Considering the wide applications of this biodrug, the demand for ADI is expected to escalate several-fold in the coming years. However, the sustainable production aspects of the enzyme with improved pharmacokinetics is still limited, creating bottlenecks for effective biopharmaceutical development. To circumvent the lacunae in enzyme production with appropriate paradigms of 'quality-by-design' an explicit overview of its properties with 'biobetter' formulations strategies are required. Present review provides an insight into all the potential biomedical applications of ADI along with the improvements required for its reach to clinics. Recent research advances with special emphasis on the development of ADI as a 'biobetter' enzyme have also been comprehensively elaborated.
Collapse
|
24
|
Chung SF, Tam SY, Kim CF, Chong HC, Lee LMY, Leung YC. Mono-PEGylated thermostable Bacillus caldovelox arginase mutant (BCA-M-PEG20) induces apoptosis, autophagy, cell cycle arrest and growth inhibition in gastric cancer cells. Invest New Drugs 2022; 40:895-904. [PMID: 35857203 PMCID: PMC9395487 DOI: 10.1007/s10637-022-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC<sub>50</sub> values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.
Collapse
Affiliation(s)
- Sai-Fung Chung
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Suet-Ying Tam
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chi-Fai Kim
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hiu-Chi Chong
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Leo Man-Yuen Lee
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yun-Chung Leung
- grid.16890.360000 0004 1764 6123Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
25
|
Tsujino T, Komura K, Inamoto T, Azuma H. CRISPR Screen Contributes to Novel Target Discovery in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222312777. [PMID: 34884583 PMCID: PMC8658029 DOI: 10.3390/ijms222312777] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is one of the common malignancies in male adults. Recent advances in omics technology, especially in next-generation sequencing, have increased the opportunity to identify genes that correlate with cancer diseases, including PCa. In addition, a genetic screen based on CRISPR/Cas9 technology has elucidated the mechanisms of cancer progression and drug resistance, which in turn has enabled the discovery of new targets as potential genes for new therapeutic targets. In the era of precision medicine, such knowledge is crucial for clinicians in their decision-making regarding patient treatment. In this review, we focus on how CRISPR screen for PCa performed to date has contributed to the identification of biologically critical and clinically relevant target genes.
Collapse
Affiliation(s)
- Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
- Translational Research Program, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
- Correspondence: (T.T.); (K.K.); Tel.: +81-72-683-1221 (T.T. & K.K.)
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan; (T.I.); (H.A.)
| |
Collapse
|
26
|
Yan RL, Chen RH. Autophagy and cancer metabolism-The two-way interplay. IUBMB Life 2021; 74:281-295. [PMID: 34652063 DOI: 10.1002/iub.2569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Autophagy is an intracellular catabolic process that degrades cytoplasmic components for recycling in response to stressed conditions, such as nutrient deprivation. Dysregulation of autophagy is associated with various diseases, including cancer. Although autophagy plays dichotomous and context-dependent roles in cancer, evidence has emerged that cancer cells exploit autophagy for metabolic adaptation. Autophagy is upregulated in many cancer types through tumor cell-intrinsic proliferation demands and the hypoxic and nutrient-limited tumor microenvironment (TME). Autophagy-induced breakdown products then fuel into various metabolic pathways to supply tumor cells with energy and building blocks for biosynthesis and survival. This bidirectional regulation between autophagy and tumor constitutes a vicious cycle to potentiate tumor growth and therapy resistance. In addition, the pro-tumor functions of autophagy are expanded to host, including cells in TME and distant organs. Thus, inhibition of autophagy or autophagy-mediated metabolic reprogramming may be a promising strategy for anticancer therapy. Better understanding the metabolic rewiring mechanisms of autophagy for its pro-tumor effects will provide insights into patient treatment.
Collapse
Affiliation(s)
- Reui-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Li M, Qin J, Xiong K, Jiang B, Zhang T. Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Crit Rev Biotechnol 2021; 42:651-667. [PMID: 34612104 DOI: 10.1080/07388551.2021.1947962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As a committed step in the urea cycle, arginase cleaves l-arginine to form l-ornithine and urea. l-Ornithine is essential to: cell proliferation, collagen formation and other physiological functions, while the urea cycle itself converts highly toxic ammonia to urea for excretion. Recently, arginase was exploited as an efficient catalyst for the environmentally friendly synthesis of l-ornithine, an abundant nonprotein amino acid that is widely employed as a food supplement and nutrition product. It was also proposed as an arginine-reducing agent in order to treat arginase deficiency and to be a means of depleting arginine to treat arginine auxotrophic tumors. Targeting arginase inhibitors of the arginase/ornithine pathway offers great promise as a therapy for: cardiovascular, central nervous system diseases and cancers with high arginase expression. In this review, recent advances in the characteristics, structure, catalytic mechanism and preparation of arginase were summarized, with a focus being placed on the biotechnical and medical applications of arginase. In particular, perspectives have been presented on the challenges and opportunities for the environmentally friendly utilization of arginase during l-ornithine production and in therapies.
Collapse
Affiliation(s)
- Mengli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kai Xiong
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Wilder CS, Chen Z, DiGiovanni J. Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 2021; 61:127-152. [PMID: 34534385 DOI: 10.1002/mc.23349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022]
Abstract
Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Carly S Wilder
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhao Chen
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.,Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
Kumari N, Bansal S. Arginine depriving enzymes: applications as emerging therapeutics in cancer treatment. Cancer Chemother Pharmacol 2021; 88:565-594. [PMID: 34309734 DOI: 10.1007/s00280-021-04335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death globally. Chemotherapy and radiation therapy and other medications are employed to treat various types of cancer. However, each treatment has its own set of side effects, owing to its low specificity. As a result, there is an urgent need for newer therapeutics that do not disrupt healthy cells' normal functioning. Depriving nutrient or non/semi-essential amino acids to which cancerous cells are auxotrophic remains one such promising anticancer strategy. L-Arginine (Arg) is a semi-essential vital amino acid involved in versatile metabolic processes, signaling pathways, and cancer cell proliferation. Hence, the administration of Arg depriving enzymes (ADE) such as arginase, arginine decarboxylase (ADC), and arginine deiminase (ADI) could be effective in cancer therapy. The Arg auxotrophic cancerous cells like hepatocellular carcinoma, human colon cancer, leukemia, and breast cancer cells are sensitive to ADE treatment due to low expression of crucial enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL), and ornithine transcarbamylase (OCT). These therapeutic enzyme treatments induce cell death through inducing autophagy, apoptosis, generation of oxidative species, i.e., oxidative stress, and arresting the progression and expansion of cancerous cells at certain cell cycle checkpoints. The enzymes are undergoing clinical trials and could be successfully exploited as potential anticancer agents in the future.
Collapse
Affiliation(s)
- Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology Waknaghat, Solan, 173234, Himachal Pradesh, India.
| |
Collapse
|