1
|
Li Y, Wang X, Yu H, Cao J, Xie J, Zhou J, Feng Z, Chen W. YAP-LAMB3 axis dictates cellular resistance of pancreatic ductal adenocarcinoma cells to gemcitabine. Mol Carcinog 2024; 63:1953-1966. [PMID: 39016677 DOI: 10.1002/mc.23785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.
Collapse
Affiliation(s)
- Yecheng Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Wang
- Department of General Surgery, Haian People's Hospital, Haian, China
| | - Hongpei Yu
- General Surgery Department, Taizhou Second People's Hospital, Taizhou, China
| | - Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhong Zhou
- General Surgery Department, Taizhou Second People's Hospital, Taizhou, China
| | - Zhenyu Feng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Van Kerkhove O, Verfaillie S, Maes B, Cuppens K. The Adenosinergic Pathway in Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3142. [PMID: 39335114 PMCID: PMC11430550 DOI: 10.3390/cancers16183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-(L)1 and CTLA-4 have revolutionized the systemic treatment of non-small cell lung cancer (NSCLC), achieving impressive results. However, long-term clinical benefits are only seen in a minority of patients. Extensive research is being conducted on novel potential immune checkpoints and the mechanisms underlying ICI resistance. The tumor microenvironment (TME) plays a critical role in modulating the immune response and influencing the efficacy of ICIs. The adenosinergic pathway and extracellular adenosine (eADO) are potential targets to improve the response to ICIs in NSCLC patients. First, this review delves into the adenosinergic pathway and the impact of adenosine within the TME. Second, we provide an overview of relevant preclinical and clinical data on molecules targeting this pathway, particularly focusing on NSCLC.
Collapse
Affiliation(s)
- Olivier Van Kerkhove
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Saartje Verfaillie
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Laboratory Medicine, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Shah A, Jahan R, Kisling SG, Atri P, Natarajan G, Nallasamy P, Cox JL, Macha MA, Sheikh IA, Ponnusamy MP, Kumar S, Batra SK. Secretory Trefoil Factor 1 (TFF1) promotes gemcitabine resistance through chemokine receptor CXCR4 in Pancreatic Ductal Adenocarcinoma. Cancer Lett 2024; 598:217097. [PMID: 38964729 DOI: 10.1016/j.canlet.2024.217097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Gemcitabine is the first-line treatment option for patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, the frequent adoption of resistance to gemcitabine by cancer cells poses a significant challenge in treating this aggressive disease. In this study, we focused on analyzing the role of trefoil factor 1 (TFF1) in gemcitabine resistance in PDAC. Analysis of PDAC TCGA and cell line datasets indicated an enrichment of TFF1 in the gemcitabine-resistant classical subtype and suggested an inverse correlation between TFF1 expression and sensitivity to gemcitabine treatment. The genetic ablation of TFF1 in PDAC cells enhanced their sensitivity to gemcitabine treatment in both in vitro and in vivo tumor xenografts. The biochemical studies revealed that TFF1 contributes to gemcitabine resistance through enhanced stemness, increasing migration ability of cancer cells, and induction of anti-apoptotic genes. We further pursued studies to predict possible receptors exerting TFF1-mediated gemcitabine resistance. Protein-protein docking investigations with BioLuminate software revealed that TFF1 binds to the chemokine receptor CXCR4, which was supported by real-time binding analysis of TFF1 and CXCR4 using SPR studies. The exogenous addition of TFF1 increased the proliferation and migration of PDAC cells through the pAkt/pERK axis, which was abrogated by treatment with a CXCR4-specific antagonist AMD3100. Overall, the present study demonstrates the contribution of the TFF1-CXCR4 axis in imparting gemcitabine resistance properties to PDAC cells.
Collapse
MESH Headings
- Humans
- Gemcitabine
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Drug Resistance, Neoplasm
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Trefoil Factor-1/genetics
- Trefoil Factor-1/metabolism
- Animals
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Antimetabolites, Antineoplastic/pharmacology
- Cell Movement/drug effects
- Mice
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Apoptosis/drug effects
- Mice, Nude
- Cell Proliferation/drug effects
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, India
| | - Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5950, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, 68198-5950, USA.
| |
Collapse
|
4
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Chen Q, Yin H, He J, Xie Y, Wang W, Xu H, Zhang L, Shi C, Yu J, Wu W, Liu L, Pu N, Lou W. Tumor Microenvironment Responsive CD8 + T Cells and Myeloid-Derived Suppressor Cells to Trigger CD73 Inhibitor AB680-Based Synergistic Therapy for Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302498. [PMID: 37867243 PMCID: PMC10667825 DOI: 10.1002/advs.202302498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Indexed: 10/24/2023]
Abstract
CD73 plays a critical role in the pathogenesis and immune escape in pancreatic ductal adenocarcinoma (PDAC). AB680, an exceptionally potent and selective inhibitor of CD73, is administered in an early clinical trial, in conjunction with gemcitabine and anti-PD-1 therapy, for the treatment of PDAC. Nevertheless, the specific therapeutic efficacy and immunoregulation within the microenvironment of AB680 monotherapy in PDAC have yet to be fully elucidated. In this study, AB680 exhibits a significant effect in augmenting the infiltration of responsive CD8+ T cells and prolongs the survival in both subcutaneous and orthotopic murine PDAC models. In parallel, it also facilitates chemotaxis of myeloid-derived suppressor cells (MDSCs) by tumor-derived CXCL5 in an AMP-dependent manner, which may potentially contribute to enhanced immunosuppression. The concurrent administration of AB680 and PD-1 blockade, rather than gemcitabine, synergistically restrain tumor growth. Notably, gemcitabine weakened the efficacy of AB680, which is dependent on CD8+ T cells. Finally, the supplementation of a CXCR2 inhibitor is validated to further enhance the therapeutic efficacy when combined with AB680 plus PD-1 inhibitor. These findings systematically demonstrate the efficacy and immunoregulatory mechanism of AB680, providing a novel, efficient, and promising immunotherapeutic combination strategy for PDAC.
Collapse
Affiliation(s)
- Qiangda Chen
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hanlin Yin
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Junyi He
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Yuqi Xie
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenquan Wang
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Huaxiang Xu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Lei Zhang
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Chenye Shi
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Wenchuan Wu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Liang Liu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Ning Pu
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Wenhui Lou
- Department of Pancreatic SurgeryCancer CenterDepartment of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
6
|
Samain R, Maiques O, Monger J, Lam H, Candido J, George S, Ferrari N, KohIhammer L, Lunetto S, Varela A, Orgaz JL, Vilardell F, Olsina JJ, Matias-Guiu X, Sarker D, Biddle A, Balkwill FR, Eyles J, Wilkinson RW, Kocher HM, Calvo F, Wells CM, Sanz-Moreno V. CD73 controls Myosin II-driven invasion, metastasis, and immunosuppression in amoeboid pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadi0244. [PMID: 37851808 PMCID: PMC10584351 DOI: 10.1126/sciadv.adi0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Remi Samain
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joanne Monger
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
- GSK, R&D Portfolio, Strategy and Business Insights, GSK House, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Juliana Candido
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - Samantha George
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Ferrari
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Translational Science and Experimental Medicine, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Leonie KohIhammer
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophia Lunetto
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Varela
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jose L. Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Jorge Juan Olsina
- Department of Surgery, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
- IRBLLEIDA, IDIBELL, University Hospita of Bellvitge, CIBERONC, Lleida, Spain
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Frances R. Balkwill
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jim Eyles
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011 Santander, Spain
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
7
|
Chen X, Li Y, Zhou Z, Zhang Y, Chang L, Gao X, Li Q, Luo H, Westover KD, Zhu J, Wei X. Dynamic ultrasound molecular-targeted imaging of senescence in evaluation of lapatinib resistance in HER2-positive breast cancer. Cancer Med 2023; 12:19904-19920. [PMID: 37792675 PMCID: PMC10587953 DOI: 10.1002/cam4.6607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Prolonged treatment of HER2+ breast cancer with lapatinib (LAP) causes cellular senescence and acquired drug resistance, which often associating with poor prognosis for patients. We aim to explore the correlation between cellular senescence and LAP resistance in HER2+ breast cancer, screen for molecular marker of reversible senescence, and construct targeted nanobubbles for ultrasound molecular imaging to dynamically evaluate LAP resistance. METHODS AND RESULTS In this study, we established a new cellular model of reversible cellular senescence using LAP and HER2+ breast cancer cells and found that reversible senescence contributed to LAP resistance in HER2+ breast cancer. Then, we identified ecto-5'-nucleotidase (NT5E) as a marker of reversible senescence in HER2+ breast cancer. Based on this, we constructed NT5E-targeted nanobubbles (NT5E-FITC-NBs) as a new molecular imaging modality which could both target reversible senescent cells and be used for ultrasound imaging. NT5E-FITC-NBs showed excellent physical and imaging characteristics. As an ultrasound contrast agent, NT5E-FITC-NBs could accurately identify reversible senescent cells both in vitro and in vivo. CONCLUSIONS Our data demonstrate that cellular senescence-based ultrasound-targeted imaging can identify reversible senescence and evaluate LAP resistance effectively in HER2+ breast cancer cells, which has the potential to improve cancer treatment outcomes by altering therapeutic strategies ahead of aggressive recurrences.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
- Department of UltrasoundTianjin HospitalTianjinChina
| | - Ying Li
- Breast Cancer CenterTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhiwei Zhou
- Department of Radiation Oncology and BiochemistryUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| | - Yanqiu Zhang
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Luchen Chang
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xiujun Gao
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjinChina
| | - Qing Li
- Cancer CenterDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Hao Luo
- Cancer CenterDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Kenneth D. Westover
- Department of Radiation Oncology and BiochemistryUniversity of Texas Southwestern Medical CenterTexasDallasUSA
| | - Jialin Zhu
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| | - Xi Wei
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
8
|
Allard D, Cousineau I, Ma EH, Allard B, Bareche Y, Fleury H, Stagg J. The CD73 immune checkpoint promotes tumor cell metabolic fitness. eLife 2023; 12:e84508. [PMID: 37261423 PMCID: PMC10259490 DOI: 10.7554/elife.84508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/02/2023] Open
Abstract
CD73 is an ectonucleotidase overexpressed on tumor cells that suppresses anti-tumor immunity. Accordingly, several CD73 inhibitors are currently being evaluated in the clinic, including in large randomized clinical trials. Yet, the tumor cell-intrinsic impact of CD73 remain largely uncharacterized. Using metabolomics, we discovered that CD73 significantly enhances tumor cell mitochondrial respiration and aspartate biosynthesis. Importantly, rescuing aspartate biosynthesis was sufficient to restore proliferation of CD73-deficient tumors in immune deficient mice. Seahorse analysis of a large panel of mouse and human tumor cells demonstrated that CD73 enhanced oxidative phosphorylation (OXPHOS) and glycolytic reserve. Targeting CD73 decreased tumor cell metabolic fitness, increased genomic instability and suppressed poly ADP ribose polymerase (PARP) activity. Our study thus uncovered an important immune-independent function for CD73 in promoting tumor cell metabolism, and provides the rationale for previously unforeseen combination therapies incorporating CD73 inhibition.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Isabelle Cousineau
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Eric H Ma
- McGill Goodman Cancer Research CentreMontréalCanada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - Hubert Fleury
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier l’Université de MontréalMontrealCanada
- Faculté de Pharmacie, Université de MontréalMontrealCanada
- Institut du Cancer de MontréalMontrealCanada
| |
Collapse
|
9
|
Kowash RR, Akbay EA. Tumor intrinsic and extrinsic functions of CD73 and the adenosine pathway in lung cancer. Front Immunol 2023; 14:1130358. [PMID: 37033953 PMCID: PMC10079876 DOI: 10.3389/fimmu.2023.1130358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The adenosine pathway is an exciting new target in the field of cancer immunotherapy. CD73 is the main producer of extracellular adenosine. Non-small cell lung cancer (NSCLC) has one of the highest CD73 expression signatures among all cancer types and the presence of common oncogenic drivers of NSCLC, such as mutant epidermal growth factor receptor (EGFR) and KRAS, correlate with increased CD73 expression. Current immune checkpoint blockade (ICB) therapies only benefit a subset of patients, and it has proved challenging to understand which patients might respond even with the current understanding of predictive biomarkers. The adenosine pathway is well known to disrupt cytotoxic function of T cells, which is currently the main target of most clinical agents. Data thus far suggests that combining ICB therapies already in the clinic with adenosine pathway inhibitors provides promise for the treatment of lung cancer. However, antigen loss or lack of good antigens limits efficacy of ICB; simultaneous activation of other cytotoxic immune cells such as natural killer (NK) cells can be explored in these tumors. Clinical trials harnessing both T and NK cell activating treatments are still in their early stages with results expected in the coming years. In this review we provide an overview of new literature on the adenosine pathway and specifically CD73. CD73 is thought of mainly for its role as an immune modulator, however recent studies have demonstrated the tumor cell intrinsic properties of CD73 are potentially as important as its role in immune suppression. We also highlight the current understanding of this pathway in lung cancer, outline ongoing studies examining therapies in combination with adenosine pathway targeting, and discuss future prospects.
Collapse
Affiliation(s)
- Ryan R Kowash
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Simmons Comprehensive Cancer Center, Dallas, TX, United States
| |
Collapse
|
10
|
Tomas Bort E, Joseph MD, Wang Q, Carter EP, Roth NJ, Gibson J, Samadi A, Kocher HM, Simoncelli S, McCormick PJ, Grose RP. Purinergic GPCR-integrin interactions drive pancreatic cancer cell invasion. eLife 2023; 12:e86971. [PMID: 36942939 PMCID: PMC10069867 DOI: 10.7554/elife.86971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response, and immune function. Analyzing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression, and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies, we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signaling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.
Collapse
Affiliation(s)
- Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Megan D Joseph
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Chemistry, University College LondonLondonUnited Kingdom
| | - Qiaoying Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Nicolas J Roth
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Jessica Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Ariana Samadi
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Chemistry, University College LondonLondonUnited Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Liu W, Yu X, Yuan Y, Feng Y, Wu C, Huang C, Xie P, Li S, Li X, Wang Z, Qi L, Chen Y, Shi L, Li MJ, Huang Z, Tang B, Chang A, Hao J. CD73, a Promising Therapeutic Target of Diclofenac, Promotes Metastasis of Pancreatic Cancer through a Nucleotidase Independent Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206335. [PMID: 36563135 PMCID: PMC9951332 DOI: 10.1002/advs.202206335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CD73, a cell surface-bound nucleotidase, facilitates extracellular adenosine formation by hydrolyzing 5'-AMP to adenosine. Several studies have shown that CD73 plays an essential role in immune escape, cell proliferation and tumor angiogenesis, making it an attractive target for cancer therapies. However, there are limited clinical benefits associated with the mainstream enzymatic inhibitors of CD73, suggesting that the mechanism underlying the role of CD73 in tumor progression is more complex than anticipated, and further investigation is necessary. In this study, CD73 is found to overexpress in the cytoplasm of pancreatic ductal adenocarcinoma (PDAC) cells and promotes metastasis in a nucleotidase-independent manner, which cannot be restrained by the CD73 monoclonal antibodies or small-molecule enzymatic inhibitors. Furthermore, CD73 promotes the metastasis of PDAC by binding to the E3 ligase TRIM21, competing with the Snail for its binding site. Additionally, a CD73 transcriptional inhibitor, diclofenac, a non-steroidal anti-inflammatory drug, is more effective than the CD73 blocking antibody for the treatment of PDAC metastasis. Diclofenac also enhances the therapeutic efficacy of gemcitabine in the spontaneous KPC (LSL-KrasG12D/+ , LSL-Trp53R172H/+ , and Pdx-1-Cre) pancreatic cancer model. Therefore, diclofenac may be an effective anti-CD73 therapy, when used alone or in combination with gemcitabine-based chemotherapy regimen, for metastatic PDAC.
Collapse
Affiliation(s)
- Weishuai Liu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaozhou Yu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yudong Yuan
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yixing Feng
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chao Wu
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Chongbiao Huang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Peng Xie
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Shengnan Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Xiaofeng Li
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Ziyang Wang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Lisha Qi
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yanan Chen
- School of MedicineNankai UniversityTianjin300071China
| | - Lei Shi
- Tianjin Medical UniversityTianjin300070China
| | | | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of SciencesTianjin300308China
| | - Bo Tang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Antao Chang
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Jihui Hao
- Key Laboratory of Cancer Prevention and TherapyNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjin300060China
| |
Collapse
|
12
|
Li H, Xie P, Li P, Du Y, Zhu J, Yuan Y, Wu C, Shi Y, Huang Z, Wang X, Liu D, Liu W. CD73/NT5E is a Potential Biomarker for Cancer Prognosis and Immunotherapy for Multiple Types of Cancers. Adv Biol (Weinh) 2023; 7:e2200263. [PMID: 36480312 DOI: 10.1002/adbi.202200263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Cluster of Differentiations 73 (CD73)/ecto-5'-nucleotidase (NT5E) is a novel type of immune molecular marker expressed on many tumor cells and involved in regulating the essential immune functions and affecting the prognosis of cancer patients. However, it is not clear how the NT5E is linked to the infiltration levels of the immune cells in pan-cancer patients and their final prognosis. This study explores the role of NT5E in 33 tumor types using GEPIA, TIMER, Oncomine, BioGPS databases, and several bioinformatic tools. The findings reveal that the NT5E is abnormally expressed in a majority of the types of cancers and can be used for determining the prognosis prediction ability of different cancers. Moreover, NT5E is significantly related to the infiltration status of numerous immune cells, immune-activated pathways, and immunoregulator expressions. Last, specific inhibitor molecules, like NORNICOTINE, AS-703026, and FOSTAMATINIB, which inhibit the expression of NT5E in various types of cancers, are screened with the CMap. Thus, it is proposed that NT5E can be utilized as a potential biomarker for predicting the prognosis of cancer patients and determining the infiltration of various immune cells in different types of cancers.
Collapse
Affiliation(s)
- Huisheng Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Peng Xie
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Ping Li
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yuheng Du
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Jiajia Zhu
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yudong Yuan
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Yantao Shi
- Department of Technology, Swanshine (Tianjin) Biotechnology Development Co. Ltd, Anime East Road, Airport Economic Zone, Tianjin, 300308, China
| | - Zhiyong Huang
- Department of Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Xiqi Road Airport Economic Zone, Tianjin, 300308, China
| | - Xudong Wang
- Department of Maxillofacial & Otorhinolaryngology Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Dongying Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| |
Collapse
|
13
|
Jacoberger-Foissac C, Cousineau I, Bareche Y, Allard D, Chrobak P, Allard B, Pommey S, Messaoudi N, McNicoll Y, Soucy G, Koseoglu S, Masia R, Lake AC, Seo H, Eeles CB, Rohatgi N, Robson SC, Turcotte S, Haibe-Kains B, Stagg J. CD73 Inhibits cGAS-STING and Cooperates with CD39 to Promote Pancreatic Cancer. Cancer Immunol Res 2023; 11:56-71. [PMID: 36409930 PMCID: PMC9812927 DOI: 10.1158/2326-6066.cir-22-0260] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
The ectonucleotidases CD39 and CD73 catalyze extracellular ATP to immunosuppressive adenosine, and as such, represent potential cancer targets. We investigated biological impacts of CD39 and CD73 in pancreatic ductal adenocarcinoma (PDAC) by studying clinical samples and experimental mouse tumors. Stromal CD39 and tumoral CD73 expression significantly associated with worse survival in human PDAC samples and abolished the favorable prognostic impact associated with the presence of tumor-infiltrating CD8+ T cells. In mouse transplanted KPC tumors, both CD39 and CD73 on myeloid cells, as well as CD73 on tumor cells, promoted polarization of infiltrating myeloid cells towards an M2-like phenotype, which enhanced tumor growth. CD39 on tumor-specific CD8+ T cells and pancreatic stellate cells also suppressed IFNγ production by T cells. Although therapeutic inhibition of CD39 or CD73 alone significantly delayed tumor growth in vivo, targeting of both ectonucleotidases exhibited markedly superior antitumor activity. CD73 expression on human and mouse PDAC tumor cells also protected against DNA damage induced by gemcitabine and irradiation. Accordingly, large-scale pharmacogenomic analyses of human PDAC cell lines revealed significant associations between CD73 expression and gemcitabine chemoresistance. Strikingly, increased DNA damage in CD73-deficient tumor cells associated with activation of the cGAS-STING pathway. Moreover, cGAS expression in mouse KPC tumor cells was required for antitumor activity of the CD73 inhibitor AB680 in vivo. Our study, thus, illuminates molecular mechanisms whereby CD73 and CD39 seemingly cooperate to promote PDAC progression.
Collapse
Affiliation(s)
- Célia Jacoberger-Foissac
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Isabelle Cousineau
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Yacine Bareche
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - David Allard
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Pavel Chrobak
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Bertrand Allard
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Sandra Pommey
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal
| | - Nouredin Messaoudi
- Department of Surgery, University of Antwerp, Antwerp, Belgium., Department of Surgery, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel and Europe Hospitals, Brussels, Belgium
| | - Yannic McNicoll
- Surgery Department, Hôpital Jean-Talon, CIUSSS NIM, Montreal, Quebec, Canada
| | - Geneviève Soucy
- Pathology Service, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | - Ricard Masia
- Surface Oncology, Inc. Cambridge, Massachusetts, USA
| | | | - Heewon Seo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christopher B. Eeles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neha Rohatgi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Simon C. Robson
- Center for Inflammation Research, Gastroenterology, Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon Turcotte
- Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal., Hepatopancreatobiliary Surgery & Liver Transplantation Service, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada., Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - John Stagg
- Faculty of Pharmacy, University of Montreal., Cancer Axis, Centre de Recherche Du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada., Institut du Cancer de Montréal.,Correspondence: 900 St-Denis Street, Montréal, QC, Canada, H2X 0A9; ; Tel: 514-890-8000 ex:25170
| |
Collapse
|
14
|
Wu J, Zhou Z, Li J, Liu H, Zhang H, Zhang J, Huang W, He Y, Zhu S, Huo M, Liu M, Zhang C. CHD4 promotes acquired chemoresistance and tumor progression by activating the MEK/ERK axis. Drug Resist Updat 2023; 66:100913. [PMID: 36603431 DOI: 10.1016/j.drup.2022.100913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
AIMS Chemoresistance remains a major challenge in gastric cancer (GC). Chromodomain helicase DNA-binding protein 4 (CHD4) mediated chromatin remodeling plays critical roles in various tumor types, but its role in chemoresistance in GC remains uncharacterized. METHODS CHD4 expression was examined by immunohistochemistry and Western blotting. The role of CHD4 on cell proliferation and chemoresistance of GC was examined in vitro and in vivo. Immunoprecipitation and liquid chromatography-mass spectrometry were used to identify CHD4-binding proteins and a proximity ligation assay was used to explore protein-protein interaction. RESULTS Chemoresistance is associated with upregulation of CHD4 in the tumor tissues of GC patients. Overexpression of CHD4 increased chemoresistance and cell proliferation. Knockdown of CHD4 induced cell apoptosis and cell cycle arrest. CHD4 mediates the decrease of the intracellular concentration of cisplatin by inducing drug efflux. Additionally, CHD4 promotes the interaction between ERK1/2 and MEK1/2, resulting in continuous activation of MEK/ERK pathway. Knockdown of CHD4 in GC increased sensitivity to chemotherapy and suppressed tumor growth in a mouse xenograft model. CONCLUSIONS This study identifies CHD4 dominated multi-drug efflux as a promising therapeutic target for overcoming acquired chemoresistance in GC.
Collapse
Affiliation(s)
- Jing Wu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Zhijun Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Jin Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Huifang Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Huaqi Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Junchang Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Weibin Huang
- Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou 510080, Guangdong, China
| | - Shiyu Zhu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China
| | - Mingyu Huo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
15
|
Zhang CY, Liu S, Yang M. Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J Gastroenterol 2022; 28:6827-6845. [PMID: 36632312 PMCID: PMC9827589 DOI: 10.3748/wjg.v28.i48.6827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) is the third-leading cause of cancer deaths. The overall 5-year survival rate of PC is 9%, and this rate for metastatic PC is below 3%. However, the PC-induced death cases will increase about 2-fold by 2060. Many factors such as genetic and environmental factors and metabolic diseases can drive PC development and progression. The most common type of PC in the clinic is pancreatic ductal adenocarcinoma, comprising approximately 90% of PC cases. Multiple pathogenic processes including but not limited to inflammation, fibrosis, angiogenesis, epithelial-mesenchymal transition, and proliferation of cancer stem cells are involved in the initiation and progression of PC. Early diagnosis is essential for curable therapy, for which a combined panel of serum markers is very helpful. Although some mono or combined therapies have been approved by the United States Food and Drug Administration for PC treatment, current therapies have not shown promising outcomes. Fortunately, the development of novel immunotherapies, such as oncolytic viruses-mediated treatments and chimeric antigen receptor-T cells, combined with therapies such as neoadjuvant therapy plus surgery, and advanced delivery systems of immunotherapy will improve therapeutic outcomes and combat drug resistance in PC patients. Herein, the pathogenesis, molecular signaling pathways, diagnostic markers, prognosis, and potential treatments in completed, ongoing, and recruiting clinical trials for PC were reviewed.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
16
|
Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine 2022; 86:104352. [PMID: 36371988 PMCID: PMC9664470 DOI: 10.1016/j.ebiom.2022.104352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is an essential target for cancer treatment. However, EGFR inhibitor erlotinib showed limited clinical benefit in pancreatic cancer therapy. Here, we showed the underlying mechanism of tumor microenvironment suppressing the sensitivity of EGFR inhibitor through the pancreatic stellate cell (PSC). METHODS The expression of alpha-smooth muscle actin (α-SMA) and hypoxia marker in human pancreatic cancer tissues were detected by immunohistochemistry, and their correlation with overall survival was evaluated. Human immortalized PSC was constructed and used to investigate the potential effect on pancreatic cancer cell lines in hypoxia and normoxia. Luciferase reporter assay and Chromatin immunoprecipitation were performed to explore the potential mechanisms in vitro. The combined inhibition of EGFR and Met was evaluated in an orthotopic xenograft mouse model of pancreatic cancer. FINDINGS We found that high expression levels of α-SMA and hypoxia markers are associated with poor prognosis of pancreatic cancer patients. Mechanistically, we demonstrated that hypoxia induced the expression and secretion of HGF in PSC via transcription factor HIF-1α. PSC-derived HGF activates Met, the HGF receptor, suppressing the sensitivity of pancreatic cancer cells to EGFR inhibitor in a KRAS-independent manner by activating the PI3K-AKT pathway. Furthermore, we found that the combination of EGFR inhibitor and Met inhibitor significantly suppressed tumor growth in an orthotopic xenograft mouse model. INTERPRETATION Our study revealed a previously uncharacterized HIF1α-HGF-Met-PI3K-AKT signaling axis between PSC and cancer cells and indicated that EGFR inhibition plus Met inhibition might be a promising strategy for pancreatic cancer treatment. FUNDING This study was supported by The National Natural Science Foundation of China.
Collapse
|
17
|
Li CY, Rajapakshe KI, Maitra A. Integrative transcriptomic analysis identifies a novel gene signature to predict prognosis of pancreatic cancer in different subtypes. Pancreatology 2022; 22:965-972. [PMID: 36008214 DOI: 10.1016/j.pan.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent advances on pancreatic cancer molecular classifications have identified several subtypes with distinct characteristics, treatment response, and prognosis. We aim to identify the consensus gene signature that could predict the prognosis of pancreatic cancer. METHODS Transcriptomic data was acquired from TCGA database. Differentially expressed genes (DEGs) were identified by comparing the Basal-like, Quasi-mesenchymal and Squamous subtype to other subtypes. A new model was constructed by the least absolute shrinkage and selection operator to stratify patients into high and low-risk groups. The prognosis, transcriptomic profiles, and immune infiltration were examined between these groups. RESULTS We constructed a signature consisting of nine genes, and the GSEA analysis showed that the genomic profile of high-risk tumors is associated with the basal-like and squamous gene set enrichment. Patients with high-risk tumors had worse overall survival (P < 0.001) and progression free survival (P = 0.033), and are associated with a higher expression of KRAS downstream targets such as SDC1, ITGB4 and SLC2A1, which are involved in KRAS mediated macropinocytosis and tumor invasion. Meanwhile, several recurrence-associated genes increased in the high-risk tumors, including ITGA3 and TP63, which have been shown to mediate enhancer-dependent genomic reprogramming towards the squamous phenotype. The tumor immune infiltration profile analysis showed that high-risk tumors are characterized with an immune suppressive microenvironment. CONCLUSION The integrative transcriptomic analysis identifies a consensus gene signature that can discriminate pancreatic cancer subtypes and determine patient prognosis by evaluating the genomic reprogramming and the level of immune infiltration profile in pancreatic cancer.
Collapse
Affiliation(s)
- Cordelia Y Li
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal I Rajapakshe
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Qi H, Wang P, Sun H, Li X, Hao X, Tian W, Yu L, Tang J, Dong J, Wang H. ADAMDEC1 accelerates GBM progression via activation of the MMP2-related pathway. Front Oncol 2022; 12:945025. [PMID: 36172139 PMCID: PMC9511150 DOI: 10.3389/fonc.2022.945025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). However, its biological role in gliomas remains largely unknown. Here, we aimed to investigate the biological functions and potential mechanism of ADAMDEC1 in gliomas. The mRNA and protein expression levels of ADAMDEC1 were upregulated in glioma tissues and cell lines. ADAMDEC1 showed a phenomenon of “abundance and disappear” expression in gliomas and normal tissues in that the higher the expression of ADAMDEC1 presented, the higher the malignancy of gliomas and the worse the prognosis. High expression of ADAMDEC1 was associated with immune response. Knockdown of ADAMDEC1 could decrease the proliferation and colony-forming ability of LN229 cells, whereas ADAMDEC1 overexpression has opposite effects in LN229 cells in vitro. Furthermore, we identified that ADAMDEC1 accelerates GBM progression via the activation of the MMP2 pathway. In the present study, we found that the expression levels of ADAMDEC1 were significantly elevated compared with other ADAMs by analyzing the expression levels of ADAM family proteins in gliomas. This suggests that ADAMDEC1 has potential as a glioma clinical marker and immunotherapy target.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Ping Wang
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Hongliang Sun
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xiaohan Li
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Xinwei Hao
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, China
- Center of Translational Medicine, Zibo Central Hospital, Zibo, China
| | - Liting Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiajian Tang
- School of Medicine, Southeast University, Nanjing, China
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| | - Hongmei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Junhong Dong, ; Hongmei Wang,
| |
Collapse
|
19
|
ITGA2 overexpression inhibits DNA repair and confers sensitivity to radiotherapies in pancreatic cancer. Cancer Lett 2022; 547:215855. [PMID: 35998796 DOI: 10.1016/j.canlet.2022.215855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of less than 10%, despite the recent advances in chemoradiotherapy. The sensitivity of the PDAC patients to chemoradiotherapy varies widely, especially to radiotherapy, suggesting the need for more elucidation of the underlying mechanisms. In this study, a novel function of the nuclear ITGA2, the alpha subunit of transmembrane collagen receptor integrin alpha-2/beta-1, regulating the DNA damage response (DDR), was identified. First, analyzing The Cancer Genome Atlas (TCGA) PDAC data set indicated that the expression status of ITGA2 was negatively correlated with the genome stability parameters. The study further demonstrated that ITGA2 specially inhibited the activity of the non-homologous end joining (NHEJ) pathway and conferred the sensitivity to radiotherapy in PDAC by restraining the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to Ku70/80 heterodimer during DDR. Considering the overexpression of ITGA2 and its associated with the poor prognosis of PDAC patients, this study suggested that the ITGA2 expression status could be used as an indicator for radiotherapy and DNA damage reagents, and the radiotherapy in combination with the overexpression of ITGA2 might be a viable treatment strategy for the PDAC patients.
Collapse
|
20
|
Xiao Z, Li J, Yu Q, Zhou T, Duan J, Yang Z, Liu C, Xu F. An Inflammatory Response Related Gene Signature Associated with Survival Outcome and Gemcitabine Response in Patients with Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2022; 12:778294. [PMID: 35002712 PMCID: PMC8733666 DOI: 10.3389/fphar.2021.778294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with an extremely low 5-year survival rate. Accumulating evidence has unveiled that inflammatory response promotes tumor progression, enhances angiogenesis, and causes local immunosuppression. Herein, we aim to develop an inflammatory related prognostic signature, and found it could be used to predict gemcitabine response in PDAC. Methods: PDAC cohorts with mRNA expression profiles and clinical information were systematically collected from the four public databases. An inflammatory response related genes (IRRGs) prognostic signature was constructed by LASSO regression analysis. Kaplan–Meier survival analysis, receiver operating characteristic analysis, principal component analysis, and univariate and multivariate Cox analyses were carried out to evaluate effectiveness, and reliability of the signature. The correlation between gemcitabine response and risk score was evaluated in the TCGA-PAAD cohort. The GDSC database, pRRophetic algorithm, and connectivity map analysis were used to predict gemcitabine sensitivity and identify potential drugs for the treatment of PDAC. Finally, we analyzed differences in frequencies of gene mutations, infiltration of immune cells, as well as biological functions between different subgroups divided by the prognostic signature. Results: We established a seven IRRGs (ADM, DCBLD2, EREG, ITGA5, MIF, TREM1, and BTG2) signature which divided the PDAC patients into low- and high-risk groups. Prognostic value of the signature was validated in 11 PDAC cohorts consisting of 1337 PDAC patients from 6 countries. A nomogram that integrated the IRRGs signature and clinicopathologic factors of PDAC patients was constructed. The risk score showed positive correlation with gemcitabine resistance. Two drugs (BMS-536924 and dasatinib) might have potential therapeutic implications in high-risk PDAC patients. We found that the high-risk group had higher frequencies of KRAS, TP53, and CDKN2A mutations, increased infiltration of macrophages M0, neutrophils, and macrophages M2 cells, as well as upregulated hypoxia and glycolysis pathways, while the low-risk group had increased infiltration of CD8+ T, naïve B, and plasma and macrophages M1 cells. Conclusion: We constructed and validated an IRRGs signature that could be used to predict the prognosis and gemcitabine response of patients with PDAC, as well as two drugs (BMS-536924 and dasatinib) may contribute to PDAC treatment.
Collapse
Affiliation(s)
- Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jinyin Li
- Department of Pharmacy, Xuhui Central Hospital of Shanghai, Shanghai, China
| | - Qian Yu
- Division of Interventional Radiology, University of Chicago, Chicago, IL, United States
| | - Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Cuicui Liu
- Department of Clinical Laboratory, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.,Department of Pharmacy, Fengxian Hospital, Southern Medical University, Shanghai, China
| |
Collapse
|