1
|
Yu Y, Lu XH, Mu JS, Meng JY, Sun JS, Chen HX, Yan Y, Meng K. N6-methyladenosine-modified long non-coding RNA KIF9-AS1 promotes stemness and sorafenib resistance in hepatocellular carcinoma by upregulating SHOX2 expression. World J Gastroenterol 2024; 30:5174-5190. [DOI: 10.3748/wjg.v30.i48.5174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent and aggressive tumor. Sorafenib is the first-line treatment for patients with advanced HCC, but resistance to sorafenib has become a significant challenge in this therapy. Cancer stem cells play a crucial role in sorafenib resistance in HCC. Our previous study revealed that the long non-coding RNA (lncRNA) KIF9-AS1 is an oncogenic gene in HCC. However, the role of KIF9-AS1 in drug resistance and cancer stemness in HCC remains unclear. Herein, we aimed to investigate the function and mechanism of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC.
AIM To describe the role of the lncRNA KIF9-AS1 in cancer stemness and drug resistance in HCC and elucidate the underlying mechanism.
METHODS Tumor tissue and adjacent non-cancerous tissue samples were collected from HCC patients. Sphere formation was quantified via a tumor sphere assay. Cell viability, proliferation, and apoptosis were evaluated via Cell Counting Kit-8, flow cytometry, and colony formation assays, respectively. The interactions between the lncRNA KIF9-AS1 and its downstream targets were confirmed via RNA immunoprecipitation and coimmunoprecipitation. The tumorigenic role of KIF9-AS1 was validated in a mouse model.
RESULTS Compared with that in normal controls, the expression of the lncRNA KIF9-AS1 was upregulated in HCC tissues. Knockdown of KIF9-AS1 inhibited stemness and attenuated sorafenib resistance in HCC cells. Mechanistically, N6-methyladenosine modification mediated by methyltransferase-like 3/insulin-like growth factor 2 mRNA-binding protein 1 stabilized and increased the expression of KIF9-AS1. Additionally, KIF9-AS1 increased the stability and expression of short stature homeobox 2 by promoting ubiquitin-specific peptidase 1-induced deubiquitination. Furthermore, depletion of KIF9-AS1 alleviated sorafenib resistance in a xenograft mouse model of HCC.
CONCLUSION The N6-methyladenosine-modified lncRNA KIF9-AS1 promoted stemness and sorafenib resistance in HCC by upregulating short stature homeobox 2 expression.
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Xiang-Hong Lu
- Department of Intensive Care Medicine, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jin-Song Mu
- Department of Intensive Care Medicine, The Fifth Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100039, China
| | - Jiang-Yun Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Jiang-Shan Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Hai-Xu Chen
- Institute of Geriatrics and National Clinical Research Center of Geriatrics Disease, The Second Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Xia J, Zhou C, Zhao H, Zhang J, Chai X. LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis. Dig Dis Sci 2024:10.1007/s10620-024-08756-4. [PMID: 39641899 DOI: 10.1007/s10620-024-08756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive malignancy among malignant tumours, with a high incidence globally. LINC01614, a long non-coding RNA, has been identified as an essential regulator in multiple cancer types. However, its biological functions and underlying molecular mechanisms in CRC remain largely unknown. METHODS In this study, we employed RT-qPCR to assess the expression levels of LINC01614 in CRC samples. In vitro, glucose metabolism experiments were conducted to evaluate glucose metabolism in cells. The binding relationship between miR-4443, PFKFB3, and LINC01614 was confirmed through fluorescence reporter gene detection. The subcellular localization of LINC01614 in CRC cells was determined using FISH and subcellular fractionation experiments. Additionally, a mouse subcutaneous tumor model was established for in vivo experiments. RESULTS Our findings reveal that LINC01614 is upregulated in CRC tissues. Silencing of LINC01614 suppresses the malignant behaviors of CRC cells, including cell proliferation, invasion, migration, and aerobic glycolysis. Furthermore, we discovered that LINC01614 promotes the expression of PFKFB3. Additional experiments demonstrated that LINC01614 binds to miR-4443, leading to the upregulation of PFKFB3 expression. Further experiments confirmed that the LINC01614/miR-4443/PFKFB3 axis promotes CRC cell malignancy by enhancing aerobic glycolysis. Additionally, we found that STAT1 promotes the transcription of LINC01614. CONCLUSION These findings uncover a novel regulatory pathway wherein STAT1-induced LINC01614 enhances PFKFB3 expression by sponging miR-4443, thereby accelerating CRC development. This understanding may lead to novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Chenglin Zhou
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Heng Zhao
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Jun Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Xiaoming Chai
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Huang J, Lin J, Zhong T, Qin Z, Li G, Yi T, Lu X, Qin Y. LINC00894 targets Annexin A2 to regulate oxaliplatin resistance in hepatocellular carcinoma: ANXA2 protein function. Int J Biol Macromol 2024; 281:136538. [PMID: 39396585 DOI: 10.1016/j.ijbiomac.2024.136538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
To investigate the role of LINC00894 in oxaliplatin chemoresistance of hepatocellular carcinoma (HCC) and its mechanisms. The oxaliplatin-resistant HCC cell lines were established. IC50 of oxaliplatin was calculated by CCK-8 assay. Cell viability was detected using clonal formation experiment, while cell apoptosis was accessed by flow cytometry. RNA binding protein immunoprecipitation and RNA pull-down were performed to explore the interaction of LINC00894 and ANXA2. The expressions of RNA and protein were tested by qRT-PCR and western blot respectively. Tumor xenograft was performed to detect the effect of LINC00894 in vivo. The expression of ki67 was evaluated by immunohistochemistry staining. LINC00894 was overexpressed in HCC cells resistant to oxaliplatin. Elevated LINC00894 promoted HCC cells resistance to oxaliplatin, whereas silence of LINC00894 improved HCC sensitivity to oxaliplatin. LINC00894 could bind to the ANXA2 protein, enhanced the stability of the ANXA2 protein and reduced its ubiquitination. Furthermore, LINC00894 modulated HCC resistance to oxaliplatin both in vitro and in vivo by targeting the ANXA2 protein.LINC00894 enhanced the stability of ANXA2 protein and attenuated its ubiquitination by interacting with it, thereby promoting oxaliplatin resistance in HCC. Our findings contributed to understanding the role of these mechanisms in the process of oxaliplatin resistance in HCC.
Collapse
MESH Headings
- Annexin A2/metabolism
- Annexin A2/genetics
- Humans
- Oxaliplatin/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Mice
- Apoptosis/drug effects
- Apoptosis/genetics
- Ubiquitination/drug effects
- Xenograft Model Antitumor Assays
- Mice, Nude
- Cell Proliferation/drug effects
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Junling Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China
| | - Jiajie Lin
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise People's Hospital, Baise, 533000, Guangxi Province, China
| | - Zongshuai Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan 2nd Road, Baise 533000, Guangxi Province, China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Xianzhe Lu
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 530632, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi 533000, China; Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China.
| | - Yueqiu Qin
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Province, China.
| |
Collapse
|
4
|
Ye G, Ye M, Jin X. Roles of clinical application of lenvatinib and its resistance mechanism in advanced hepatocellular carcinoma (Review). Am J Cancer Res 2024; 14:4113-4171. [PMID: 39417171 PMCID: PMC11477829 DOI: 10.62347/ujvp4361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lenvatinib (LEN) is a multi-target TKI, which plays a pivotal role in the treatment of advanced hepatocellular carcinoma (HCC). The inevitable occurrence of drug resistance still prevents curative potential and is deleterious for the prognosis, and a growing body of studies is accumulating, which have devoted themselves to unveiling its underlying resistance mechanism and made some progress. The dysregulation of crucial signaling pathways, non-coding RNA and RNA modifications were proven to be associated with LEN resistance. A range of drugs were found to influence LEN therapeutic efficacy. In addition, the superiority of LEN combination therapy has been shown to potentially overcome the limitations of LEN monotherapy in a series of research, and a range of promising indicators for predicting treatment response and prognosis have been discovered in recent years. In this review, we summarize the latest developments in LEN resistance, the efficacy and safety of LEN combination therapy as well as associated indicators, which may provide new insight into its resistance as well as ideas in the treatment of advanced HCC.
Collapse
Affiliation(s)
- Ganghui Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
- Department of Radiation Oncology, Taizhou Central Hospital (Taizhou University Hospital)Taizhou 318000, Zhejiang, P. R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
- Department of Oncology, The First Hospital of Ningbo UniversityNingbo 315020, Zhejiang, P. R. China
| |
Collapse
|
5
|
Zhong X, Wang Y, He X, He X, Hu Z, Huang H, Chen J, Chen K, Wei P, Zhao S, Wang Y, Zhang H, Feng B, Li D. HIF1A-AS2 promotes the metabolic reprogramming and progression of colorectal cancer via miR-141-3p/FOXC1 axis. Cell Death Dis 2024; 15:645. [PMID: 39227375 PMCID: PMC11372083 DOI: 10.1038/s41419-024-06958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
lncRNA can regulate tumorigenesis development and distant metastasis of colorectal cancer (CRC). However, the detailed molecular mechanisms are still largely unknown. Using RNA-sequencing data, RT-qPCR, and FISH assay, we found that HIF1A-AS2 was upregulated in CRC tissues and associated with poor prognosis. Functional experiments were performed to determine the roles of HIF1A-AS2 in tumor progression and we found that HIF1A-AS2 can promote the proliferation, metastasis, and aerobic glycolysis of CRC cells. Mechanistically, HIF1A-AS2 can promote FOXC1 expression by sponging miR-141-3p. SP1 can transcriptionally activate HIF1A-AS2. Further, HIF1A-AS2 can be packaged into exosomes and promote the malignant phenotype of recipient tumor cells. Taken together, we discovered that SP1-induced HIF1A-AS2 can promote the metabolic reprogramming and progression of CRC via miR-141-3p/FOXC1 axis. HIF1A-AS2 is a promising diagnostic marker and treatment target in CRC.
Collapse
Affiliation(s)
- Xinyang Zhong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yaxian Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Xuefeng He
- Cancer Institute, ZJU-UCLA Joint Center for Medical Education and Research, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin He
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zijuan Hu
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Huixia Huang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jiayu Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Keji Chen
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Ping Wei
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Hong Zhang
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Hjazi A, Jasim SA, Altalbawy FMA, Kaur H, Hamzah HF, Kaur I, Deorari M, Kumar A, Elawady A, Fenjan MN. Relationship between lncRNA MALAT1 and Chemo-radiotherapy Resistance of Cancer Cells: Uncovered Truths. Cell Biochem Biophys 2024; 82:1613-1627. [PMID: 38806965 DOI: 10.1007/s12013-024-01317-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
The advancement of novel technologies, coupled with bioinformatics, has led to the discovery of additional genes, such as long noncoding RNAs (lncRNAs), that are associated with drug resistance. LncRNAs are composed of over 200 nucleotides and do not possess any protein coding function. These lncRNAs exhibit lower conservation across species, are typically expressed at low levels, and often display high specificity towards specific tissues and developmental stages. The LncRNA MALAT1 plays crucial regulatory roles in various aspects of genome function, encompassing gene transcription, splicing, and epigenetics. Additionally, it is involved in biological processes related to the cell cycle, cell differentiation, development, and pluripotency. Recently, MALAT1 has emerged as a novel mechanism contributing to drug resistance or sensitivity, attracting significant attention in the field of cancer research. This review aims to explore the mechanisms through which MALAT1 confers resistance to chemotherapy and radiotherapy in cancer cells.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India
- Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of technical engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
7
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Huang P, Wen F, Li Q. Current concepts of the crosstalk between lncRNA and E2F1: shedding light on the cancer therapy. Front Pharmacol 2024; 15:1432490. [PMID: 39119602 PMCID: PMC11306149 DOI: 10.3389/fphar.2024.1432490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) constitute a distinctive subset of RNA molecules with limited protein-coding potential, which exert crucial impacts on various biological activities. In the context of cancer, dysregulated lncRNAs function as essential regulators that affect tumor initiation and malignant progression. These lncRNAs serve as competitive endogenous RNAs (ceRNAs) through sponging microRNAs and regulating the expression of targeted genes. Moreover, they also directly bind to RNA-binding proteins, which can be integrated into a complex mechanistic network. E2F1, an extensively studied transcription factor, mediates multiple malignant behaviors by regulating cell cycle progression, tumor metastasis, and therapeutic response. Emerging evidence suggests that lncRNAs play a pivotal role in regulating the E2F1 pathway. This review aims to elucidate the intricate gene regulatory programs between lncRNAs and E2F1 in cancer progression. We elaborate on distinct mechanistic networks involved in cancer progression, emphasizing the potential of the lncRNAs/E2F1 axes as promising targets for cancer therapy. Additionally, we provide novel perspectives on current evidence, limitations, and future directions for targeting lncRNAs in human cancers. Fully deciphering the intricate network of lncRNA/E2F1-mediated regulatory mechanisms in cancer could facilitate the translation of current findings into clinical course, such efforts ultimately significantly improve the clinical prognosis of cancer patients.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Umezu T, Mori T, Toyoda H, Kanekura K, Tamori A, Ochiya T, Kuroda M, Akutsu T, Murakami Y. Analysis of Carcinogenic Involvement of MicroRNA Pattern in Peripheral Non-Cancerous Tissues and Chronic Viral Liver Injury. Int J Mol Sci 2024; 25:7858. [PMID: 39063098 PMCID: PMC11277156 DOI: 10.3390/ijms25147858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Risk factors for hepatocarcinogenesis include chronic inflammation due to viral infection, liver fibrosis, and aging. In this study, we separated carcinogenic and non-carcinogenic cases due to hepatitis C virus (HCV) infection, aiming to comprehensively analyze miRNA expression in liver tissues by age, and identify factors that contribute to carcinogenesis. Total RNA was extracted from 360 chronic hepatitis C (CH), 43 HCV infected hepatocellular carcinoma (HCC), and surrounding non-tumor (SNT) tissues. MicroRNA (miRNA) expression patterns were analyzed using microarray. Using machine learning, we extracted characteristic miRNA expression patterns for each disease and age. There were no age-dependent changes in miRNA expression in the disease-specific comparisons; however, miRNA expression differed among the age groups of 50, 60, and 70 years of age between CH and SNT. The expression of miRNA was different between SNT and HCC only in patients in their 70s. Of the 55 miRNAs with significant differences in expression between CH and SNT, 34 miRNAs showed significant differences in expression even in the degree of liver fibrosis. The observation that miRNAs involved in hepatocarcinogenesis differ at different ages suggests that the mechanisms of carcinogenesis differ by age group as well. We also found that many miRNAs whose expression did not affect liver fibrosis were involved in carcinogenesis. These findings are expected to define biomarkers for detection of HCC at early stage, and develop novel therapeutic targets for HCC.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (T.U.); (K.K.); (M.K.)
| | - Tomoya Mori
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; (T.M.); (T.A.)
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki, Gifu 503-8502, Japan;
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (T.U.); (K.K.); (M.K.)
| | - Akihiro Tamori
- Department of Hepatology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan;
| | - Takahiro Ochiya
- Institution of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan;
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (T.U.); (K.K.); (M.K.)
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; (T.M.); (T.A.)
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan; (T.U.); (K.K.); (M.K.)
- Department of Dentistry, Asahi University, 3-23 Hashimoto-cho, Gifu 500-8523, Japan
| |
Collapse
|
10
|
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, Zhang Y, Yu H, Tang C. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updat 2024; 74:101084. [PMID: 38640592 DOI: 10.1016/j.drup.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive malignancyin the world, which is frequently diagnosed at late stage with a poor prognosis. For most patients with advanced HCC, the therapeutic options arelimiteddue to cancer occurrence of drug resistance. Hepatic cancer stem cells (CSCs) account for a small subset of tumor cells with the ability of self-renewal and differentiationin HCC. It is widely recognized that the presence of CSCs contributes to primary and acquired drug resistance. Therefore, hepatic CSCs-targeted therapy is considered as a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. In this article, we review drug resistance in HCC and provide a summary of potential targets for CSCs-based therapy. In addition, the development of CSCs-targeted therapeuticsagainst drug resistance in HCC is summarized in both preclinical and clinical trials. The in-depth understanding of CSCs-related drug resistance in HCC will favor optimization of the current therapeutic strategies and gain encouraging therapeutic outcomes.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yuhang Ling
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jie He
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jinling Dong
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Qinliang Mo
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yao Wang
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ying Zhang
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Hongbin Yu
- Department of General Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Wei H, Wu X, Huang L, Long C, Lu Q, Huang Z, Huang Y, Li W, Pu J. LncRNA MEG3 Reduces the Ratio of M2/M1 Macrophages Through the HuR/CCL5 Axis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:543-562. [PMID: 38496248 PMCID: PMC10943271 DOI: 10.2147/jhc.s449090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Objective Tumor-associated macrophages play a crucial role in the development of hepatocellular carcinoma (HCC). Our study aimed to investigate the relationship between long coding RNA (lncRNA) maternally expressed gene 3 (MEG3), RNA-binding protein human antigen R (HuR), and messenger RNA C-C motif chemokine 5 (CCL5) in the modulation of M1 and M2 macrophage polarization in HCC. Methods To induce M1 or M2 polarization, LPS/IFNγ- or IL4/IL13 were used to treat bone marrow derived macrophages (BMDMs). The localization of MEG3 in M1 and M2 macrophages was assessed using fluorescence in situ hybridization assay. Expression levels of MEG3, HuR, CCL5, M1, and M2 markers were measured by RT-qPCR or immunofluorescence staining. Flow cytometry was performed to determine the proportion of F4/80+CD206+ and F4/80+CD68+ cells. RNA pulldown assay was performed to detect the binding of lncRNA MEG3 and HuR. The impacts of HuR on CCL5 stability and activity of CCL5 promoter were evaluated using actinomycin D treatment and luciferase reporter assay. Cell migration, invasiveness, and angiogenesis were assessed using transwell migration and invasion assays and a tube formation assay. A mixture of Huh-7 cells and macrophages were injected into nude mice to explore the effect of MEG3 on tumorigenesis. Results MEG3 promoted M1-like polarization while dampening M2-like polarization of BMDMs. MEG3 bound to HuR in M1 and M2 macrophages. HuR downregulated CCL5 by inhibiting CCL5 transcription in macrophages. In addition, overexpression of MEG3 suppressed cell metastasis, invasion, and angiogenesis by obstructing macrophage M2 polarization. MEG3 inhibited tumorigenesis in HCC via promotion of M1-like polarization and inhibition of M2-like polarization. Rescue experiments showed that depletion of CCL5 in M2 macrophages reversed MEG3-induced suppressive effect on cell migration, invasion, and tube formation. Conclusion MEG3 suppresses HCC progression by promoting M1-like while inhibiting M2-like macrophage polarization via binding to HuR and thus upregulating CCL5.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Xianjian Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Chen Long
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People’s Republic of China
| |
Collapse
|
12
|
Liu B, Gao S, Guo J, Kou F, Liu S, Zhang X, Feng A, Wang X, Cao G, Chen H, Liu P, Xu H, Gao Q, Yang R, Xu L, Zhu X. Efficacy and Safety of HepaSphere Drug-Eluting Bead Transarterial Chemoembolization Combined with Hepatic Arterial Infusion Chemotherapy as the Second-Line Treatment in Advanced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:477-488. [PMID: 38463543 PMCID: PMC10922006 DOI: 10.2147/jhc.s452120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose Recently, hepatic arterial infusion chemotherapy (HAIC) has also gained popularity for hepatocellular carcinoma (HCC). Several studies have compared HAIC and Transarterial chemoembolization (TACE). However, comparisons between TACE plus HAIC and HAIC are rarely reported. Here, we evaluated the performance of HepaSphere DEB-TACE combined with HAIC (Hepa-HAIC) compared to HAIC in patients with advanced HCC. Patients and Methods In this retrospective study, we enrolled 167 patients diagnosed with advanced HCC and treated at Peking University Cancer Hospital from May 2018 to May 2022. The cohort comprised 74 patients who received HepaSphere DEB-TACE combined with HAIC-FOLFOX (Hepa-HAIC) and 93 patients who received HAIC-FOLFOX. Over 60% of patients received prior treatments. To avoid selection bias, propensity score matching was applied to the efficacy and safety analyses. The primary endpoints are progression-free survival (PFS) and overall survival (OS); the secondary endpoints include objective response rate (ORR), disease control rate (DCR), and safety. Results Propensity-matching yielded 48 pairs, and group baselines were almost equal after matching. Median PFS and median OS were both higher in the matched Hepa-HAIC cohort (median PFS: 8.9 vs 5.8 months, p = 0.035; median OS: 22.4 vs 9.5 months, p = 0.027), which was consistent with pre-matching analysis. The ORR in the Hepa-HAIC and HAIC cohorts was 75.0% and 37.5%, respectively; the DCR was 93.8% after Hepa-HAIC and 81.3% after HAIC. There was no treatment-related death. Grade 3-4 ALT elevation was more frequent in the Hepa-HAIC group (33.3% vs 8.3%, p = 0.003), while vomiting was more frequent in the HAIC group (29.2% vs 12.5%, p = 0.084). Conclusion The Hepa-HAIC group is superior to the HAIC group in metrics of PFS, OS, ORR, and DCR, which indicates the combination of HepaSphere DEB-TACE and HAIC may lead to improved outcomes with a comparable safety profile in advanced HCC.
Collapse
Affiliation(s)
- Baojiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Song Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Jianhai Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Fuxin Kou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Shaoxing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Aiwei Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xiaodong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Guang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Hui Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Peng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Haifeng Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Qinzong Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Renjie Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Liang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| | - Xu Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Fei M, Li X, Liang S, Zhou S, Wu H, Sun L, Liu Y, Hu Q, Liu L, Wang J. LncRNA PWRN1 inhibits the progression of hepatocellular carcinoma by activating PKM2 activity. Cancer Lett 2024; 584:216620. [PMID: 38218456 DOI: 10.1016/j.canlet.2024.216620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers. However, the molecular mechanisms underlying the effects of PWRN1, especially the regulatory relationship with RNA binding protein in HCC remain largely unknown. In the present study, we demonstrated that PWRN1 was significantly down-regulated in HCC and correlated with better prognosis; furthermore, gain-of-function experiments showed that PWRN1 inhibited the proliferation of HCC cells. We further found that PWRN1 up-regulated pyruvate kinase activity and thus hinders the proliferation of HCC in vitro and in vivo. Mechanistically, pyruvate kinase M2 (PKM2) was bound to it and maintained the high activity state of PKM2, thereby hindering PKM2 from entering the nucleus in the form of low-activity dimers, reducing the expression of c-Myc downstream gene LDHA, leading to a decrease in lactate levels, and inhibiting the growth of tumor cells. In addition, PWRN1 was found to inhibit aerobic glycolysis. Finally, TEPP-46, a pyruvate kinase activator, appeared to inhibit HCC proliferation by maintaining tetramer stability and increasing pyruvate kinase activity. Taken together, our results provide new insights into the biology hindering HCC proliferation and indicate that PWRN1 in combination with PKM2 activators might represent a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Mingming Fei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Xianying Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Shuo Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Huihui Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Swan Lake Road, Hefei, 230001, Anhui Province, China.
| |
Collapse
|
14
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. SNHG1, interacting with SND1, contributes to sorafenib resistance of liver cancer cells by increasing m6A-mediated SLC7A11 expression and promoting aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1269-1282. [PMID: 37927237 DOI: 10.1002/tox.24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis plays an important role in multidrug resistance of cancer cells. Here, we screened different expressed lncRNAs associated with sorafenib resistance of liver cancer cells, by intersecting the bioinformatics analyses of TCGA and GEO (the GSE62813 dataset) databases. Our results revealed that the 18 upregulated lncRNAs in the intersection are associated with and enriched in metabolism of small molecule organic acids, suggesting their potential in glycolysis. The lncRNA small nucleolar RNA host gene 1 (Snhg1) was chosen as a potential regulator of aerobic glycolysis in liver cancer cells, for its significant promotion on lactate production. Gain- and loss-of-function experiments mediated by Crispr-Cas9 technique in HepG2 cells indicated that Snhg1 promoted cell proliferation, invasion, sorafenib resistance, and aerobic glycolysis. In the mechanism exploration, we found that Snhg1 can interact with SND1 protein, a famous RNA binding protein and recently identified "Reader" of N6-methyladenosine (m6A). SND1 was demonstrated to be positively regulated by Snhg1 and had similar promoting effects on proliferation, invasion, sorafenib resistance, and aerobic glycolysis of HepG2 cells. SND1 bound with and promoted the expression of SLC7A11, an aerobic glycolysis regulator. Furthermore, either silencing SLC7A11 or blocking aerobic glycolysis with 2-deoxy-d-glucose (2-DG) was able to reverse the promotion of Snhg1 overexpression on malignancy, sorafenib resistance, and aerobic glycolysis of HepG2 cells. Finally, in a liver cancer xenograft mouse model, we found that formed tumors with Snhg1-knocked-down HepG2 cells were more sensitive to sorafenib administration. Altogether, SNHG1 contributes to sorafenib resistance of liver cancer cells by promoting SND1-m6A-SLC7A11-mediated aerobic glycolysis.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
15
|
Wang S, Cheng H, Huang Y, Li M, Gao D, Chen H, Su R, Guo K. HSP90a promotes the resistance to oxaliplatin in HCC through regulating IDH1-induced cell competition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119680. [PMID: 38280407 DOI: 10.1016/j.bbamcr.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi 530021, China
| | - Ruxiong Su
- Puning People's Hospital, Southern Medical University, Guangdong 515300, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Fang Y, Tang W, Qu S, Li Z, Zhang X, Miao Y, Zeng Z, Huang H. RBBP7, regulated by SP1, enhances the Warburg effect to facilitate the proliferation of hepatocellular carcinoma cells via PI3K/AKT signaling. J Transl Med 2024; 22:170. [PMID: 38368381 PMCID: PMC10874528 DOI: 10.1186/s12967-024-04964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by aggressive progression and elevated mortality rates. This study aimed to investigate the regulatory effects of RBBP7 on HCC pathogenesis and the underlying mechanisms. METHODS The expression and clinical feature of RBBP7 were evaluated using bioinformatics analysis and the assessment of clinical HCC samples. CCK8 and colony formation were employed to estimate cell proliferation function of RBBP7. Aerobic glycolysis levels of RBBP7 were evaluated by measuring ATP levels, lactic acid production, glucose uptake capacity, and the expression of relevant enzymes (PFKM, PKM2, and LDHA). The phosphorylation levels in PI3K/AKT signaling were measured by western blotting. The regulatory effect of transcription factors of specificity protein 1 (SP1) on RBBP7 mRNA expression was confirmed in dual-luciferase reporter assays and chromatin immunoprecipitation experiments. The proliferation- and glycolysis-associated proteins were assessed using immunofluorescence staining in vivo. RESULTS We found that RBBP7 is expressed at high levels in HCC and predicts poor survival. Functional assays showed that RBBP7 promoted HCC proliferation and glycolysis. Mechanistically, it was demonstrated that RBBP7 activates the PI3K/AKT pathway, a crucial pathway in glycolysis, contributing to the progression of HCC. The outcomes of the dual-luciferase assay further confirmed that SP1 is capable of activating the promoter of RBBP7. CONCLUSIONS RBBP7, which is up-regulated by SP1, promotes HCC cell proliferation and glycolysis through the PI3K/AKT pathway. The findings of this study suggest that RBBP7 is a potential biomarker for HCC.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - WeiQiang Tang
- Institute of Clinical Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, People's Republic of China
| | - Siming Qu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - ZhiTao Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - YingLei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, People's Republic of China
- Yunnan Province Clinical Research Center for Digestive Diseases, Yunnan, People's Republic of China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, China.
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, China.
| |
Collapse
|
17
|
Hashemi M, Esbati N, Rashidi M, Gholami S, Raesi R, Bidoki SS, Goharrizi MASB, Motlagh YSM, Khorrami R, Tavakolpournegari A, Nabavi N, Zou R, Mohammadnahal L, Entezari M, Taheriazam A, Hushmandi K. Biological landscape and nanostructural view in development and reversal of oxaliplatin resistance in colorectal cancer. Transl Oncol 2024; 40:101846. [PMID: 38042134 PMCID: PMC10716031 DOI: 10.1016/j.tranon.2023.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Esbati
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Leila Mohammadnahal
- Department of Health Services Management, School of Health, Tehran University of Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, Zhou Y, Liao Q. The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int 2024; 24:37. [PMID: 38238756 PMCID: PMC10795359 DOI: 10.1186/s12935-023-03186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024] Open
Abstract
One of the key features of cancer is energy metabolic reprogramming which is tightly related to cancer proliferation, invasion, metastasis, and chemotherapy resistance. NcRNAs are a class of RNAs having no protein-coding potential and mainly include microRNAs, lncRNAs and circRNAs. Accumulated evidence has suggested that ncRNAs play an essential role in regulating cancer metabolic reprogramming, and the altered metabolic networks mediated by ncRNAs primarily drive carcinogenesis by regulating the expression of metabolic enzymes and transporter proteins. Importantly, accumulated research has revealed that dysregulated ncRNAs mediate metabolic reprogramming contributing to the generation of therapeutic tolerance. Elucidating the molecular mechanism of ncRNAs in cancer metabolic reprogramming can provide promising metabolism-related therapeutic targets for treatment as well as overcome therapeutic tolerance. In conclusion, this review updates the latest molecular mechanisms of ncRNAs related to cancer metabolic reprogramming.
Collapse
Affiliation(s)
- Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiewen Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Tang J, Long G, Xiao D, Liu S, Xiao L, Zhou L, Tao Y. ATR-dependent ubiquitin-specific protease 20 phosphorylation confers oxaliplatin and ferroptosis resistance. MedComm (Beijing) 2023; 4:e463. [PMID: 38124786 PMCID: PMC10732327 DOI: 10.1002/mco2.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Oxaliplatin (OXA) resistance is a major clinic challenge in hepatocellular carcinoma (HCC). Ferroptosis is a kind of iron-dependent cell death. Triggering ferroptosis is considered to restore sensitivity to chemotherapy. In the present study, we found that USP20 was overexpressed in OXA-resistant HCC cells. High expression of USP20 in HCC was associated with poor prognosis. USP20 contributes OXA resistance and suppress ferroptosis in HCC. Pharmacological inhibition or knockdown of USP20 triggered ferroptosis and increased the sensitivity of HCC cells to OXA both in vitro and in vivo. Coimmunoprecipitation results revealed that the UCH domain of USP20 interacted with the N terminal of SLC7A11. USP20 stabilized SLC7A11 via removing K48-linked polyubiquitination of SLC7A11 protein at K30 and K37. Most importantly, DNA damage-induced ATR activation was required for Ser132 and Ser368 phosphorylation of USP20. USP20 phosphorylation at Ser132 and Ser368 enhanced its stability and thus conferred OXA and ferroptosis resistance of HCC cells. Our study reveals a previously undiscovered association between OXA and ferroptosis and provides new insight into mechanisms regarding how DNA damage therapies always lead to therapeutic resistance. Therefore, targeting USP20 may mitigate the development of drug resistance and promote ferroptosis of HCC in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Guo Long
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liang Xiao
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ledu Zhou
- Department of Liver SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Xiangya HospitalCentral South UniversityHunanChina
- Cancer Research Institute and School of Basic MedicineNHC Key Laboratory of Carcinogenesis (Central South University)Central South UniversityChangshaHunanChina
- Department of Thoracic SurgeryHunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer and Hunan Key Laboratory of Tumor Models and Individualized MedicineSecond Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
20
|
Sun L, Yang Y, Li Y, Li Y, Zhang B, Shi R. The past, present, and future of liver cancer research in China. Cancer Lett 2023; 574:216334. [PMID: 37574184 DOI: 10.1016/j.canlet.2023.216334] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Liver cancer is among the leading causes of cancer-related death worldwide and China accounts for nearly half of the global burden of liver cancer. Effective interventions such as hepatitis vaccinations, new blood tests and imaging tests significantly decreased the incidence worldwide, especially in China. Unraveling the systemic and molecular mechanisms of liver cancer would contribute to develop more effective therapies to prolong the 5 year survival of the patients. The Chinese funding agencies have been paying high attention to the basic and translational research of liver cancer. Over the last decade, the National Natural Science Foundation of China (NSFC) initiated a panel of research programs which supported liver cancer research in multiple directions. Besides, great progress has been made in basic and clinical research, platform construction and drug development in the field of liver cancer. In this article, we summarized the funding landscape, research progress, cooperation among countries and institutions, and drug discovery in China, with an attempt to compare the status and outcome with our peers globally.
Collapse
Affiliation(s)
- Lichao Sun
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, PR China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, PR China.
| | - Yuan Yang
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, PR China.
| | - Yang Li
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, PR China.
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, 230031, Anhui, PR China.
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| | - Rong Shi
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, PR China.
| |
Collapse
|
21
|
Mao D, Zhou Z, Chen H, Liu X, Li D, Chen X, He Y, Liu M, Zhang C. Pleckstrin-2 promotes tumour immune escape from NK cells by activating the MT1-MMP-MICA signalling axis in gastric cancer. Cancer Lett 2023; 572:216351. [PMID: 37591356 DOI: 10.1016/j.canlet.2023.216351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Immune escape is a major challenge in tumour immunotherapy. Pleckstrin-2(PLEK2) plays a critical role in tumour progression, but its role in immune escape in gastric cancer (GC) remains uncharacterized. RNA sequencing was used to explore the differentially expressed genes in a GC cell line that was resistant to the antitumor effect of Natural killer (NK) cells. Apoptosis and the expression of IFN-γ and TNF-α were detected by flow cytometry (FCM). PLEK2 expression was examined by Western blotting and immunohistochemistry (IHC). PLEK2 was upregulated in MGC803R cells that were resistant to the antitumor effect of NK cells. PLEK2 knockout increased the sensitivity of GC cells to NK cell killing. PLEK2 expression was negatively correlated with MICA and positively correlated with MT1-MMP expression both in vitro and in vivo. PLEK2 promoted Sp1 phosphorylation through the PI3K-AKT pathway, thereby upregulating MT1-MMP expression, which ultimately led to MICA shedding. In mouse xenograft models, PLEK2 knockout inhibited intraperitoneal metastasis of GC cells and promoted NK cell infiltration. In summary, PLEK2 suppressed NK cell immune surveillance by promoting MICA shedding, which serves as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Deli Mao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Zhijun Zhou
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States
| | - Hengxing Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xinran Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Dongsheng Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Xiancong Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Department of Gastrointestinal Surgery of the First Affiliated Hospital of Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Mingyang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
22
|
Liu Y, Wang Y, Li C, Feng H, Liu Y, Ma L. An effective prognostic model in colon adenocarcinoma composed of cuproptosis-related epigenetic regulators. Front Pharmacol 2023; 14:1254918. [PMID: 37701039 PMCID: PMC10494936 DOI: 10.3389/fphar.2023.1254918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Colorectal adenocarcinoma (COAD) is a common malignant tumor with little effective prognostic markers. Cuproptosis is a newly discovered mode of cell death that may be related to epigenetic regulators. This study aimed to explore the association between epigenetic regulators and cuproptosis, and to establish a prognostic prediction model for COAD based on epigenetic regulators associated with cuproptosis (EACs). Methods: RNA sequencing data and clinical data of 524 COAD patients were obtained from the TCGA-COAD database, cuproptosis-related genes were from the FerrDb database, and epigenetic-related genes were from databases such as GO and EpiFactors. LASSO regression analysis and other methods were used to screen out epigenetic regulators associated with cuproptosis and prognosis. The risk score of each patient was calculated and the patients were divided into high-risk group and low-risk group. Next, the survival difference, functional enrichment analyses, tumor mutation burden, chemotherapy drug sensitivity and other indicators between the two groups were compared and analyzed. Results: We found 716 epigenetic regulators closely related to cuproptosis, among which 35 genes were related to prognosis of COAD. We further screened out 7 EACs from the 35 EACs to construct a prognostic prediction model. We calculated the risk score of each patient based on these 7 genes, and divided the patients into high-risk group and low-risk group. We found that the overall survival rate and progression-free survival rate of the high-risk group were significantly lower than those of the low-risk group. This model showed good predictive ability in the training set, test set and overall data set. We also constructed a prognostic prediction model based on risk score and other clinical features, and drew the corresponding Nomogram. In addition, we found significant differences between the high-risk group and the low-risk group in tumor mutation burden, chemotherapy drug sensitivity and other clinical aspects. Conclusion: We established an effective predictive prediction model for COAD based on EACs, revealing the association between epigenetic regulators and cuproptosis in COAD. We hope that this model can not only facilitate the treatment decision of COAD patients, but also promote the research progress in the field of cuproptosis.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Ge WJ, Huang H, Wang T, Zeng WH, Guo M, Ren CR, Fan TY, Liu F, Zeng X. Long non-coding RNAs in hepatocellular carcinoma. Pathol Res Pract 2023; 248:154604. [PMID: 37302276 DOI: 10.1016/j.prp.2023.154604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.
Collapse
Affiliation(s)
- Wen-Jun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hong Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chen-Ran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Yu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fang Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Yuan H, Ren Q, Du Y, Ma Y, Gu L, Zhou J, Tian W, Deng D. LncRNA miR663AHG represses the development of colon cancer in a miR663a-dependent manner. Cell Death Discov 2023; 9:220. [PMID: 37400477 DOI: 10.1038/s41420-023-01510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The MIR663AHG gene encodes both miR663AHG and miR663a. While miR663a contributes to the defense of host cells against inflammation and inhibits colon cancer development, the biological function of lncRNA miR663AHG has not been previously reported. In this study, the subcellular localization of lncRNA miR663AHG was determined by RNA-FISH. miR663AHG and miR663a were measured by qRT-PCR. The effects of miR663AHG on the growth and metastasis of colon cancer cells were investigated in vitro and in vivo. CRISPR/Cas9, RNA pulldown, and other biological assays were used to explore the underlying mechanism of miR663AHG. We found that miR663AHG was mainly distributed in the nucleus of Caco2 and HCT116 cells and the cytoplasm of SW480 cells. The expression level of miR663AHG was positively correlated with the level of miR663a (r = 0.179, P = 0.015) and significantly downregulated in colon cancer tissues relative to paired normal tissues from 119 patients (P < 0.008). Colon cancers with low miR663AHG expression were associated with advanced pTNM stage (P = 0.021), lymph metastasis (P = 0.041), and shorter overall survival (hazard ratio = 2.026; P = 0.021). Experimentally, miR663AHG inhibited colon cancer cell proliferation, migration, and invasion. The growth of xenografts from RKO cells overexpressing miR663AHG was slower than that of xenografts from vector control cells in BALB/c nude mice (P = 0.007). Interestingly, either RNA-interfering or resveratrol-inducing expression changes of miR663AHG or miR663a can trigger negative feedback regulation of transcription of the MIR663AHG gene. Mechanistically, miR663AHG could bind to miR663a and its precursor pre-miR663a, and prevent the degradation of miR663a target mRNAs. Disruption of the negative feedback by knockout of the MIR663AHG promoter, exon-1, and pri-miR663A-coding sequence entirely blocked these effects of miR663AHG, which was restored in cells transfected with miR663a expression vector in rescue experiment. In conclusion, miR663AHG functions as a tumor suppressor that inhibits the development of colon cancer through its cis-binding to miR663a/pre-miR663a. The cross talk between miR663AHG and miR663a expression may play dominant roles in maintaining the functions of miR663AHG in colon cancer development.
Collapse
Affiliation(s)
- Hongfan Yuan
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
- The Department of Medical Oncology, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic and Technology of China, Chengdu, 610042, China
| | - Qianwen Ren
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yantao Du
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China
| | - Yuwan Ma
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wei Tian
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing), Division of Cancer Etiology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
25
|
Gao H, Tuluhong D, Li X, Zhu Y, Xu C, Wang J, Li H, Wang S, Ding W. CircSNX25 mediated by SP1 promotes the carcinogenesis and development of triple-negative breast cancer. Cell Signal 2023:110776. [PMID: 37331414 DOI: 10.1016/j.cellsig.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Circular RNAs (circRNAs), according to a growing body of research, are thought to be important in the initiation and development of a number of cancers. However, more research is needed to fully understand how circRNAs work at the molecular level in triple-negative breast cancer (TNBC). RNA sequencing was conducted on four sets of TNBC samples and their corresponding adjacent noncancerous tissues (ANTs). The circSNX25 expression was assessed using quantitative real-time PCR in TNBC tissues and cells. Several in vitro and in vivo experiments were conducted in order to examine the function of circSNX25 in TNBC carcinogenesis. Through luciferase reporter and chromatin immunoprecipitation (ChIP) assays, we also investigated the potential regulation of circSNX25 biogenesis by specificity protein 1 (SP1). To further validate the relationship between circSNX25 and COPI coat complex subunit beta 1 (COPB1) in TNBC, we conducted circRNA pull-down and RNA immunoprecipitation (RIP) assays using the MS2/MS2-CP system. Online databases were analyzed to examine the clinical implications and prognostic value of COPB1 in TNBC. A higher circSNX25 expression levels were observed in tissues and cells of TNBC. Silencing circSNX25 notably inhibited TNBC cell proliferation, triggered apoptosis, and hindered tumor growth in vivo. Conversely, upregulation of circSNX25 had the opposite effects. Mechanistically, circSNX25 was found to physically interact with COPB1. Importantly, we identified that SP1 may enhance circSNX25 biogenesis. COPB1 levels were markedly higher in TNBC cells. Analysis of online databases revealed that TNBC patients with elevated COPB1 levels had a poorer prognosis. Our findings demonstrate that SP1-mediated circSNX25 promotes TNBC carcinogenesis and development. CircSNX25 may therefore serve as both a diagnostic and therapeutic biomarker for TNBC patients.
Collapse
Affiliation(s)
- Hongyu Gao
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Dilihumaer Tuluhong
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Xinfang Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China
| | - Yueyun Zhu
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Cheng Xu
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Jingjie Wang
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Hanjun Li
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China
| | - Shaohua Wang
- Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China; General Surgery, Nanjing Maternity and Child Health Care Hospital, Woman's Hospital of Nanjing Medical University, No. 123 Tianfei Xiang, Mochou Road, Nanjing, Jiangsu 210002, China.
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
26
|
Ye D, Ma J, Yu T, Ran F, Zha Y. LncRNA FAM13A-AS1, transcriptionally regulated by PHOX2B, modulates hepatocellular carcinoma chemoresistance via stabilizing PPARγ. Gene 2023:147570. [PMID: 37330023 DOI: 10.1016/j.gene.2023.147570] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global public health concern, with approximately 79 million new cases and 75 million HCC-related deaths occurring annually worldwide. Among the drugs, cisplatin (DDP) is considered a cornerstone and has been shown to significantly inhibit cancer progression. However, the mechanism underlying DDP-resistance in HCC remains unclear. This study aimed to identify a novel lncRNA. FAM13A Antisense RNA 1 (FAM13A-AS1), that promotes the proliferation of DDP-resistant HCC cells and to elucidate its downstream and upstream mechanisms in the progression of HCC DDP-resistance. Our results suggest that FAM13A-AS1 interacts directly with Peroxisome Proliferator Activated Receptor γ (PPARγ), stabilizing its protein through de-ubiquitination. Moreover, our findings indicate that Paired Like Homeobox 2B (PHOX2B) transcriptionally regulates the expression of FAM13A-AS1 in HCC cells. These results shed new light on the understanding of the progression of HCC DDP-resistance.
Collapse
Affiliation(s)
- Daowen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Tingdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fengming Ran
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yong Zha
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
27
|
Lin X, Chen J, Li X, Chen D, Luo K, Deng Y, Yang D, Huang Z, Tao C. Dimeric oxyberberine CT4-1 targets LINC02331 to induce cytotoxicity and inhibit chemoresistance via suppressing Wnt/β-catenin signaling in hepatocellular carcinoma. Arch Toxicol 2023; 97:1627-1647. [PMID: 37120773 DOI: 10.1007/s00204-023-03501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer characterized by high recurrence rates. Overcoming chemoresistance can reduce HCC recurrence and improve patients' prognosis. This work aimed to identify HCC chemoresistance-associated long non-coding RNA (lncRNA) and find an effective drug targeting the identified lncRNA for ameliorating the chemoresistance. In this investigation, bioinformatics analysis based on The Cancer Genome Atlas revealed a new chemoresistance index and suggested LINC02331 as an HCC chemoresistance and patients' prognosis-associated lncRNA that served as an independent prognostic indicator. Moreover, LINC02331 promoted DNA damage repair, DNA replication, and epithelial-mesenchymal transition as well as attenuated cell cycle arrest and apoptosis through regulating Wnt/β-catenin signaling, thus stimulating HCC resistance to cisplatin cytotoxicity, proliferation, and metastasis. Interestingly, we developed a novel oxidative coupling approach to synthesize a dimeric oxyberberine CT4-1, which exerted superior anti-HCC activities without obvious side effects measured by in vivo mice model and could downregulate LINC02331 mice model and could downregulate LINC02331 to mitigate LINC02331-induced HCC progression by suppressing Wnt/β-catenin signaling. RNA sequencing analyses verified the involvement of CT4-1-affected differential expression genes in dysregulated pathways and processes, including Wnt, DNA damage repair, cell cycle, DNA replication, apoptosis, and cell adhesion molecules. Furthermore, CT4-1 was demonstrated to be an effective cytotoxic drug in ameliorating HCC patients' prognosis with a prediction model constructed based on RNA-sequencing data from CT4-1-treated cancer cells and public cancer database. In summary, HCC chemoresistance-associated LINC02331 independently predicted poor patients' prognosis and enhanced HCC progression by promoting resistance to cisplatin cytotoxicity, proliferation, and metastasis. Targeting LINC02331 by the dimeric oxyberberine CT4-1 that exhibited synergistic cytotoxicity with cisplatin could alleviate HCC progression and improve patients' prognosis. Our study identified LINC02331 as an alternative target and suggested CT4-1 as an effective cytotoxic drug in HCC treatment.
Collapse
Affiliation(s)
- Xian Lin
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jian Chen
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, 518036, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Dong Chen
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Kaixuan Luo
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yongxing Deng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China.
| | - Cheng Tao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
28
|
Li J, Qi C, Shao S, Chen Y, Peng Z, Shen Q, Zhang Z. SP1 transcriptionally regulates UBE2N expression to promote lung adenocarcinoma progression. MOLECULAR BIOMEDICINE 2023; 4:7. [PMID: 36964266 PMCID: PMC10039148 DOI: 10.1186/s43556-023-00118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/05/2023] [Indexed: 03/26/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the main cause of cancer-related death worldwide. Understanding the mechanisms of LUAD progression may provide insights into targeted therapy approaches for this malignancy. Ubiquitin-conjugating enzyme 2 N (UBE2N) has been demonstrated to play key roles in the progression of various cancers. However, the functions and mechanisms underlying UBE2N expression in LUAD are still unclear. In this study, we found that UBE2N is highly expressed in LUAD and patients with high UBE2N expression in their tumors have poor clinical outcomes. Moreover, we showed that UBE2N interference significantly inhibited LUAD progression in vitro and in vivo. At the molecular level, we demonstrated that the UBE2N is a bona fide target of transcription factor SP1. SP1 directly bound to the promoter of UBE2N and upregulated its expression in LUAD cells, which in turn contributed to the progression of LUAD. Furthermore, we found that there is a strong positive correlation between the expression of SP1 and UBE2N in LUAD samples. Importantly, LUAD patients with concomitantly high expression of SP1 and UBE2N were significantly associated with poor clinical outcomes. In conclusion, our study demonstrated that the SP1-UBE2N signaling axis might play a key role in the malignant progression of LUAD, which provides new targets and strategies for the treatment of LUAD.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Chunchun Qi
- Medical College of Nankai University, Tianjin, 300071, China
| | - Shanshan Shao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanru Chen
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Zimei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Qinglin Shen
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China.
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, Nanchang, 330006, China.
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
29
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Zhao H, Yin X, Xu H, Liu K, Liu W, Wang L, Zhang C, Bo L, Lan X, Lin S, Feng K, Ning S, Zhang Y, Wang L. LncTarD 2.0: an updated comprehensive database for experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res 2022; 51:D199-D207. [PMID: 36321659 PMCID: PMC9825480 DOI: 10.1093/nar/gkac984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
An updated LncTarD 2.0 database provides a comprehensive resource on key lncRNA-target regulations, their influenced functions and lncRNA-mediated regulatory mechanisms in human diseases. LncTarD 2.0 is freely available at (http://bio-bigdata.hrbmu.edu.cn/LncTarD or https://lnctard.bio-database.com/). LncTarD 2.0 was updated with several new features, including (i) an increased number of disease-associated lncRNA entries, where the current release provides 8360 key lncRNA-target regulations, with 419 disease subtypes and 1355 lncRNAs; (ii) predicted 3312 out of 8360 lncRNA-target regulations as potential diagnostic or therapeutic biomarkers in circulating tumor cells (CTCs); (iii) addition of 536 new, experimentally supported lncRNA-target regulations that modulate properties of cancer stem cells; (iv) addition of an experimentally supported clinical application section of 2894 lncRNA-target regulations for potential clinical application. Importantly, LncTarD 2.0 provides RNA-seq/microarray and single-cell web tools for customizable analysis and visualization of lncRNA-target regulations in diseases. RNA-seq/microarray web tool was used to mining lncRNA-target regulations in both disease tissue samples and CTCs blood samples. The single-cell web tools provide single-cell lncRNA-target annotation from the perspectives of pan-cancer analysis and cancer-specific analysis at the single-cell level. LncTarD 2.0 will be a useful resource and mining tool for the investigation of the functions and mechanisms of lncRNA deregulation in human disease.
Collapse
Affiliation(s)
| | | | | | | | - Wangyang Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lixia Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lin Bo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xicheng Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shihua Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ke Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- Correspondence may also be addressed to Shangwei Ning. Tel: +86 451 86615922;
| | - Yunpeng Zhang
- Correspondence may also be addressed to Yunpeng Zhang. Tel: +86 451 86615922;
| | - Li Wang
- To whom correspondence should be addressed. Tel: +86 451 86615922;
| |
Collapse
|
33
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
34
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
35
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Liu C, Gao J, Yang D, Yu Q, Zhang S. Title: Multi-Omics and Immune Landscape of Proliferative LncRNA Signatures: Implications for Risk Stratification and Immunotherapy in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:907433. [PMID: 35662721 PMCID: PMC9158467 DOI: 10.3389/fphar.2022.907433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) are significantly implicated in tumor proliferation. Nevertheless, proliferation-derived lncRNAs and their latent clinical significance remain largely unrevealed in hepatocellular carcinoma (HCC). Methods: This research enrolled 658 HCC patients from five independent cohorts. We retrieved 50 Hallmark gene sets from the MSigDB portal. Consensus clustering was applied to identify heterogeneous proliferative subtypes, and the nearest template prediction (NTP) was utilized to validate the subtypes. We introduced an integrative framework (termed “ProLnc”) to identify proliferation-derived lncRNAs. Moreover, a proliferation-related signature was developed and verified in four independent cohorts. Results: In 50 Hallmarks, seven proliferation pathways were significantly upregulated and correlated with a worse prognosis. Subsequently, we deciphered two heterogeneous proliferative subtypes in TCGA-LIHC. Subtype 2 displayed enhanced proliferative activities and a worse prognosis, whereas subtype 1 was associated with hyperproliferative HCC and a favorable prognosis. The NTP further verified the robustness and reproducibility of two subtypes in four cohorts derived from different platforms. Combining the differentially expressed lncRNAs from two subtypes with proliferative lncRNA modulators from our ProLnc pipeline, we determined 230 proliferation-associated lncRNAs. Based on the bootstrapping channel and the verification of multiple cohorts, we further identified ten lncRNAs that stably correlated with prognosis. Subsequently, we developed and validated a proliferative lncRNA signature (ProLncS) that could independently and accurately assess the overall survival (OS) and relapse-free survival (RFS) of HCC patients in the four cohorts. Patients with high ProLncS score displayed significantly genomic alterations (e.g., TP53 mutation, 8p23-8p24 copy number variation) and higher abundances of immune cells and immune checkpoint molecules, which suggested immunotherapy was more suitable for patients with high ProLncS score. Conclusion: Our work provided new insights into the heterogeneity of tumor proliferation, and ProLncS could be a prospective tool for tailoring the clinical decision and management of HCC.
Collapse
Affiliation(s)
- Chi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Dongjing Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| |
Collapse
|
37
|
Sánchez-Marín D, Trujano-Camacho S, Pérez-Plasencia C, De León DC, Campos-Parra AD. LncRNAs driving feedback loops to boost drug resistance: sinuous pathways in cancer. Cancer Lett 2022; 543:215763. [PMID: 35680071 DOI: 10.1016/j.canlet.2022.215763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Feedback loops mediate signaling pathways to maintain cellular homeostasis. There are two types, positive and negative feedback loops. Both are subject to alterations, and consequently can become pathogenic in the development of diseases such as cancer. Long noncoding RNAs (lncRNAs) are regulators of signaling pathways through feedback loops hidden as the dark regulatory elements yet to be described with great impact on cancer tumorigenesis, development, and drug resistance. Several feedback loops have been studied in cancer, however, how they are regulated by lncRNAs is hardly evident, setting a trending topic in oncological research. In this review, we recapitulate and discuss the feedback loops that are regulated by lncRNAs to promote drug resistance. Furthermore, we propose additional strategies that allow us to identify, analyze and comprehend feedback loops regulated by lncRNAs to induce drug resistance or even to gain insight into novel feedback loops that are stimulated under the pressure of treatment and consequently increase its efficacy. This knowledge will be useful to optimize the therapeutic use of oncological drugs.
Collapse
Affiliation(s)
- David Sánchez-Marín
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México; Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, 54090, Estado de México, México.
| | - David Cantú De León
- Unidad de Investigación Biomédica del Cáncer. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| | - Alma D Campos-Parra
- Laboratorio de Genómica. Instituto Nacional de Cancerología (INCan). San Fernando 22 Col. Sección XVI, C.P. 14080, Ciudad de México, México.
| |
Collapse
|