1
|
Loap P, Goudjil F, Kirova Y. Radiation exposure of the glandular mammary tissue in women patients with mediastinal Hodgkin lymphoma treated with protons. Cancer Radiother 2024; 28:380-384. [PMID: 39098509 DOI: 10.1016/j.canrad.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Secondary breast cancer is a frequent late adverse event of mediastinal Hodgkin lymphoma radiotherapy. Secondary breast cancers overwhelmingly correspond to ductal carcinoma and develop from the glandular mammary tissue. In addition, during childhood, radiation overexposure of the glandular tissue may lead to a late breast hypotrophy at adult age. The aim of this study was to evaluate the radiation exposure to the glandular tissue in patients treated for mediastinal Hodgkin lymphoma with intensity-modulated proton therapy, in order to evaluate the potential dosimetric usefulness of its delineation for breast sparing. MATERIALS AND METHODS Sixteen consecutive intermediate-risk mediastinal female patients with Hodgkin lymphoma treated with consolidation radiation with deep inspiration breath hold intensity-modulated proton therapy to the total dose of 30Gy were included. Breasts were delineated according to the European Society for Radiotherapy and Oncology guidelines for treatment optimization ("clinical organ at risk"). The glandular tissue ("glandular organ at risk") was retrospectively contoured on the initial simulation CT scans based on Hounsfield unit (HU) values, using a range between -80HU and 500HU. RESULTS The mean and maximum doses delivered to the glandular organ at risk were significantly lower than the mean and maximum doses delivered to the clinical organ at risk, but were statistically correlated. Glandular organ at risk volumes were significantly smaller. CONCLUSION Optimizing the treatment plans on the clinical breast contours will systematically lead to overestimation of the dose received to the glandular tissue and, consequently, to an indistinct and involuntary improved glandular tissue sparing. As such, our findings do not support the consideration of the glandular tissue as an additional organ at risk when planning intensity-modulated proton therapy for mediastinal Hodgkin lymphoma in female patients.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, institut Curie, Paris, France.
| | - Farid Goudjil
- Department of Radiation Oncology, institut Curie, Paris, France
| | - Youlia Kirova
- Department of Radiation Oncology, institut Curie, Paris, France
| |
Collapse
|
2
|
Loap P, Kirova Y, Dendale R. Primary ophthalmic natural killer/T-cell lymphoma: A population-based study. Bull Cancer 2024; 111:310-313. [PMID: 38199833 DOI: 10.1016/j.bulcan.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Ophthalmic lymphomas, a subgroup of extra-nodal lymphomas, have seen an increase in incidence in recent decades. Of these, the NK/T-cell lymphoma (NKTL) subtype is particularly aggressive. Though prevalent mostly in Asian patients, data on ophthalmic NKTL is still limited, especially in the western population. This study aimed to provide an additional analysis of primary ophthalmic NKTL using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS A retrospective analysis was performed on the SEER database covering records from 2000 to 2020. Patients diagnosed with extranodal NKTL originating primarily from an ophthalmic structure were identified. RESULTS Out of 4540 ophthalmic lymphomas registered in the SEER database between 2000 and 2020, 9 cases (0.2%) corresponded to ophthalmic NKTL, occurring in patients with a median age of 67 years. The majority of these patients underwent chemotherapy (88.8%) and radiotherapy (66.6%). The 6-month overall survival (OS) and cancer-specific survival (CSS) were both at 50.8%, dropping significantly at the 2-year follow-up. CONCLUSION Primary orbital NKTL has a notably severe prognosis. An early diagnosis is important due to the aggressive nature of NKTL.
Collapse
Affiliation(s)
- Pierre Loap
- Institut Curie, département d'oncologie radiothérapie, Paris, France.
| | - Youlia Kirova
- Institut Curie, département d'oncologie radiothérapie, Paris, France
| | - Rémi Dendale
- Institut Curie, département d'oncologie radiothérapie, Paris, France
| |
Collapse
|
3
|
Loap P, Vignon M, Bouscary D, Kirova Y. Pediatric Plasma Cell Neoplasms: A Population-Based Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:841-846. [PMID: 35941071 DOI: 10.1016/j.clml.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Plasma cell neoplasms are exceptionally rare in the pediatric population; the demographic characteristics and the clinical outcomes of plasma cell neoplasms in this population are currently poorly understood. The aim of this study was to provide a comprehensive analysis of pediatric plasma cell neoplasms, based on the United-States Surveillance, Epidemiology, and End Results (SEER) program registries. MATERIALS AND METHODS All pediatric patients (aged less than 20 years) diagnosed with a malignant plasma cell neoplasm were retrieved from the SEER Program database (18 registries), collecting patient records between 2000 and 2018. The plasma cell neoplasm type, sex, age at diagnosis, year of diagnosis, race and origin, primary disease site, follow-up duration, and vital status at the last known contact were retrieved and analyzed. RESULTS The age-adjusted incidence rate of plasma cell neoplasms for 1,000,000 person-years was 0.06 for the pediatric population (compared with 90.6 for the adult population). The types of pediatric plasma cell neoplasms predominantly consisted of plasmacytomas, with 11 solitary extraosseous plasmacytoma (42.3%) and 7 solitary bone plasmacytoma (26.9%), while plasma cell myelomas represented only a minority of the neoplasms (8 patients; 30.8%). Most plasmacytomas were localized in the head and neck region. Hispanic patients represented 50% of the pediatric plasma cell neoplasm cases (but only 11.1% of adult cases, P < .01). Female-to-Male ratio was 1.36. Five-year overall survival rates were 88.2% (95% confidence interval [95% CI]: 74.2%-100%) for pediatric plasmacytoma and 36.5% (95% CI: 12.4%-100%) for pediatric plasma cell myeloma (P = .013). CONCLUSION This first population-based study of pediatric plasma cell neoplasms underlines the rarity of this entity and demonstrates its unique characteristics, including the significant predominance of plasmacytomas, of female patients, and of patients from hispanic origin, and the poor clinical outcomes of pediatric plasma cell myeloma patients.
Collapse
Affiliation(s)
- Pierre Loap
- Institut Curie, Department of Radiotherapy, Paris, France.
| | | | | | - Youlia Kirova
- Institut Curie, Department of Radiotherapy, Paris, France
| |
Collapse
|
4
|
Stowe HB, Andruska ND, Reynoso F, Thomas M, Bergom C. Heart Sparing Radiotherapy Techniques in Breast Cancer: A Focus on Deep Inspiration Breath Hold. BREAST CANCER: TARGETS AND THERAPY 2022; 14:175-186. [PMID: 35899145 PMCID: PMC9309321 DOI: 10.2147/bctt.s282799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Adjuvant radiation therapy is a critical component of breast cancer management. However, when breast cancer patients receive incidental radiation to the heart, there is an increased risk of cardiac disease and mortality. This is most common for patients with left-sided breast cancers and those receiving nodal irradiation as part of treatment. The overall risk of cardiac toxicity increases 4–16% with each Gray increase in mean heart radiation dose, with data suggesting that no lower limit exists which would eliminate cardiac risk entirely. Radiation techniques have improved over time, leading to lower cardiac radiation exposure than in the past. This decline is expected to reduce the incidence of radiation-induced heart dysfunction in patients. Deep inspiration breath hold (DIBH) is one such technique that was developed to reduce the risk of cardiac death and coronary events. DIBH is a non-invasive approach that capitalizes on the natural physiology of the respiratory cycle to increase the distance between the heart and the therapeutic target throughout the course of radiation therapy. DIBH has been shown to decrease the mean incidental radiation doses to the heart and left anterior descending coronary artery by approximately 20–70%. In this review, we summarize different techniques for DIBH and discuss recent data on this technique.
Collapse
Affiliation(s)
- Hayley B Stowe
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Neal D Andruska
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Francisco Reynoso
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Thomas
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Cardio-Oncology Center of Excellence, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Correspondence: Carmen Bergom, Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA, Email
| |
Collapse
|
5
|
Loap P, Orlandi E, De Marzi L, Vitolo V, Barcellini A, Iannalfi A, Dendale R, Kirova Y, Mirandola A. Cardiotoxicity model-based patient selection for Hodgkin lymphoma proton therapy. Acta Oncol 2022; 61:979-986. [PMID: 35668710 DOI: 10.1080/0284186x.2022.2084639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Hodgkin lymphoma (HL) is a highly curable hematological malignancy. Consolidation radiation therapy techniques have made significant progresses to improve organ-at-risk sparing in order to reduce late radiation-induced toxicity. Recent technical breakthroughs notably include intensity modulated proton therapy (IMPT), which has demonstrated a major dosimetric benefit at the cardiac level for mediastinal HL patients. However, its implementation in clinical practice is still challenging, notably due to the limited access to proton therapy facilities. In this context, the purpose of this study was to estimate the benefit of IMPT for HL proton therapy for diverse cardiac adverse events and to propose a general frame for mediastinal HL patient selection strategy for IMPT based on cardiotoxicity reduction, patient clinical factors, and IMPT treatment availability. MATERIAL AND METHODS This retrospective dosimetric study included 30 mediastinal HL patients treated with VMAT. IMPT plans were generated on the initial simulation scans. Dose to the heart, to the left ventricle and to the valves were retrieved to calculate the relative risk (RR) of ischemic heart disease (IHD), congestive heart failure (CHF) and valvular disease (VD). Composite relative risk reduction (cRRR) of late cardiotoxicity, between VMAT and IMPT, were calculated as the weighted mean of relative risk reduction for IHD, CHF and VD, calculated across a wide range of cardiovascular risk factor combinations. The proportion of mediastinal HL patients who could benefit from IMPT was estimated in European countries, based on the country population and on the number of active gantries, to propose country-specific cRRR thresholds for patient selection. RESULTS Compared with VMAT, IMPT significantly reduced average mean doses to the heart (2.36 Gy vs 0.99 Gy, p < 0.01), to the left ventricle (0.67 Gy vs 0.03, p < 0.01) and to the valves (1.29 Gy vs. 0.06, p < 0.01). For a HL patient without cardiovascular risk factor other than anthracycline-based chemotherapy, the relative risks of late cardiovascular complications were significantly lower after IMPT compared with VMAT for ischemic heart disease (1.07 vs 1.17, p < 0.01), for congestive heart failure (2.84 vs. 3.00, p < 0.01), and for valvular disease (1.01 vs. 1.06, p < 0.01). The median cRRR of cardiovascular adverse events with IMPT was 4.8%, ranging between 0.1% and 30.5%, depending on the extent of radiation fields and on the considered cardiovascular risk factors. The estimated proportion of HL patients currently treatable with IMPT in European countries with proton therapy facilities ranged between 8.0% and 100% depending on the country, corresponding to cRRR thresholds ranging from 24.0% to 0.0%. CONCLUSION While a statistically significant clinical benefit is theoretically expected for ischemic heart disease, cardiac heart failure and valvular disease for mediastinal HL patients with IMPT, the overall cardiotoxicity risk reduction is notable only for a minority of patients. In the context of limited IMPT availability, this study proposed a general model-based selection approach for mediastinal HL patient based on calculated cardiotoxicity reduction, taking into consideration patient clinical characteristics and IMPT facility availability.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Centre de Protonthérapie (CPO), Institut Curie, Orsay, France.,Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| | - Ester Orlandi
- Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Centre de Protonthérapie (CPO), Institut Curie, Orsay, France
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| | - Alberto Iannalfi
- Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| | - Rémi Dendale
- Department of Radiation Oncology, Institut Curie, Paris, France.,Centre de Protonthérapie (CPO), Institut Curie, Orsay, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France.,Centre de Protonthérapie (CPO), Institut Curie, Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, Centro Nazionale di Adronterapia Oncologica (CNAO), Pavia, Italia
| |
Collapse
|
6
|
Loap P, Vitolo V, Barcellini A, De Marzi L, Mirandola A, Fiore MR, Vischioni B, Jereczek-Fossa BA, Girard N, Kirova Y, Orlandi E. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front Oncol 2021; 11:738320. [PMID: 34707989 PMCID: PMC8543015 DOI: 10.3389/fonc.2021.738320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Institut Curie, Paris Sciences & Lettres (PSL) Research University, University Paris Saclay, laboratoire d'Imagerie Translationnelle en Oncologie, Institut National de la Santé et de la Recherche Médicale (INSERM LITO), Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Division of Radiotherapy, Istituto Europeo di Oncologia (IEO) European Institute of Oncology Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,University Paris Saint-Quentin, Versailles, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
7
|
Development and Implementation of Proton Therapy for Hodgkin Lymphoma: Challenges and Perspectives. Cancers (Basel) 2021; 13:cancers13153744. [PMID: 34359644 PMCID: PMC8345082 DOI: 10.3390/cancers13153744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a highly curable disease; proton therapy for mediastinal HL irradiation might theoretically reduce late toxicities compared with classical radiotherapy techniques. However, optimal patient selection for this technique is subject to debate. While implementation at a larger scale of proton therapy for HL may face organizational, political, and societal challenges, new highly effective systematic drugs are being widely evaluated for this disease. Abstract Consolidative radiation therapy for early-stage Hodgkin lymphoma (HL) improves progression-free survival. Unfortunately, first-generation techniques, relying on large irradiation fields, were associated with an increased risk of secondary cancers, and of cardiac and lung toxicity. Fortunately, the use of smaller target volumes combined with technological advances in treatment techniques currently allows efficient organs-at-risk sparing without altering tumoral control. Recently, proton therapy has been evaluated for mediastinal HL treatment due to its potential to significantly reduce the dose to organs-at-risk, such as cardiac substructures. This is expected to limit late radiation-induced toxicity and possibly, second-neoplasm risk, compared with last-generation intensity-modulated radiation therapy. However, the democratization of this new technique faces multiple issues. Determination of which patient may benefit the most from proton therapy is subject to intense debate. The development of new effective systemic chemotherapy and organizational, societal, and political considerations might represent impediments to the larger-scale implementation of HL proton therapy. Based on the current literature, this critical review aims to discuss current challenges and controversies that may impede the larger-scale implementation of mediastinal HL proton therapy.
Collapse
|
8
|
Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence. Cancers (Basel) 2021; 13:cancers13153746. [PMID: 34359647 PMCID: PMC8345146 DOI: 10.3390/cancers13153746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Consolidative radiation therapy (RT) is of prime importance for early-stage Hodgkin lymphoma (HL) management since it significantly increases progression-free survival (PFS). Nevertheless, first-generation techniques, relying on large irradiation fields, delivered significant radiation doses to critical organs-at-risk (OARs, such as the heart, to the lung or the breasts) when treating mediastinal HL; consequently, secondary cancers, and cardiac and lung toxicity were substantially increased. Fortunately, HL RT has drastically evolved and, nowadays, state-of-the-art RT techniques efficiently spare critical organs-at-risks without altering local control or overall survival. Recently, proton therapy has been evaluated for mediastinal HL treatment, due to its possibility to significantly reduce integral dose to OARs, which is expected to limit second neoplasm risk and reduce late toxicity. Nevertheless, clinical experience for this recent technique is still limited worldwide. Based on current literature, this critical review aims to examine the current practice of proton therapy for mediastinal HL irradiation.
Collapse
|