1
|
Yu B, Jing X, Jia L, Wang M, Liu L, Ping S, Wang Y, Yang M. The versatile multi-functional substance NMN: its unique characteristics, metabolic properties, pharmacodynamic effects, clinical trials, and diverse applications. Front Pharmacol 2024; 15:1436597. [PMID: 39411062 PMCID: PMC11473484 DOI: 10.3389/fphar.2024.1436597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
β-nicotinamide mononucleotide (NMN) is a naturally occurring biologically active nucleotide widely present in organisms and an inherent substance in the human body. As a critical intermediate in synthesizing coenzyme I (NAD+), it widely participates in multiple biochemical reactions in the human body and is closely related to immunity, metabolism, and other factors. In recent years, NMN has rapidly developed and made significant progress in medicine, food, and healthcare. However, there is currently a lack of comprehensive reports on the research progress of NMN, as well as exploration and analysis of the current research achievements and progress of NMN. Therefore, this review is based on retrieving relevant research on NMN from multiple databases at home and abroad, with the retrieval time from database establishment to 20 May 2024. Subsequently, literature search, reading, key information extraction, organization, and summarization were conducted with the aim of providing a comprehensive and in-depth analysis of the characteristics, metabolic pathways, pharmacological effects, progress in human clinical trials, and wide applications of NMN in drug development and food applications. Furthermore, it offers personal insights into NMN's potential future developments and advancements to present the current development state and existing challenges comprehensively. Ultimately, this review aims to provide guidance and serve as a reference for the future application, innovation, and progression of NMN research.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Xiaotong Jing
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Lina Jia
- Department of Central Sterile Supply Department, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Maoru Wang
- Drug Dispensing Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Liying Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Songyuge Ping
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
2
|
Lu P, Peng J, Liu J, Chen L. The role of photobiomodulation in accelerating bone repair. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:55-67. [PMID: 38493961 DOI: 10.1016/j.pbiomolbio.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Bone repair is faced with obstacles such as slow repair rates and limited bone regeneration capacity. Delayed healing even nonunion could occur in bone defects, influencing the life quality of patients severely. Photobiomodulation (PBM) utilizes different light sources to derive beneficial therapeutic effects with the advantage of being non-invasive and painless, providing a promising strategy for accelerating bone repair. In this review, we summarize the parameters, mechanisms, and effects of PBM regulating bone repair, and further conclude the current clinical application of PBM devices in bone repair. The wavelength of 635-980 nm, the output power of 40-100 mW, and the energy density of less than 100 J/cm2 are the most commonly used parameters. New technologies, including needle systems and biocompatible and implantable optical fibers, offer references to realize an efficient and safe strategy for bone repair. Further research is required to establish the reliability of outcomes from in vivo and in vitro studies and to standardize clinical trial protocols.
Collapse
Affiliation(s)
- Ping Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jie Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
3
|
Lairedj K, Klausner G, Robijns J, Arany PR, Bensadoun RJ. [Photobiomodulation in the prevention and the management of side effects of cancer treatments: Bases, results and perspectives]. Bull Cancer 2024; 111:314-326. [PMID: 37858427 DOI: 10.1016/j.bulcan.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/11/2023] [Accepted: 08/13/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Assess the current and potential indications of photobiomodulation (PBM) therapy and their level of evidence in the prevention or treatment of side effects related to oncology treatments (radiation therapy, and to a minimal extent favored and hematopoietic stem cell transplants). And report on the recommended modalities (parameters and doses) of PBM therapy. MATERIALS AND METHODS The Embase, Medline/PubMed, Cochrane, EBSCO, Scopus, and LILACS databases were systematically reviewed to include and analyze publications of clinical studies that evaluated PBM in the prevention or management side effects related to cancer treatments. The keywords used were "photobiomodulation"; "low level laser therapy"; "acute oral mucositis"; "acute dysphagia"; "acute radiation dermatitis"; "lymphedema"; "xerostomia"; "dysgeusia"; "hyposalivation"; "lockjaw"; "bone necrosis"; "osteoradionecrosis"; "radiation induced fibrosis"; "voice and speech alterations"; "palmar-plantar erythrodysesthesia"; "graft versus host disease"; "peripheral neuropathy"; "chemotherapy induced alopecia". Prospective studies were included, while retrospective cohorts and non-original articles were excluded from the analysis. RESULTS PBM in the red or infrared spectrum has been shown to be effective in randomized controlled trials in the prevention and management of certain complications related to radiotherapy, in particular acute mucositis, epitheliitis and upper limb lymphedema. The level of evidence associated with PBM was heterogeneous, but overall remained moderate. The main limitations were the diversity and the lack of precision of the treatment protocols which could compromise the efficiency and the reproducibility of the results of the PBM. For other effects related to chemo/radiation therapy (dysgeusia, osteonecrosis, peripheral neuropathy, alopecia, palmar-plantar erythrodysaesthesia) and haematopoietic stem cell transplantation (graft versus host disease), treatment with PBM suffers from a lack of studies or limited studies at the origin of a weakened level of proof. However, based on these results, it was possible to establish safe practice parameters and doses of PBM. CONCLUSION Published data suggest that PBM could therefore be considered as supportive care in its own right for patients treated with radiation, chemotherapy, immunotherapy, hormone therapy or targeted therapies, whether in clinical practice or clinical trials. therapies. However, until solid data have been published on its long-term safety, the use of PBM should be considered with caution and within the recommended parameters and doses, particularly when practiced in areas of known or possible tumours. In this case, the patient should be informed of the theoretical benefits and risks of PBM in order to obtain informed consent before treatment.
Collapse
Affiliation(s)
- Kamel Lairedj
- Médecine générale, centre de santé Saint-Paul, 32, Delmas rue Louverture # 44, Delmas, Haïti; Université républicaine d'Haïti, # 22, Delmas 55, Lalue Ave John-Brown # 293 Bis, 1640 Port-au-Prince, Haïti
| | - Guillaume Klausner
- Oncologie - radiothérapie, centre de haute énergie (CHE), 10, boulevard Pasteur, 06000 Nice, France; Polyclinique Maymard, 13, rue Marcel-Paul, 20200 Bastia, France
| | - Julien Robijns
- Hasselt University, Faculty of Medicine and Life Sciences, Martelarenlaan 42, 3500 Hasselt, Belgique
| | - Praveen R Arany
- University at Buffalo, Oral Biology, Surgery and Biomedical Engineering, Buffalo, New York, États-Unis
| | - René-Jean Bensadoun
- Oncologie - radiothérapie, centre de haute énergie (CHE), 10, boulevard Pasteur, 06000 Nice, France; Département d'oncologie-radiothérapie, Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif, France.
| |
Collapse
|
4
|
Effect of Photobiomodulation With Different Wavelengths on Radiodermatitis Treatment. Plast Reconstr Surg Glob Open 2023; 11:e4809. [PMID: 36751505 PMCID: PMC9894341 DOI: 10.1097/gox.0000000000004809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 02/05/2023]
Abstract
Approximately 80% of patients submitted to radiotherapy develop radiodermatitis. Photobiomodulation based on light-emitted diode (LED) is one of the therapeutic strategies for treating inflammation. This study aimed to investigate the effect of the photobiomodulation with two wavelengths, in an acute radiodermatitis animal model. Methods Twenty rats were submitted to one radiotherapy session. After 15 days, the rats that developed radiodermatitis were divided into control groups, LED-630 nm, LED-850 nm, and LED-630 + 850 nm. The treatment regimen was one session lasting 10 minutes on alternate days for 21 days. We analyzed macroscopy aspects (RTOG scale), vascular density, dermal appendages, VEGF-a, TNF-alpha, MMP-9, and MMP-9 genic expression level. Results All LED groups revealed a two-point reduction on the radiodermatitis severity grade compared with the baseline classification. Dermal appendage and vascular analysis showed a higher counting in all LED groups compared to control. This study showed dermal appendages twice in the 630/850 nm group compared with the control group. The 630/850 nm group showed six times more arterioles than the control group. Regarding genic expression, this study showed a 10-fold decrease between LED-630 nm versus LED-630 + 850 nm (P = 0.02) interleukin-10 expression and a 12-fold decrease between control versus LED-630 nm (P = 0.006) and LED-850 nm (P = 0.002) in TNF-alpha. Conclusion LED (630 nm, 850 nm, and 630 nm + 850 nm) showed benefit in the treatment of radiodermatitis, and the association of the 630 nm + 850 nm and 630 nm parameters demonstrated the best macroscopic and microscopic results.
Collapse
|