1
|
Sjölund J, Westman G, Wågberg L, Larsson PA. On the determination of charge and nitrogen content in cellulose fibres modified to contain quaternary amine functionality. Carbohydr Polym 2025; 347:122734. [PMID: 39486964 DOI: 10.1016/j.carbpol.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Research interest in quaternization of cellulose fibres has increased considerably over the past decades. However, there is little or no consensus regarding how to characterize the material in terms of degree of substitution (DS), and the literature suggests a range of different methods focusing on charge determination as well as nitrogen content quantification. This work aims to fill the knowledge gap regarding how the different methods perform in relation to each other, and for what cellulosic systems each method has advantages, disadvantages and even potential pitfalls. FT-IR and NMR measurements are used to establish successful modification and determine the relative number of substituent groups. Another six methods are compared for the determination of the DS of cellulosic fibres and nanofibrils. The methods include Kjeldahl measurements, nitrogen determination by chemiluminescence, determination of molecular nitrogen by the Dumas method, colloidal titration, conductometric titration and polyelectrolyte adsorption. It can be concluded that most techniques investigated are reliable within certain ranges of DS and/or when using appropriate post-treatment of the quaternized material and suitable sample preparation techniques. The results from the present work hence provide recommendations to make an educated choice of method, and experimental protocol, based on the technique at hand.
Collapse
Affiliation(s)
- Johanna Sjölund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Lars Wågberg
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Per A Larsson
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
2
|
Xu F, Cho BU. Porous cationic cellulose beads prepared by homogeneous in-situ quaternization and acid induced regeneration for water/moisture absorption. Carbohydr Polym 2024; 340:122301. [PMID: 38858023 DOI: 10.1016/j.carbpol.2024.122301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Chemical modification is a reliable and efficient strategy for designing cellulose-based functional materials. Herein, porous quaternized cellulose beads (QCBs) as cationic superabsorbent were fabricated by homogeneous in-situ chemical grafting cellulose molecular chains with glycidyl trimethylammonium chloride (GTAC) in tetraethylammonium hydroxide (TEAOH)/urea aqueous solution followed by acetic acid induced regeneration. The influence of GTAC dosage on the physicochemical-structural properties of cationic QCBs was deeply investigated. Results revealed that cotton liner could well-dissolved in TEAOH/urea aqueous solution, leading to a homogeneous and efficient quaternization medium for cellulose, thereby giving the high DS and positive charge density for quaternized cellulose. NMR results demonstrated the main substitution of GTAC groups at 2-OH and 6-OH positions of the cellulose chains during quaternization reaction. With increasing GTAC dosage, the network skeleton of QCBs gradually transformed from thick fibrils to thin aggregates, as well as enhanced pore volumes and hydrophilicity. Accordingly, QCBs-1.5 with high pore volume (99.70 cm3/g) exhibited excellent absorption capacity and efficiency, absorbing 122.32 g of water and 0.45 g of moisture per gram of the beads in 20 min. This work not only offers a simple strategy for the homogeneous quaternization modification of cellulose, but also provides a porous cellulose-based cationic superabsorbent material.
Collapse
Affiliation(s)
- Feng Xu
- Department of Paper Science & Engineering, Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon, Kangwaon-Do 24341, South Korea
| | - Byoung-Uk Cho
- Department of Paper Science & Engineering, Changgang Institute of Paper Science and Technology, Kangwon National University, Chuncheon, Kangwaon-Do 24341, South Korea.
| |
Collapse
|
3
|
Andrew LJ, Lizundia E, MacLachlan MJ. Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401560. [PMID: 39221689 DOI: 10.1002/adma.202401560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transient technology involves materials and devices that undergo controlled degradation after a reliable operation period. This groundbreaking strategy offers significant advantages over conventional devices based on non-renewable materials by limiting environmental exposure to potentially hazardous components after disposal, and by increasing material circularity. As the most abundant naturally occurring polymer on Earth, cellulose is an attractive material for this purpose. Besides, (nano)celluloses are inherently biodegradable and have competitive mechanical, optical, thermal, and ionic conductivity properties that can be exploited to develop sustainable devices and avoid the end-of-life issues associated with conventional systems. Despite its potential, few efforts have been made to review current advances in cellulose-based transient technology. Therefore, this review catalogs the state-of-the-art developments in transient devices enabled by cellulosic materials. To provide a wide perspective, the various degradation mechanisms involved in cellulosic transient devices are introduced. The advanced capabilities of transient cellulosic systems in sensing, photonics, energy storage, electronics, and biomedicine are also highlighted. Current bottlenecks toward successful implementation are discussed, with material circularity and environmental impact metrics at the center. It is believed that this review will serve as a valuable resource for the proliferation of cellulose-based transient technology and its implementation into fully integrated, circular, and environmentally sustainable devices.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Abd Manaf M, Harun S, Md. Jahim J, Sajab MS, Ibrahim Z. Synergistic sequential oxidative extraction for nanofibrillated cellulose isolated from oil palm empty fruit bunch. PLoS One 2024; 19:e0299312. [PMID: 38843202 PMCID: PMC11156338 DOI: 10.1371/journal.pone.0299312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/08/2024] [Indexed: 06/09/2024] Open
Abstract
This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.
Collapse
Affiliation(s)
- Mastura Abd Manaf
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Shuhaida Harun
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Jamaliah Md. Jahim
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Faculty of Engineering and Built Environment, Research Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Built Environment, Chemical Engineering Programme, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Zulkifli Ibrahim
- Faculty of Electrical and Electronic Engineering Technology, Electrical Engineering Technology Department, Universiti Teknikal Malaysia Melaka, Melaka, Malaysia
| |
Collapse
|
5
|
Surface modification of cellulose via photo-induced click reaction. Carbohydr Polym 2022; 301:120321. [DOI: 10.1016/j.carbpol.2022.120321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022]
|
6
|
Shen J, Yu J, Luo H, Liu X, Zhou Q, Wei T, Yu X, Wu Y, Yu Y, Li M. Nitrogen-doped carbons derived from cotton pulp for improved supercapacitors. RSC Adv 2022; 12:29246-29252. [PMID: 36320753 PMCID: PMC9557320 DOI: 10.1039/d2ra02850f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022] Open
Abstract
Supercapacitors have a rapid charge/discharge rate, long lifespan, high stability, and relatively acceptable cost, showing great potential in energy storage and conversion applications. However, the current cost-effective carbon-based electrodes have limited application owing to their low specific capacitance and unsatisfactory stability. In this regard, we herein prepare nitrogen-doped carbons by carbonizing a mixture of cotton pulp (CCP) and melamine to improve the specific capacitance by integrating pore (mesopore) and surface (oxygen-containing groups) modification with defect engineering via the carbonization process. Furthermore, the structural and morphological features of the resultant nitrogen-doped carbons are confirmed by various characterization techniques. Excitingly, the specific capacitance for nitrogen-doped CCP (CCPN1) with a 1 : 1 weight ratio of CCP and melamine is 642 F g-1 at a current density of 0.5 A g-1 in a three-electrode system, surpassing that of the reported carbon analogues and most metal-based materials to date. The stability test suggests that the specific capacitance of CCPN1 is maintained over 150 F g-1 at a current density of 2 A g-1 even over 5000 cycles. Therefore, the reported nitrogen-doped carbons from cotton pulp exhibit improved specific capacitance and stability, providing a new cost-effective carbon-based material for application in the energy storage field.
Collapse
Affiliation(s)
- Jian Shen
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Jiangbin Yu
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Hao Luo
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Xiang Liu
- National Key Laboratory of Human Factors Engineering, Chinese Astronaut Research and Training CenterBeijing 100094China
| | - Qiongzhi Zhou
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Tianxiang Wei
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Xinyi Yu
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Yahui Wu
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Yifei Yu
- College of Environment and Resources, Xiangtan UniversityXiangtan 411105China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesSongling Road 189Qingdao 266101China
| |
Collapse
|
7
|
From Regenerated Wood Pulp Fibers to Cationic Cellulose: Preparation, Characterization and Dyeing Properties. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The global demand for sustainable textile fibers is growing and has led to an increasing research interest from both academia and industry to find effective solutions. In this research, regenerated wood pulp fibers were functionalized with glycidyltrimethylammonium chloride (GTAC) to produce modified regenerated cellulose with cationic pending groups for improved dye uptake. The resultant cationic cellulose with a degree of substitution (DS) between 0.13 and 0.33 exhibited distinct morphologies and contact angles with water ranging from 65.7° to 82.5° for the fibers with DS values of 0.13 and 0.33, respectively. Furthermore, the thermal stability of the modified regenerated cellulose fibers, albeit lower than the pristine ones, reached temperatures up to 220 °C. Additionally, the modified fibers showed higher dye exhaustion and dye fixation values than the non-modified ones, attaining maxima values of 89.3% ± 0.9% and 80.6% ± 1.3%, respectively, for the cationic fibers with a DS of 0.13. These values of dye exhaustion and dye fixation are ca. 34% and 77% higher than those obtained for the non-modified fibers. Overall, regenerated wood pulp cellulose fibers can be used, after cationization, as textiles fiber with enhanced dye uptake performance that might offer new options for dyeing treatments.
Collapse
|
8
|
Jacob S, R R, Antony S, Madhavan A, Sindhu R, Kumar Awasthi M, Kuddus M, Pillai S, Varjani S, Pandey A, Binod P. Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered 2022; 13:12823-12833. [PMID: 35609323 PMCID: PMC9275936 DOI: 10.1080/21655979.2022.2074739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents. The bio adsorbent property of nanocellulose contribute more for the bioremediation methods and the detailed study of its mechanism and application is essential which is discussed here. The mechanism happening between the contaminant and nanocellulose adsorbent should be explored in detail in order to develop effective new bioremediation strategies. Nanocellulose structural functionalization helps to modify the nanocellulose structure based on which it can be utilized for specific functions. Exploring the mechanisms that contribute to the implementation of nanocellulose in tissue engineering helps for further developments and advancement in the biomedical application of nanocellulose. Not much studies are available that elucidate and study the basic steps involved in the biomedical and environmental usage of nanocellulose. This review has focussed on the basic mechanisms involved in the use of nanocellulose in tissue engineering and bioremediation processes.
Collapse
Affiliation(s)
- Sherin Jacob
- Department of Biochemistry, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, India
| | - Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Aravind Madhavan
- Mycobacterium Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest a & F University, Yangling, China
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, Gandhinagar, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), Lucknow, India.,Centre for Energy and Environmental Sustainability, Lucknow, India.,Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| |
Collapse
|
9
|
Ullah MW, Ul-Islam M, Wahid F, Yang G. Editorial: Nanocellulose: A Multipurpose Advanced Functional Material, Volume II. Front Bioeng Biotechnol 2022; 10:931256. [PMID: 35662839 PMCID: PMC9161146 DOI: 10.3389/fbioe.2022.931256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
- Muhammad Wajid Ullah
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guang Yang,
| |
Collapse
|
10
|
Mishra PK, Pavelek O, Rasticova M, Mishra H, Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front Bioeng Biotechnol 2022; 9:789603. [PMID: 35223812 PMCID: PMC8873513 DOI: 10.3389/fbioe.2021.789603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its “cleaner” nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of “impurity” in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pawan Kumar Mishra,
| | - Ondrej Pavelek
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Martina Rasticova
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University Of Life Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
12
|
Nguyen DT, Pham QT. A theoretical and experimental study on etherification of primary alcohols with the hydroxyl groups of cellulose chain (n = 1–3) in acidic condition. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju YH, Ismadji S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers (Basel) 2021; 13:2052. [PMID: 34201884 PMCID: PMC8272055 DOI: 10.3390/polym13132052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
The 'Back-to-nature' concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia;
| | - Yi-Hsu Ju
- Graduate Institute of Applied Science, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan;
- Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| |
Collapse
|
14
|
Rana V, Malik S, Joshi G, Rajput NK, Gupta PK. Preparation of alpha cellulose from sugarcane bagasse and its cationization: Synthesis, characterization, validation and application as wet-end additive. Int J Biol Macromol 2020; 170:793-809. [PMID: 33387544 DOI: 10.1016/j.ijbiomac.2020.12.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022]
Abstract
Paper industry uses cationic polymers for imparting strong bonds with pulp furnish to enhance strength properties. Due to environmental reasons, emphasis is on utilization of biobased polymers in place of synthetic. Sugarcane bagasse, an agro-industrial waste, was processed for extraction of alpha cellulose and preparation of cationic derivative. Reaction conditions were optimized to achieve highly substituted cationic derivative with insertion of 2-hydroxy-3-(trimethylammonium) propyl group. Artificial neural network (ANN) was applied to analyze the experimental data for cationization modeling. Maximum degree of substitution 0.66, was achieved at 5.0 M NaOH/anhydro glucose unit (AGU), 20 °C alkalization temperature, 8 min alkalization time, 3.5 M/AGU etherification agent concentration, 45 min time and 60 °C etherification reaction temperature. The experimental results showed that mean square error values for input parameters were significantly low. The ANN based regression values of the output, and computed values of target were close to unity. ANN based fitting indicates better performance level to predict the degree of substitution. The synthesized cationic cellulose was characterized through FTIR, XRD, NMR, FESEM and TGA. The activity of cationized cellulose as wet-end additive was tested for bagasse, wheat straw and recycled pulps due to their shorten fiber and feeble pulp characters than wood pulp.
Collapse
Affiliation(s)
- Vikas Rana
- Cellulose & Paper Discipline, Forest Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India.
| | - Shuank Malik
- Cellulose & Paper Discipline, Forest Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India
| | - Gyanesh Joshi
- Cellulose & Paper Discipline, Forest Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India.
| | - Nikhil Kumar Rajput
- Department of Computer Science, Ramanujan College, University of Delhi, New Delhi, India
| | - P K Gupta
- Cellulose & Paper Discipline, Forest Products Division, Forest Research Institute, P.O. New Forest, Dehradun, Uttarakhand 248006, India.
| |
Collapse
|
15
|
Kim YM, Lee YS, Kim T, Yang K, Nam K, Choe D, Roh YH. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr Polym 2020; 247:116684. [DOI: 10.1016/j.carbpol.2020.116684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
|
16
|
|
17
|
Highly Charged Cellulose Nanocrystals Applied as A Water Treatment Flocculant. NANOMATERIALS 2019; 9:nano9020272. [PMID: 30781420 PMCID: PMC6409560 DOI: 10.3390/nano9020272] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
Various cellulosic materials have replaced petroleum-derived polymers, offering natural and sustainable alternatives. Among them, cellulose nanocrystals (CNC) feature an easily modifiable surface, enabling the exploration of a wide spectrum of applications. In this work, the quaternary agent 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC) was used as a cationic graft on CNCs, to form a novel water treatment flocculant. The resulting material was chemically and structurally characterized by the determination of Zeta potential; degree of substitution by elemental analysis; hydrodynamic size by dynamic light scattering (DLS) and infrared spectroscopy with Fourier Transform Infrared (FT-IR); and X-ray diffraction (XRD). The flocculation capacity of cationic cellulose nanocrystals (CNC-EPTMAC) was evaluated in a jar test filled with an 0.25 wt.% silica (SiO2) suspension. CNC-EPTMAC proved to be an effective water treatment flocculant, reducing turbidity by up to 99.7% at a concentration of only 2 ppm. This work demonstrates a natural and environmentally sustainable alternative to homologous commercial flocculants.
Collapse
|
18
|
Zhang X, Wang H, Liu C, Zhang A, Ren J. Synthesis of Thermoplastic Xylan-Lactide Copolymer with Amidine-Mediated Organocatalyst in Ionic Liquid. Sci Rep 2017; 7:551. [PMID: 28373660 PMCID: PMC5428448 DOI: 10.1038/s41598-017-00464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Ring-opening graft polymerization (ROGP) of L-Lactide (L-LA) is a practical method of altering the physical and chemical properties of lignocellulose. Previous studies have mainly investigated cellulose and tin-based catalysts, particularly of tin(II) 2-ethylhexanoate (Sn(oct)2), at high temperatures and reported low graft efficiencies. In the present study, ROGP of L-LA was successfully achieved on xylan-type hemicelluloses in ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an effective organic catalyst. Mild reaction condition (50 °C) was used to limit transesterification, and thus enhance the graft efficiency. The hydroxyl groups on xylan acted as initiators in the polymerization, and DBU, enhanced the nucleophilicity of the initiator and the propagating chain. Xylan-graft-poly(L-Lactide) (xylan-g-PLA) copolymer with a degree of substitution (DS) of 0.58 and a degree of polymerization (DP) of 5.51 was obtained. In addition, the structures of the xylan-g-PLA copolymers were characterized by GPC, FT-IR and NMR, confirming the success of the ROGP reaction. Thermal analysis revealed that the copolymers exhibited a single glass-transition temperature (T g), which decreased with increasing molar substitution (MS). Thus, modification resulted in the graft copolymers with thermoplastic behavior and tunable T g.
Collapse
Affiliation(s)
- Xueqin Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Huihui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Aiping Zhang
- College of Materials and Energy, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Chen J, Wu D, Tam KC, Pan K, Zheng Z. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Carbohydr Polym 2017; 157:1821-1829. [DOI: 10.1016/j.carbpol.2016.11.071] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
|
20
|
Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M. Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study. Carbohydr Polym 2016; 146:58-66. [DOI: 10.1016/j.carbpol.2016.03.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/01/2022]
|
21
|
Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment. Carbohydr Polym 2015; 132:214-20. [DOI: 10.1016/j.carbpol.2015.06.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
22
|
Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym 2015; 130:275-9. [DOI: 10.1016/j.carbpol.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023]
|
23
|
Eyley S, Vandamme D, Lama S, Van den Mooter G, Muylaert K, Thielemans W. CO₂ controlled flocculation of microalgae using pH responsive cellulose nanocrystals. NANOSCALE 2015; 7:14413-21. [PMID: 26248574 DOI: 10.1039/c5nr03853g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L(-1) dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.
Collapse
Affiliation(s)
- Samuel Eyley
- Renewable Materials and Nanotechnology Research Group, KU Leuven - Campus Kortrijk, Etienne Sabbelaan 53 box 7659, 8500 Kortrijk, Belgium.
| | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Chen M, Wang H, Liu C, Zhang A, Sun R. Characterization of Xylan-graft-Polycaprolactone Copolymers Prepared in Ionic Liquid. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqin Zhang
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingjie Chen
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huihui Wang
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chuanfu Liu
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Aiping Zhang
- Institute
of New Energy and New Material, Guangdong Key Laboratory for Innovative
Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510640, China
| | - Runcang Sun
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Beijing
Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
25
|
Rosilo H, McKee JR, Kontturi E, Koho T, Hytönen VP, Ikkala O, Kostiainen MA. Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. NANOSCALE 2014; 6:11871-81. [PMID: 25171730 DOI: 10.1039/c4nr03584d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.
Collapse
Affiliation(s)
- Henna Rosilo
- Molecular Materials, Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
1D and 2D NMR of nanocellulose in aqueous colloidal suspensions. Carbohydr Polym 2014; 110:360-6. [DOI: 10.1016/j.carbpol.2014.03.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/30/2014] [Accepted: 03/02/2014] [Indexed: 11/18/2022]
|
28
|
Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. NANOSCALE 2014; 6:7764-79. [PMID: 24937092 DOI: 10.1039/c4nr01756k] [Citation(s) in RCA: 364] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.
Collapse
Affiliation(s)
- Samuel Eyley
- Renewable Materials and Nanotechnology Group, Department of Chemical Engineering, KU Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | | |
Collapse
|
29
|
Kono H. 1H and 13C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 2013; 97:384-90. [DOI: 10.1016/j.carbpol.2013.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|