1
|
Zhang Y, Lu Z, Guo J, Wang Q, Zhang X, Yang H, Li X. Advanced Carriers for Precise Delivery and Therapeutic Mechanisms of Traditional Chinese Medicines: Integrating Spatial Multi-Omics and Delivery Visualization. Adv Healthc Mater 2025:e2403698. [PMID: 39828637 DOI: 10.1002/adhm.202403698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Indexed: 01/22/2025]
Abstract
The complex composition of traditional Chinese medicines (TCMs) has posed challenges for in-depth study and global application, despite their abundance of bioactive compounds that make them valuable resources for disease treatment. To overcome these obstacles, it is essential to modernize TCMs by focusing on precise disease treatment. This involves elucidating the structure-activity relationships within their complex compositions, ensuring accurate in vivo delivery, and monitoring the delivery process. This review discusses the research progress of TCMs in precision disease treatment from three perspectives: spatial multi-omics technology for precision therapeutic activity, carrier systems for precise in vivo delivery, and medical imaging technology for visualizing the delivery process. The aim is to establish a novel research paradigm that advances the precision therapy of TCMs.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process, Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongjun Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100029, P. R. China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| |
Collapse
|
2
|
Li W, Bie Q, Zhang K, Linli F, Yang W, Chen X, Chen P, Qi Q. Regulated anthocyanin release through novel pH-responsive peptide hydrogels in simulated digestive environment. Food Chem X 2024; 23:101645. [PMID: 39113736 PMCID: PMC11304862 DOI: 10.1016/j.fochx.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The instability of anthocyanins significantly reduces their bioavailability as food nutrients. This proof-of-concept study aimed to develop efficient carriers for anthocyanins to overcome this challenge. Characterization of the hydrogels via SEM (scanning electron microscope) and rheological analysis revealed the formation of typical gel structures. MTT (methyl thiazolyl tetrazolium) and hemolysis assays confirmed that their high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins by pH-responsive hydrogels. Stability studies further validated the effect of peptide hydrogels in helping anthocyanin molecules withstand factors such as gastric acid, high temperatures, and heavy metals. Subsequently, responsive studies in simulated gastric (intestinal) fluid demonstrated that the pH-responsive peptide hydrogels could protect anthocyanin molecules from gastric acid while achieving rapid and complete release in intestinal fluid environments. These results indicate that these peptide hydrogels could stabilize anthocyanins and facilitate their controlled release, potentially leading to personalized delivery systems.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Qianqian Bie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Kaihui Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Fangzhou Linli
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xianggui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Pengfei Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Qi Qi
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| |
Collapse
|
3
|
Zheng S, Wang D, Ren L, Wang T, Meng Y, Ma R, Wang S, Cui F, Li T, Li J. A new paradigm for smart packaging: A dual-channel freshness monitoring platform based on aerogels of sodium alginate-anthocyanin complex with high colorimetric sensitivity and stability. Int J Biol Macromol 2024; 267:131485. [PMID: 38604429 DOI: 10.1016/j.ijbiomac.2024.131485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.
Collapse
Affiliation(s)
- Shiwei Zheng
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shulin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
Bao Y, Wang M, Si X, Li D, Gui H, Jiang Q, Li J, Yang S, Yang Y, Li Z, Li B. Customized development of 3D printed anthocyanin-phycocyanin polychromatic oral film via chondroitin sulfate homeostasis: A platform based on starch and κ-carrageenan. Carbohydr Polym 2024; 330:121817. [PMID: 38368099 DOI: 10.1016/j.carbpol.2024.121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
The development of oral film with diverse colors and customized nutrition is in line with the innovation of emerging food. In this study, polychromatic system was formed by regulating the ratio of phycocyanin (PC) to blueberry anthocyanin (BA). Further, chondroitin sulfate (CS) was utilized to achieve color-enhanced and homeostatic effects on PC-BA, and κ-carrageenan (KC) - starch complex was exploited as printing ink to construct oral film system. The color-enhanced effect of CS is mainly related to the complexation of sulfate groups, and the film-forming substrates are combined mainly through hydrogen bonding. In addition, the proportion of KC modulated the gel structure of printing ink, and affected 3D printability and physical properties of oral film. OF II (1.5 % KC content) had a uniform and dense network structure, with the most stable color and the highest BA retention (70.33 %) after 8 d of light exposure. Importantly, OF II had an excellent slow-release effect, and BA release rate was as high as 92.52 %. The optimized components can form polychromatic oral film with controllable color and structure, and provide new insights for the creation of sensory personalized and nutritionally customized food.
Collapse
Affiliation(s)
- Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., No. 20 Xinyangguang Road, Jiyang Street, Zhuji, Zhejiang 311800, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
5
|
Cui F, Zheng S, Wang D, Ren L, Wang T, Meng Y, Ma R, Wang S, Li X, Li T, Li J. Preparation of multifunctional hydrogels based on co-pigment-polysaccharide complexes and establishment of a machine learning monitoring platform. Int J Biol Macromol 2024; 259:129258. [PMID: 38218291 DOI: 10.1016/j.ijbiomac.2024.129258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Economic loss due to fish spoilage exceeds 25 billion euros every year. Accurate and real-time monitoring of the freshness of fish can effectively cut down economic loss and food wastage. In this study, a dual-functional hydrogel based on sodium alginate-co-pigment complex with volatile antibacterial and intelligent indication was prepared and characterized. The characterization results indicated that the sodium alginate-co-pigment complex successfully improved the stability and color development ability of blueberry anthocyanins and bilberry anthocyanins at different temperatures and pH. The double cross-linking network inside the hydrogel conferred it with excellent mechanical properties. During rainbow trout storage, the hydrogel indicated a color difference of 73.55 on the last day and successfully extended the shelf-life of rainbow trout by 2 days (4 °C). Additionally, four dual-channel monitoring models were constructed using machine learning. The validation error of the genetic algorithm back propagation model (GA-BP) was only 5.6e-3, indicating that GA-BP can accurately monitor the freshness of rainbow trout. The rainbow trout real-time monitoring platform built based on GA-BP model can monitor the freshness of rainbow trout in real time through the images uploaded by users. The results of this study have broad applicability in the food industry, environmental conservation, and economic sustainability.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Shiwei Zheng
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Likun Ren
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Tian Wang
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China
| | - Yuqiong Meng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Shulin Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China.
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Institute of Ocean, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, Institute of Ocean, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
6
|
Rosales-Murillo S, Sánchez-Bodón J, Hernández Olmos S, Ibarra-Vázquez M, Guerrero-Ramírez L, Pérez-Álvarez L, Vilas-Vilela J. Anthocyanin-Loaded Polymers as Promising Nature-Based, Responsive, and Bioactive Materials. Polymers (Basel) 2024; 16:163. [PMID: 38201828 PMCID: PMC10781030 DOI: 10.3390/polym16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Consequently, reviews devoted to a general overview of these flavonoids have proliferated in recent years. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above cited areas. However, anthocyanin-based polymers have been scarcely reviewed in the literature. Accordingly, this review aims to be a systematic summary of the most recent approaches for the incorporation of anthocyanins into macro-, micro-, or nanostructured polymers. Moreover, this work describes the fundamentals of the applicability of smart anthocyanin-based polymers and offers an updated review of their most interesting applications as sensors, biological regulators, and active materials.
Collapse
Affiliation(s)
- S.S. Rosales-Murillo
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - Julia Sánchez-Bodón
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
| | - S.L. Hernández Olmos
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - M.F. Ibarra-Vázquez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
- Technological University of Jalisco, Guadalajara 44970, Mexico
| | - L.G. Guerrero-Ramírez
- Chemistry Department, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Mexico; (S.S.R.-M.); (S.L.H.O.); (M.F.I.-V.); (L.G.G.-R.)
| | - L. Pérez-Álvarez
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - J.L. Vilas-Vilela
- Macromolecular Chemistry Group (LQM), Physical Chemistry Department, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain; (J.S.-B.); (J.L.V.-V.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Bao Y, Yang X, Li J, Li Z, Cheng Z, Wang M, Li Z, Si X, Li B. Structural homeostasis and controlled release for anthocyanin in oral film via sulfated polysaccharides complexation. Int J Biol Macromol 2024; 256:128473. [PMID: 38029913 DOI: 10.1016/j.ijbiomac.2023.128473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Oral film is a novel functional carrier, which can provide a new pathway for the efficient absorption of anthocyanin. However, anthocyanin homeostasis in oral film is a prerequisite for achieving efficient absorption and utilization of anthocyanin. Herein, three sulfated polysaccharides, including chondroitin sulfate (CS), fucoidin (FU) and λ-carrageenan (λ-CG), were complexed with blueberry anthocyanin (BA) to prepare oral film formulations using hydroxypropyl methylcellulose (HPMC) as a film-forming matrix. The addition of three sulfated polysaccharides improved the stability of BA in content and color, which were associated with interactions between BA and polysaccharides. The BA retention rate of CS-BA/HPMC system increased 5.5-fold after 8 d of light-accelerated storage compared with the control group, showing the best homeostasis effect. CS and λ-CG enhanced the elongation at break and prolonged disintegration time of oral films. The addition of FU made the oral film denser and smoother, and had the highest BA release (75.72 %) in the simulated oral cavity system. In addition, the oral films of three sulfated polysaccharides complexed with BA showed superior antioxidant capacity. The present study provides new insights into the application of anthocyanin in film formulation carriers.
Collapse
Affiliation(s)
- Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xi Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingshuang Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhongxia Li
- BYHEALTH institute of Nutrition & Health, No.3 Kehui 3rd Street, No.99 Kexue Avenue Central, Huangpu District, Guangzhou 510663, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
8
|
Li W, Linli F, Yang W, Chen X. Enhancing the stability of natural anthocyanins against environmental stressors through encapsulation with synthetic peptide-based gels. Int J Biol Macromol 2023; 253:127133. [PMID: 37802437 DOI: 10.1016/j.ijbiomac.2023.127133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
The instability of anthocyanin to environmental stressors severely limits its applications as a natural bioactive pigment. To overcome these limitations, this proof-of-concept study utilizes the high biocompatibility of peptide molecules and the unique gel microstructure to develop innovative peptide-based gels. Characterization of the gels was conducted through AFM, SEM, rheological analysis, and CD spectrum. These analyses confirmed the fibrous mesh structure and impressive mechanical strength of the peptide-based gels. The cytotoxicity evaluation using MTT and hemolysis analysis showed high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins in all four peptide-based gels, with uniform distribution. Moreover, systematic investigations were conducted to assess the impact of peptide-based gels on the stability of natural anthocyanins under environmental stressors such as temperature, pH variations, and exposure to metal ions. Notably, the results revealed a significant enhancement in stability, including improved long-term storage and antioxidant activity. In conclusion, this study successfully developed four novel peptide-based gels that effectively protect natural anthocyanins from environmental stressors, highlighting their potential in various fields such as food and biology.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Fangzhou Linli
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| | - Xianggui Chen
- School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China.
| |
Collapse
|
9
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Tan C, Sun Y, Yao X, Zhu Y, Jafari SM, Sun B, Wang J. Stabilization of anthocyanins by simultaneous encapsulation-copigmentation via protein-polysaccharide polyelectrolyte complexes. Food Chem 2023; 416:135732. [PMID: 36878116 DOI: 10.1016/j.foodchem.2023.135732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
This study prepared a series of polyelectrolyte complexes (PECs) composed of heated whey protein isolate (HWPI) and different polysaccharides for simultaneous encapsulation and copigmentation of anthocyanins (ATC) and their ultimate stabilization. Four polysaccharides including chondroitin sulfate, dextran sulfate, gum arabic, and pectin were chosen due to their abilities to simultaneously complex with HWPI and copigment ATC. At pH 4.0, these PECs were formed with an average particle size of 120-360 nm, the ATC encapsulation efficiency of 62-80%, and the production yield of 47-68%, depending on the type of polysaccharides. The PECs effectively inhibited the degradation of ATC during storage and when exposed to neutral pH, ascorbic acid, and heat. Pectin had the best protection, followed by gum arabic, chondroitin sulfate, and dextran sulfate. The stabilizing effects were associated with the hydrogen bonding, hydrophobic and electrostatic interactions between HWPI and polysaccharides, conferring dense internal network and hydrophobic microenvironment in the complexes.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yan Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xueqing Yao
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health, School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
11
|
Xie C, Huang M, Ying R, Wu X, Hayat K, Shaughnessy LK, Tan C. Olive pectin-chitosan nanocomplexes for improving stability and bioavailability of blueberry anthocyanins. Food Chem 2023; 417:135798. [PMID: 36924718 DOI: 10.1016/j.foodchem.2023.135798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Blueberry anthocyanins (ANCs) are natural dietary bioactive colorants, but are unstable and easily degraded. To improve their stability, we constructed the nanocarriers for ANCs through an electrostatic self-assembly method, using chitosan (CS) and olive pectin (PC). Results showed that the CS-ANCs-PC nanocomplexes had nanoscale particle size (81.22 ± 0.44 nm), and an encapsulation efficiency of 91.97 ± 0.33% at pH 3.0, 1:1:5 ratio (m/v) of CS: ANCs: PC. Fourier transform infrared and UV-visible spectra demonstrated that ANCs can be embedded into the CS-PC carrier through electrostatic interaction. CS-ANCs-PC with stacked spherical particle structure had good thermal stability by scanning electron microscope and thermogravimetric analysis. Compared with free anthocyanins, CS-ANCs-PC possessed better DPPH· and ·OH scavenging activities, stronger environmental stability, and better targeted release in vitro digestion. This study may provide an important fundamental basis for improving the stability of anthocyanins in the blueberry industry.
Collapse
Affiliation(s)
- Chenjing Xie
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Meigui Huang
- College of Food Sciences and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Ruifeng Ying
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xian Wu
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Khizar Hayat
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Lily K Shaughnessy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, OH 45056, USA
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
12
|
Zannou O, Oussou KF, Chabi IB, Awad NMH, Aïssi MV, Goksen G, Mortas M, Oz F, Proestos C, Kayodé APP. Nanoencapsulation of Cyanidin 3- O-Glucoside: Purpose, Technique, Bioavailability, and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:617. [PMID: 36770579 PMCID: PMC9921781 DOI: 10.3390/nano13030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The current growing attractiveness of natural dyes around the world is a consequence of the increasing rejection of synthetic dyes whose use is increasingly criticized. The great interest in natural pigments from herbal origin such as cyanidin 3-O-glucoside (C3G) is due to their biological properties and their health benefits. However, the chemical instability of C3G during processing and storage and its low bioavailability limits its food application. Nanoencapsulation technology using appropriate nanocarriers is revolutionizing the use of anthocyanin, including C3G. Owing to the chemical stability and functional benefits that this new nanotechnology provides to the latter, its industrial application is now extending to the pharmaceutical and cosmetic fields. This review focuses on the various nanoencapsulation techniques used and the chemical and biological benefits induced to C3G.
Collapse
Affiliation(s)
- Oscar Zannou
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Kouame F. Oussou
- Department of Food Engineering, Faculty of Agriculture, Çukurova University, 01330 Adana, Turkey
| | - Ifagbémi B. Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Nour M. H. Awad
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Midimahu V. Aïssi
- School of Sciences and Techniques for the Conservation and Processing of Agricultural Products, National University of Agriculture, Sakété 00 BP 144, Benin
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Charalampos Proestos
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
| | - Adéchola P. P. Kayodé
- Laboratory of Human Nutrition and Valorization of Food Bio-Ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
13
|
Liao M, Chen F, Hu X, Liao X, Miao S, Ma L, Ji J. Controlled gastrointestinal digestion of micellar casein loaded anthocyanins: The chelating and complexing effect of dextran sulfate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Gonçalves AC, Falcão A, Alves G, Lopes JA, Silva LR. Employ of Anthocyanins in Nanocarriers for Nano Delivery: In Vitro and In Vivo Experimental Approaches for Chronic Diseases. Pharmaceutics 2022; 14:2272. [PMID: 36365091 PMCID: PMC9695229 DOI: 10.3390/pharmaceutics14112272] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/18/2023] Open
Abstract
Anthocyanins are among the best-known phenolic compounds and possess remarkable biological activities, including antioxidant, anti-inflammatory, anticancer, and antidiabetic effects. Despite their therapeutic benefits, they are not widely used as health-promoting agents due to their instability, low absorption, and, thus, low bioavailability and rapid metabolism in the human body. Recent research suggests that the application of nanotechnology could increase their solubility and/or bioavailability, and thus their biological potential. Therefore, in this review, we have provided, for the first time, a comprehensive overview of in vitro and in vivo studies on nanocarriers used as delivery systems of anthocyanins, and their aglycones, i.e., anthocyanidins alone or combined with conventional drugs in the treatment or management of chronic diseases.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| | - João A. Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
15
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
16
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
17
|
Rosales TKO, Fabi JP. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids Surf B Biointerfaces 2022; 218:112707. [PMID: 35907354 DOI: 10.1016/j.colsurfb.2022.112707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/30/2022]
Abstract
Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants, and regular consumption is associated with a reduced risk of several diseases. However, the application of anthocyanins in foods represents a challenge due to molecular instability. The encapsulation of anthocyanins in nanostructures is a viable way to protect from the factors responsible for degradation and enable the industrial application of these compounds. Nanoencapsulation is a set of techniques in which the bioactive molecules are covered by resistant biomaterials that protect them from chemical and biological factors during processing and storage. This review comprehensively summarizes the existing knowledge about the structure of anthocyanins and molecular stability, with a critical analysis of anthocyanins' nanoencapsulation, the main encapsulating materials (polysaccharides, proteins, and lipids), and techniques used in the formation of nanocarriers to protect anthocyanins. Some studies point to the effectiveness of nanostructures in maintaining anthocyanin stability and antioxidant activity. The main advantages of the application of nanoencapsulated anthocyanins in foods are the increase in the nutritional value of the food, the addition of color, the increase in food storage, and the possible increase in bioavailability after oral ingestion. Nanoencapsulation improves stability for anthocyanin, thus demonstrating the potential to be included in foods or used as dietary supplements, and current limitations, challenges, and future directions of anthocyanins' have also been discussed.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; Food Research Center (FoRC), São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Liu Y, Peng B. A Novel Hyaluronic Acid-Black Rice Anthocyanins Nanocomposite: Preparation, Characterization, and Its Xanthine Oxidase (XO)-Inhibiting Properties. Front Nutr 2022; 9:879354. [PMID: 35495941 PMCID: PMC9048741 DOI: 10.3389/fnut.2022.879354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
To promote the normal metabolism of human uric acid, high-performance hyaluronic acid-black rice anthocyanins (HAA) nanocomposite particles were successfully prepared by a simple crosslinking method as a novel xanthine oxidase inhibitor. Its structure and properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), and X-ray diffraction (XRD). SEM and TEM electron microscopy showed an obvious double-layer spherical structure with a particle size of ~298 nm. FT-IR and XRD analysis confirmed that black rice anthocyanins (ATC) had been successfully loaded into the hyaluronic acid (HA) structure. Nanocomposite particles (embedded form) showed higher stability in different environments than free black rice ATC (unembedded form). In addition, the preliminary study showed that the inhibition rate of the nanocomposite particles on Xanthine oxidase (XO) was increased by 40.08%. These results indicate that HAA nanocomposite particles can effectively improve black rice ATC's stability and activity, creating an ideal new material for inhibiting XO activity that has a broad application prospect.
Collapse
|
19
|
Katasonov A. Anthocyanins for the prevention and treatment of neurodegenerative diseases. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:16-22. [DOI: 10.17116/jnevro202212204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Bao Y, Cui H, Tian J, Ding Y, Tian Q, Zhang W, Wang M, Zang Z, Sun X, Li D, Si X, Li B. Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108441] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Cui H, Si X, Tian J, Lang Y, Gao N, Tan H, Bian Y, Zang Z, Jiang Q, Bao Y, Li B. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: stability, antioxidant capacity, and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Cruz L, Basílio N, Mateus N, de Freitas V, Pina F. Natural and Synthetic Flavylium-Based Dyes: The Chemistry Behind the Color. Chem Rev 2021; 122:1416-1481. [PMID: 34843220 DOI: 10.1021/acs.chemrev.1c00399] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flavylium compounds are a well-known family of pigments because they are prevalent in the plant kingdom, contributing to colors over a wide range from shades of yellow-red to blue in fruits, flowers, leaves, and other plant parts. Flavylium compounds include a large variety of natural compound classes, namely, anthocyanins, 3-deoxyanthocyanidins, auronidins, and their respective aglycones as well as anthocyanin-derived pigments (e.g., pyranoanthocyanins, anthocyanin-flavan-3-ol dimers). During the past few decades, there has been increasing interest among chemists in synthesizing different flavylium compounds that mimic natural structures but with different substitution patterns that present a variety of spectroscopic characteristics in view of their applications in different industrial fields. This Review provides an overview of the chemistry of flavylium-based compounds, in particular, the synthetic and enzymatic approaches and mechanisms reported in the literature for obtaining different classes of pigments, their physical-chemical properties in relation to their pH-dependent equilibria network, and their chemical and enzymatic degradation. The development of flavylium-based systems is also described throughout this Review for emergent applications to explore some of the physical-chemical properties of the multistate of species generated by these compounds.
Collapse
Affiliation(s)
- Luis Cruz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Basílio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Fernando Pina
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Xue B, Wang Y, Tian J, Zhang W, Zang Z, Cui H, Zhang Y, Jiang Q, Li B, Hai Liu R. Effects of chitooligosaccharide-functionalized graphene oxide on stability, simulated digestion, and antioxidant activity of blueberry anthocyanins. Food Chem 2021; 368:130684. [PMID: 34391099 DOI: 10.1016/j.foodchem.2021.130684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/09/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
In this study, we tested the in vitro efficacy of a graphene oxide-chitooligosaccharide (GO-COS) complex developed to protect blueberry anthocyanins (An) from degradation by various physicochemical factors and the digestive process. We prepared a GO-COS complex to adsorb An and protect them from the destructive effects of their ambient environment. The complex protected the An under various temperature, pH, light, oxidant, and reductant conditions. We evaluated An content and composition in a simulated digestive system using the pH differential method and the high performance liquid chromatography-mass spectrometry (HPLC-MS). The GO-COS carrier stabilized An in the intestine and protected their peroxyl radical-scavenging capacity. Additionally, we observed a dose-response relationship between An content and cellular antioxidant activity, and simultaneous improvement of An bioavailability when the An were encapsulated in the complex. The complex inhibited HepG2 cell proliferation at the tested dose range. This study provides valuable information for stability of An-rich products.
Collapse
Affiliation(s)
- Bo Xue
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Weijia Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhihuan Zang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Huijun Cui
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Rui Hai Liu
- College of Food Science, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, National R&D Professional Center for Berry Processing, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Department of Food Science, Cornell University, Ithaca, NY 14850-7201, United States.
| |
Collapse
|
24
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
25
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|
26
|
Fernandes A, Raposo F, Evtuguin DV, Fonseca F, Ferreira-da-Silva F, Mateus N, Coimbra MA, de Freitas V. Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydr Polym 2020; 255:117432. [PMID: 33436231 DOI: 10.1016/j.carbpol.2020.117432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023]
Abstract
Grape pectic polysaccharides-malvidin-3-O- β -d-glucoside binding was studied, aiming to unveil the impact of structural diversity of polysaccharides on anthocyanins-polysaccharides interactions. Polysaccharides were extracted with solutions of imidazole (ISP) and carbonate at 4 °C (CSP-4 °C) and room temperature (CSP-RT) and also recovered from the dialysis supernatant of the remaining cellulosic residue after the aqueous NAOH extraction of hemicellulosic polysaccharides (Sn-CR). Polysaccharides richer in homogalacturonan domains, like those present in the CSP-4 °C fraction had approximately 50-fold higher binding affinity to malvidin-3-O- β-d-glucoside, than polysaccharides with side chains (as ISP and CSP-RT extractable polysaccharides). CSP-4 °C polysaccharides showed a positive effect on malvidin-3-O- β-d-glucoside colour fading. Hydration equilibrium constant of malvidin-3-O- β-d-glucoside in the presence of CSP-4 °C polysaccharides was higher, showing the preferential stabilization of the flavylium cation. The results showed that anthocyanins colour stabilization can be promoted by pectic polysaccharide structures such as those extracted by cold carbonate.
Collapse
Affiliation(s)
- Ana Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Filomena Raposo
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Dmitry V Evtuguin
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Fátima Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| |
Collapse
|
27
|
Liudvinaviciute D, Rutkaite R, Bendoraitiene J, Klimaviciute R, Dagys L. Formation and characteristics of alginate and anthocyanin complexes. Int J Biol Macromol 2020; 164:726-734. [PMID: 32698067 DOI: 10.1016/j.ijbiomac.2020.07.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/01/2022]
|
28
|
Henriques JF, Serra D, Dinis TCP, Almeida LM. The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders. Int J Mol Sci 2020; 21:E8653. [PMID: 33212797 PMCID: PMC7696928 DOI: 10.3390/ijms21228653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Anthocyanins are naturally occurring polyphenols commonly found in fruits and vegetables. Numerous studies have described that anthocyanin-rich foods may play a crucial role in the prevention and treatment of different pathological conditions, which have encouraged their consumption around the world. Anthocyanins exhibit a significant neuroprotective role, mainly due to their well-recognized antioxidant and anti-inflammatory properties. Neuroinflammation is an intricate process relevant in both homeostatic and pathological circumstances. Since the progression of several neurological disorders relies on neuroinflammatory process, targeting brain inflammation has been considered a promising strategy in those conditions. Recent data have shown the anti-neuroinflammatory abilities of many anthocyanins and of their metabolites in the onset and development of several neurological disorders. In this review, it will be discussed the importance and the applicability of these polyphenolic compounds as neuroprotective agents and it will be also scrutinized the molecular mechanisms underlying the modulation of neuroinflammation by these natural compounds in the context of several brain diseases.
Collapse
Affiliation(s)
- Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.F.H.); (T.C.P.D.); (L.M.A.)
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
29
|
Xie C, Wang Q, Ying R, Wang Y, Wang Z, Huang M. Binding a chondroitin sulfate-based nanocomplex with kappa-carrageenan to enhance the stability of anthocyanins. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Anthocyanin-Loaded Liposomes Prepared by the pH-Gradient Loading Method to Enhance the Anthocyanin Stability, Antioxidation Effect and Skin Permeability. Macromol Res 2019. [DOI: 10.1007/s13233-020-8039-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|
32
|
Tan C, Selig MJ, Lee MC, Abbaspourrad A. Encapsulation of copigmented anthocyanins within polysaccharide microcapsules built upon removable CaCO3 templates. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Tan C, Celli GB, Selig MJ, Abbaspourrad A. Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. Food Chem 2018; 264:342-349. [DOI: 10.1016/j.foodchem.2018.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022]
|
34
|
|
35
|
Tan C, B. Celli G, Lee M, Licker J, Abbaspourrad A. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins. Biomacromolecules 2018; 19:1517-1527. [DOI: 10.1021/acs.biomac.8b00352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca New York 14853, United States
| | - Giovana B. Celli
- Department of Food Science, Cornell University, Stocking Hall, Ithaca New York 14853, United States
| | - Michelle Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca New York 14853, United States
| | - Jonathan Licker
- PepsiCo Research
and Development, Plano, Texas 75024, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca New York 14853, United States
| |
Collapse
|
36
|
Synergistic Bathochromic and Hyperchromic Shifts of Anthocyanin Spectra Observed Following Complexation with Iron Salts and Chondroitin Sulfate. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2055-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Tan C, Selig MJ, Abbaspourrad A. Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydr Polym 2018; 181:124-131. [DOI: 10.1016/j.carbpol.2017.10.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/05/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
|
38
|
Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.029] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Tan C, Selig MJ, Lee MC, Abbaspourrad A. Polyelectrolyte microcapsules built on CaCO 3 scaffolds for the integration, encapsulation, and controlled release of copigmented anthocyanins. Food Chem 2017; 246:305-312. [PMID: 29291853 DOI: 10.1016/j.foodchem.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The all-polysaccharide based polyelectrolyte microcapsules combining copigmentation for anthocyanin encapsulation and stabilization were fabricated. Copigmented complexes of chondroitin sulfate and anthocyanin were preloaded in CaCO3 scaffold, and then microcapsules were created by coating the sacrificial CaCO3 using layer-by-layer technique. It was observed that the preloading of copigmented complex affected the precipitation reaction of CaCO3 and the subsequent entrapment of anthocyanin. With addition of anthocyanin from 0.125 to 0.75 mg, copigmentation can significantly increase the encapsulation efficiency of anthocyanin in CaCO3, whereas such effect was not obvious at higher loadings. The leakage of anthocyanin during CaCO3 core dissolution and storage was also inhibited by two polysaccharide layers coupled with copigmentation, which may be related to the formation of interconnecting networks. Additionally, a higher anthocyanin antioxidant activity was provided by carbohydrate matrix. These findings may allow for the encapsulation of large amounts of water-soluble components; particularly natural colorant by copigmented complex-polyelectrolyte structures.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michael Joseph Selig
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
40
|
Navikaite V, Simanaviciute D, Klimaviciute R, Jakstas V, Ivanauskas L. Interaction between κ- and ι-carrageenan and anthocyanins from Vaccinium myrtillus. Carbohydr Polym 2016; 148:36-44. [DOI: 10.1016/j.carbpol.2016.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
|
41
|
Jeong D, Bae BC, Park SJ, Na K. Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate-anthocyanin nanocomplex for efficient tumor therapy. J Control Release 2015; 222:78-85. [PMID: 26686664 DOI: 10.1016/j.jconrel.2015.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
To develop a reactive oxygen species (ROS) sensitive drug carrier, a chondroitin sulfate (CS)-anthocyanin (ATC) based nanocomplex was developed. Doxorubicin hydrochloride (DOX) was loaded in the CS-ATC nanocomplex (CS-ATC-DOX) via intermolecular stacking interaction. The nanocomplex was fabricated by a simple mixing method in the aqueous phase. The morphology and size of CS-ATC-DOX were determined by ATC content. In the group with 1.5mg/ml of ATC loaded CS-ATC-DOX (CS-ATC2-DOX), the drug content and loading efficiency were 8.5% and 99.1%, respectively. The ROS sensitive drug release of CS-ATC2-DOX was confirmed under in vitro physiological conditions. The results demonstrated that 1.67 times higher DOX release occurred in CS-ATC2-DOX for 48h compared to CS-DOX (ATC absent sample). Drug release and nanocomplex destruction were induced by ROS mediated ATC degradation. We determined that 66.7% of ROS was scavenged by CS-ATC2-DOX. Additionally, an HCT-116 tumor bearing animal model was used to confirm ROS sensitive therapeutic effects of CS-ATC2-DOX. The results indicate that DOX was released from the intravenously injected CS-ATC2-DOX in the tumor tissue. Thus, nuclei shrinkage and dead cells were observed in H&E staining and TUNEL assay, respectively. These data suggest that the tumor growth was effectively inhibited. This study means that CS-ATC2-DOX has potential in improving tumor therapy.
Collapse
Affiliation(s)
- Dooyong Jeong
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, South Korea
| | - Byoung-Chan Bae
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, South Korea
| | - Sin-Jung Park
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, South Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, South Korea.
| |
Collapse
|
42
|
Klimaviciute R, Navikaite V, Jakstas V, Ivanauskas L. Complexes of dextran sulfate and anthocyanins from Vaccinium myrtillus: Formation and stability. Carbohydr Polym 2015; 129:70-8. [DOI: 10.1016/j.carbpol.2015.04.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 04/15/2015] [Indexed: 11/28/2022]
|
43
|
Lee J, Jeong D, Seo S, Na K. Biodegradable nanogel based on all-trans retinoic acid/pullulan conjugate for anti-cancer drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|