1
|
Peng Y, Zhou H, Ma Z, Tian L, Zhang R, Tu H, Jiang L. In situ synthesis of Ag/Ag 2O-cellulose/chitosan nanocomposites via adjusting KOH concentration for improved photocatalytic and antibacterial applications. Int J Biol Macromol 2023; 225:185-197. [PMID: 36328270 DOI: 10.1016/j.ijbiomac.2022.10.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
This work proposed a facile way to construct cellulose/chitosan-loaded Ag/Ag2O nanocomposite films (ACC) from alkali/urea solution by increasing the content of alkali KOH in the solvent. The saturated alkali and hydroxyl groups of the cellulose and chitosan chains were accelerated to convert AgNO3 to Ag0. Ag2O served as nuclei to lower the energy barrier. The formation of Ag/Ag2O nanoparticles (NPs) endowed the cellulose bio-reduced Ag composites with multifunction and stronger photocatalytic activity. Ag/Ag2O NPs with the diameter of 139-360 nm were uniformly dispersed in the composite films, resulting in superior mechanical properties (64.6 MPa) and thermal stability. Almost 92 % of methyl orange was degraded under UV-irradiation within 40 min by ACC. After 3 runs of degradation, the photocatalytic abilities of ACC remained. Moreover, the films exhibited good antibacterial activities. The width of inhibition zones around ACC reached 9.2-12 mm and 8.6-10.4 mm for S. aureus and E. coli. The strategy provided a new avenue to construct multifunctional cellulose/chitosan materials for various applications, such as wastewater treatment, and electrocatalysis.
Collapse
Affiliation(s)
- Yu Peng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huan Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanwei Ma
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liangyi Tian
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Hu Tu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Perumal AB, Nambiar RB, Moses J, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107484] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Peng Y, Zhou H, Wu Y, Ma Z, Zhang R, Tu H, Jiang L. A new strategy to construct cellulose-chitosan films supporting Ag/Ag 2O/ZnO heterostructures for high photocatalytic and antibacterial performance. J Colloid Interface Sci 2021; 609:188-199. [PMID: 34894553 DOI: 10.1016/j.jcis.2021.11.155] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
The industrial wastewater contaminants including dyes and bacteria have caused serious environmental pollutions. Herein, ternary Ag/Ag2O/ZnO heterostructure decorating cellulose-chitosan films were constructed via in situ synthesis. Cellulose and chitosan dissolved in alkali/urea solvent and regenerated in ethylene glycol to form cellulose/chitosan nanofiber network, which was an ideal supporter for ZnO and Ag nanoparticles and beneficial for recycle usage. The hydroxyl groups of cellulose and chitosan chains exposed and were utilized for the synthesis of Ag particles, as well as ZnO nanoparticles by biomineralization. The Ag/Ag2O/ZnO decorating cellulose/chitosan (AZ@CC) films exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli. The width of inhibition zones around AZ@CC films reached 10.0-19.6 mm and 12.4-15.0 mm for S. aureus and E. coli, respectively. Moreover, AZ@CC films exhibited good photocatalytic activity against methyl orange (MO), almost 97% degradation of methyl orange (MO) within 50 min was achieved with the assistance of AZ@CC film. Importantly, the nanocomposite films exhibited excellent tensile strength and thermal stability. This facile and eco-friendly approach provided a new route to utilize cellulose and chitosan advantages for constructing multifunctional materials.
Collapse
Affiliation(s)
- Yu Peng
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huan Zhou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yang Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanwei Ma
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Hu Tu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Tavares TD, Antunes JC, Ferreira F, Felgueiras HP. Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules 2020; 10:E148. [PMID: 31963279 PMCID: PMC7023167 DOI: 10.3390/biom10010148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
In the last ten years, environmental consciousness has increased worldwide, leading to the development of eco-friendly materials to replace synthetic ones. Natural fibers are extracted from renewable resources at low cost. Their combination with synthetic polymers as reinforcement materials has been an important step forward in that direction. The sustainability and excellent physical and biological (e.g., biocompatibility, antimicrobial activity) properties of these biocomposites have extended their application to the biomedical field. This paper offers a detailed overview of the extraction and separation processes applied to natural fibers and their posterior chemical and physical modifications for biocomposite fabrication. Because of the requirements for biomedical device production, specialized biomolecules are currently being incorporated onto these biocomposites. From antibiotics to peptides and plant extracts, to name a few, this review explores their impact on the final biocomposite product, in light of their individual or combined effect, and analyzes the most recurrent strategies for biomolecule immobilization.
Collapse
Affiliation(s)
| | | | | | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (T.D.T.); (J.C.A.); (F.F.)
| |
Collapse
|
5
|
Araruna FB, de Oliveira TM, Quelemes PV, de Araújo Nobre AR, Plácido A, Vasconcelos AG, de Paula RCM, Mafud AC, de Almeida MP, Delerue-Matos C, Mascarenhas YP, Eaton P, de Souza de Almeida Leite JR, da Silva DA. Antibacterial application of natural and carboxymethylated cashew gum-based silver nanoparticles produced by microwave-assisted synthesis. Carbohydr Polym 2019; 241:115260. [PMID: 32507221 DOI: 10.1016/j.carbpol.2019.115260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
This study presents a green synthesis route to silver nanoparticles (AgNPs) stabilized with cashew gum (CG) or carboxymethylated cashew gum (CCG) using microwave-assisted synthesis and evaluates their antibacterial activity. The antimicrobial activity was measured by determining the minimum inhibitory concentration (MIC) with Staphylococcus aureus and Escherichia coli. In both cases of the presence of CG and CCG, it was found that higher pH lead to more efficient conversion of silver nitrate to AgNPs with well dispersed, spherical and stable particles as well as low crystallinity. CCG-capped AgNPs were slightly smaller (137.0 and 96.3 nm) than those coated with non-modified gum (144.7 and 100.9 nm). The samples presented promising antibacterial activity, especially on Gram-negative bacteria, resulting in significant membrane damage on treated bacteria in comparison to the untreated control, observed by atomic force microscopy. Thus, a quick and efficient synthesis route was applied to produce CGAgNPs and CCGAgNPs with antimicrobial potential.
Collapse
Affiliation(s)
- Felipe Bastos Araruna
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil; Programa de Pós-Graduação em Biotecnologia da Rede Renorbio, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Taiane Maria de Oliveira
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil
| | - Patrick Veras Quelemes
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil
| | - Alyne Rodrigues de Araújo Nobre
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil
| | - Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Andreanne Gomes Vasconcelos
- Área de Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Ana Carolina Mafud
- Instituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
| | - Miguel Peixoto de Almeida
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | | | - Peter Eaton
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil; Área de Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Durcilene Alves da Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaíba, PI, Brazil.
| |
Collapse
|
6
|
Oun AA, Shankar S, Rhim JW. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Crit Rev Food Sci Nutr 2019; 60:435-460. [PMID: 31131614 DOI: 10.1080/10408398.2018.1536966] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nanocellulose materials are derived from cellulose, the most abundant biopolymer on the earth. Nanocellulose have been extensively used in the field of food packaging materials, wastewater treatment, drug delivery, tissue engineering, hydrogels, aerogels, sensors, pharmaceuticals, and electronic sectors due to their unique chemical structure and excellent mechanical properties. On the other hand, metal and metal oxide nanoparticles (NP) such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP have a variety of functional properties such as UV-barrier, antimicrobial, and magnetic properties. Recently, nanocelluloses materials have been used as a green template for producing metal or metal oxide nanoparticles. As a result, multifunctional nanocellulose/metal or metal oxide hybrid nanomaterials with high antibacterial properties, ultraviolet barrier properties, and mechanical properties were prepared. This review emphasized recent information on the synthesis, properties, and potential applications of multifunctional nanocellulose-based hybrid nanomaterials with metal or metal oxides such as Ag NP, ZnO NP, CuO NP, and Fe3O4 NP. The nanocellulose-based hybrid nanomaterials have huge potential applications in the area of food packaging, biopharmaceuticals, biomedical, and cosmetics.
Collapse
Affiliation(s)
- Ahmed A Oun
- Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Shiv Shankar
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:1989-2006. [PMID: 30637497 DOI: 10.1007/s00253-018-09602-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
Abstract
The bacterial infections have always a serious problem to public health. Scientists are developing new antibacterial materials to overcome this problem. Polysaccharides are promising biopolymers due to their diverse biological functions, low toxicity, and high biodegradability. Chitin and chitosan have antibacterial properties due to their cationic nature, while cellulose/bacterial cellulose does not possess any antibacterial activity. Moreover, the insolubility of chitin in common solvents, the poor solubility of chitosan in water, and the low mechanical properties of chitosan have restricted their biomedical applications. In order to solve these problems, chemical modifications such as quaternization, carboxymethylation, cationization, or surface modification of these polymers with different antimicrobial agents, including metal and metal oxide nanoparticles, are carried out to obtain new materials with improved physiochemical and biological properties. This mini review describes the recent progress in such derivatives and composites with potential antibacterial applications.
Collapse
|
8
|
Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X. Nanocellulose-Based Antibacterial Materials. Adv Healthc Mater 2018; 7:e1800334. [PMID: 29923342 DOI: 10.1002/adhm.201800334] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Indexed: 11/12/2022]
Abstract
In recent years, nanocellulose-based antimicrobial materials have attracted a great deal of attention due to their unique and potentially useful features. In this review, several representative types of nanocellulose and modification methods for antimicrobial applications are mainly focused on. Recent literature related with the preparation and applications of nanocellulose-based antimicrobial materials is reviewed. The fabrication of nanocellulose-based antimicrobial materials for wound dressings, drug carriers, and packaging materials is the focus of the research. The most important additives employed in the preparation of nanocellulose-based antimicrobial materials are presented, such as antibiotics, metal, and metal oxide nanoparticles, as well as chitosan. These nanocellulose-based antimicrobial materials can benefit many applications including wound dressings, drug carriers, and packaging materials. Finally, the challenges of industrial production and potentials for development of nanocellulose-based antimicrobial materials are discussed.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Kaiwen Mou
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; University of Chinese Academy of Sciences; Qingdao 266101 China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Keying Long
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
9
|
A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int J Biol Macromol 2018; 121:1314-1328. [PMID: 30208300 DOI: 10.1016/j.ijbiomac.2018.09.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.
Collapse
|
10
|
Yang H, Zhang Q, Chen Y, He Y, Yang F, Lu Z. Microwave–Ultrasonic Synergistically Assisted Synthesis of ZnO Coated Cotton Fabrics with an Enhanced Antibacterial Activity and Stability. ACS APPLIED BIO MATERIALS 2018; 1:340-346. [DOI: 10.1021/acsabm.8b00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| | - Qingxia Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| | - Ying Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
- Department of Petrochemical Engineering, Guangzhou Institute of Technology, Guangzhou 510725, People’s Republic of China
| | - Yuantao He
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| | - Fang Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| | - Zhong Lu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People’s Republic of China
| |
Collapse
|
11
|
Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 2018; 111:923-934. [DOI: 10.1016/j.ijbiomac.2018.01.089] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/05/2018] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
12
|
Searching for Natural Conductive Fibrous Structures via a Green Sustainable Approach Based on Jute Fibers and Silver Nanoparticles. Polymers (Basel) 2018; 10:polym10010063. [PMID: 30966097 PMCID: PMC6414823 DOI: 10.3390/polym10010063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/17/2022] Open
Abstract
This paper provides new insights regarding jute fibers functionalization with silver nanoparticles (Ag NPs) with improved conductivity values and highlights the sustainability of the processes involved. These NPs were applied onto jute fabrics by two different sustainable methods: ultraviolet (UV) photoreduction and by using polyethylene glycol (PEG) as a reducing agent and stabilizer. Field Emission Scanning Electron Microscopy (FESEM) images demonstrated that the Ag NPs were incorporated on the jute fibers surface by the two different approaches, with sizes ranging from 70 to 100 nm. Diffuse reflectance spectra revealed the plasmon absorption band, corresponding to the formation of metallic Ag NPs, in all samples under study. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to characterize the obtained samples, demonstrating NPs adsorption to the surface of the fibers. The resistivity value obtained by the two-point probe method of the jute fabric without functionalization is about 1.5 × 107 Ω·m, whereas, after NPs functionalization, it decreased almost 15,000 times, reaching a value of 1.0 × 103 Ω·m. Further research work is being undertaken for improving these values, however, 1000 Ω·m of resistivity (conductivity = 0.001 S/m) is already a very reasonable value when compared with those obtained with other developed systems based on natural fibers. In summary, this work shows that the use of very simple methodologies enabled the functionalization of jute fibers with reasonable values of conductivity. This achievement has a huge potential for use in smart textile composites.
Collapse
|
13
|
Elayaraja S, Zagorsek K, Li F, Xiang J. In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 2017; 166:329-337. [DOI: 10.1016/j.carbpol.2017.02.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/19/2017] [Accepted: 02/22/2017] [Indexed: 12/21/2022]
|
14
|
Zhao X, Li Q, Ma X, Quan F, Wang J, Xia Y. The preparation of alginate–AgNPs composite fiber with green approach and its antibacterial activity. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
ROMBALDO CARLAF, LISBOA ANTONIOC, MENDEZ MANOELO, COUTINHO APARECIDOR. Brazilian natural fiber (jute) as raw material for activated carbon production. AN ACAD BRAS CIENC 2014. [DOI: 10.1590/0001-3765201420140143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Jute fiber is the second most common natural cellulose fiber worldwide, especially in recent years, due to its excellent physical, chemical and structural properties. The objective of this paper was to investigate: the thermal degradation of in natura jute fiber, and the production and characterization of the generated activated carbon. The production consisted of carbonization of the jute fiber and activation with steam. During the activation step the amorphous carbon produced in the initial carbonization step reacted with oxidizing gas, forming new pores and opening closed pores, which enhanced the adsorptive capacity of the activated carbon. N2 gas adsorption at 77K was used in order to evaluate the effect of the carbonization and activation steps. The results of the adsorption indicate the possibility of producing a porous material with a combination of microporous and mesoporous structure, depending on the parameters used in the processes, with resulting specific surface area around 470 m2.g–1. The thermal analysis indicates that above 600°C there is no significant mass loss.
Collapse
|
16
|
Fitz-Binder C, Bechtold T. One-sided surface modification of cellulose fabric by printing a modified TEMPO-mediated oxidant. Carbohydr Polym 2014; 106:142-7. [DOI: 10.1016/j.carbpol.2014.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
|
17
|
Cao X, Wang X, Ding B, Yu J, Sun G. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers. Carbohydr Polym 2013; 92:2041-7. [DOI: 10.1016/j.carbpol.2012.11.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|