1
|
Kazlauskaite JA, Matulyte I, Marksa M, Bernatoniene J. Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines. Pharmaceutics 2024; 16:530. [PMID: 38675191 PMCID: PMC11054921 DOI: 10.3390/pharmaceutics16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in both the stomach and intestines, with the use of natural and synthetic emulsifiers. The microcapsules were formed using the extrusion method and employing alginate or chitosan as shell-forming material. In this study, all selected emulsifiers formed Pickering (β-CD) and traditional (white mustard extract, polysorbate 80) stable emulsions. Alginate-based emulsions resulted in microemulsions, while chitosan-based emulsions formed macroemulsions, distinguishable by oil droplet size. Although chitosan formulations with higher red clover extract (C1) concentrations showed potential, they exhibited slightly reduced firmness compared to other formulations (C2). Additionally, both alginate and chitosan formulations containing β-CD released bioactive compounds more effectively. The combined use of alginate and chitosan microcapsules in a single pill offers an innovative way to ensure dual solubility in both stomach and intestinal environments, increasing versatility for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Jurga Andreja Kazlauskaite
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Inga Matulyte
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.A.K.); (I.M.)
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
2
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
3
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
4
|
YANG W, XUE Y, CUI X, TANG H, LI H. Targeted delivery of doxorubicin to liver used a novel biotinylated β-cyclodextrin grafted pullulan nanocarrier. Colloids Surf B Biointerfaces 2022; 220:112934. [DOI: 10.1016/j.colsurfb.2022.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
5
|
Pooresmaeil M, Javanbakht S, Namazi H, Shaabani A. Application or function of citric acid in drug delivery platforms. Med Res Rev 2021; 42:800-849. [PMID: 34693555 DOI: 10.1002/med.21864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Nontoxic materials with natural origin are promising materials in the designing and preparation of the new drug delivery systems (DDSs). Today's, citric acid (CA) has attracted a great deal of attention because of its special features; green nature, biocompatibility, low price, biodegradability, and commercially available property. So, CA has been employed in the preparation of the various platforms to induce a suitable property on their structure. Recently, several research groups investigated the CA-based platforms in different forms like tablets, dendrimers, hyperbranched polymers, (co)polymer, hydrogels, and nanoparticles as efficient DDSs. By considering an increasing amount of published articles in this field, for the first time, in this review, an overview of the published works regarding CA applications in the design of various DDSs is presented with a detailed and insightful discussion.
Collapse
Affiliation(s)
- Malihe Pooresmaeil
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Hassan Namazi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Microwave assisted quaternized cyclodextrin grafted chitosan (QCD-g-CH) nanoparticles entrapping ciprofloxacin. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02535-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fabrication of l-menthol contained edible self-healing coating based on guest-host interaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Piras AM, Zambito Y, Burgalassi S, Monti D, Tampucci S, Terreni E, Fabiano A, Balzano F, Uccello-Barretta G, Chetoni P. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:42. [PMID: 29603020 DOI: 10.1007/s10856-018-6048-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.
Collapse
Affiliation(s)
- Anna Maria Piras
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy.
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Eleonora Terreni
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Gloria Uccello-Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124, Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56126, Pisa, Italy
| |
Collapse
|
10
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
11
|
Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Sci Rep 2018; 8:2067. [PMID: 29391538 PMCID: PMC5794797 DOI: 10.1038/s41598-018-20602-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023] Open
Abstract
Carvacrol and linalool are natural compounds extracted from plants and are known for their insecticidal and repellent activities, respectively. However, their low aqueous solubility, high photosensitivity, and high volatility restrict their application in the control of agricultural pests. The encapsulation of volatile compounds can be an effective way of overcoming such problems. Inclusion complexes between beta-cyclodextrin (β-CD) and carvacrol (CVC) or linalool (LNL) were investigated. Inclusion complexes were prepared by the kneading method. Both complexes presented 1:1 host:guest stoichiometry and the highest affinity constants were observed at 20 °C for both molecules. The nanoparticles containing carvacrol and linalool had mean diameters of 175.2 and 245.8 nm, respectively and high encapsulation efficiencies (<90%) were achieved for both compounds. Biological assays with mites (Tetranychus urticae) showed that the nanoparticles possessed repellency, acaricidal, and oviposition activities against this organism. Nanoencapsulated carvacrol and linalool were significantly more effective in terms of acaricidal and oviposition activities, while the unencapsulated compounds showed better repellency activity. The nanoformulations prepared in this study are good candidates for the sustainable and effective use of botanical compounds in agriculture, contributing to the reduction of environmental contamination, as well as promoting the effective control of pests in agriculture.
Collapse
|
12
|
Phunpee S, Suktham K, Surassmo S, Jarussophon S, Rungnim C, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR. Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. Int J Pharm 2017; 538:21-29. [PMID: 29225100 DOI: 10.1016/j.ijpharm.2017.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/06/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022]
Abstract
In this study, the inclusion complex formation between α-mangostin and water-soluble quaternized β-CD grafted-chitosan (QCD-g-CS) was investigated. Inclusion complex formation with encapsulation efficiency (%EE) of 5, 15 and 75% can be varied using high speed homogenizer. Tuning %EE plays a role on physicochemical and biological properties of α-mangostin/QCD-g-CS complex. Molecular dynamics simulations indicate that α-mangostin is included within the hydrophobic β-CD cavity and being absorbed on the QCD-g-CS surface, with these results being confirmed by Fourier transform infrared (FTIR) spectroscopy. Probing the release characteristics of the inclusion complex at various %EE (5%, 15% and 75%) in simulated saliva (pH 6.8) demonstrated that α-mangostin release rates were dependent on % EE (order 5% > 15% > 75%). Additionally, higher antimicrobial and anti-inflammation activities were observed for the inclusion complex than those of free α-mangostin due to enhance the solubility of α-mangostin through the inclusion complex with QCD-g-CS.
Collapse
Affiliation(s)
- Sarunya Phunpee
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Kunat Suktham
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Suvimol Surassmo
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Suwatchai Jarussophon
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Chompoonut Rungnim
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Apinan Soottitantawat
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Satit Puttipipatkhachorn
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
13
|
Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H₂O₂ Detection. MATERIALS 2017; 10:ma10080868. [PMID: 28773229 PMCID: PMC5578234 DOI: 10.3390/ma10080868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT) and β-cyclodextrin-included-ferrocene (β-CD-FE) complex for the determination of H₂O₂. Ferrocene (FE) was included in β-cyclodextrin (β-CD) to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H₂O₂. It was found that the CTS-CAT could produce a strong reduction peak current in response to H₂O₂ and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H₂O₂ concentration in the range of 1.0 × 10-7-6.0 × 10-3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.
Collapse
|
14
|
Thonggoom O, Punrattanasin N, Srisawang N, Promawan N, Thonggoom R. In vitro controlled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone. J Microencapsul 2016; 33:239-48. [DOI: 10.3109/02652048.2016.1156173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- O. Thonggoom
- Department of Textile Science and Technology, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| | - N. Punrattanasin
- Department of Textile Science and Technology, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand
| | - N. Srisawang
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - N. Promawan
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - R. Thonggoom
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Surface Science and Engineering, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
15
|
Phunpee S, Saesoo S, Sramala I, Jarussophon S, Sajomsang W, Puttipipatkhajorn S, Soottitantawat A, Ruktanonchai UR. A comparison of eugenol and menthol on encapsulation characteristics with water-soluble quaternized β-cyclodextrin grafted chitosan. Int J Biol Macromol 2016; 84:472-80. [DOI: 10.1016/j.ijbiomac.2015.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
|
16
|
Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H. Preparation and characterization of clove essential oil-loaded liposomes. Food Chem 2015; 178:52-62. [DOI: 10.1016/j.foodchem.2015.01.067] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/11/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022]
|
17
|
Peng S, Zou L, Liu W, Gan L, Liu W, Liang R, Liu C, Niu J, Cao Y, Liu Z, Chen X. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method. J Food Prot 2015; 78:22-30. [PMID: 25581174 DOI: 10.4315/0362-028x.jfp-14-246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Eugenol is a major phenolic component with diverse biological activities. However, it is difficult to formulate into an aqueous solution due to poor water solubility, and this limits its application. In the present study, eugenol nanoliposomes (EN) were prepared by combining the ethanol injection method with the dynamic high-pressure microfluidization method. Good physicochemical characterizations of EN were obtained. The successful encapsulation of eugenol in nanoliposomes was confirmed by Fourier transform infrared spectroscopy. A good storage stability of EN was confirmed by its low variation of average particle diameter and encapsulation efficiency after 8 weeks of storage. No oil drops were found in EN after 8 weeks of storage at 4°C and at room temperature, which suggested that the poor water solubility of eugenol was overcome by nanoliposome encapsulation. Compared with that of eugenol solution, a relatively good sustained release property was observed in EN. The antibacterial activity of EN against four common foodborne pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes) was evaluated in both Luria broth and milk medium.
Collapse
Affiliation(s)
- Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Lu Gan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Weilin Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People's Republic of China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jing Niu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yanlin Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|