1
|
Kang D, Wang W, Li Y, Ma Y, Huang Y, Wang J. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers (Basel) 2023; 15:3919. [PMID: 37835967 PMCID: PMC10575414 DOI: 10.3390/polym15193919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
The development of biological macromolecule hydrogel dressings with fatigue resistance, sufficient mechanical strength, and versatility in clinical treatment is critical for accelerating full-thickness healing of skin wounds. Therefore, in this study, multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure were fabricated to accelerate wound healing. The resulting biological macromolecule hydrogel possesses sufficient mechanical strength, fatigue resistance, and healing properties, including antibacterial, antioxygenic, self-healing, vascularization, hemostatic, and adhesive abilities. Chitosan and recombinant type I collagen formed the scaffold network, which was the first covalent crosslinking network of the hydrogel. The second physical crosslinking network comprised the coordination of a metal-polyphenol structure, i.e., Cu2+ with the catechol group of dopamine methacrylamide (DMA) and stacking of DMA benzene rings. Double-crosslinked networks are interspersed and intertwined in the hydrogel to reduce the mechanical strength and increase its fatigue resistance, making it more suitable for clinical applications. Moreover, the biological macromolecule hydrogel can continuously release Cu2+, which provides strong antibacterial and vascularization properties. An in vivo full-thickness skin defect model confirmed that multifunctional, biological macromolecule hydrogels based on a recombinant type I collagen/chitosan scaffold incorporated with a metal-polyphenol structure can facilitate the formation of granulation tissue and collagen deposition for a short period to promote wound healing. This study highlights that this biological macromolecule hydrogel is a promising acute wound-healing dressing for biomedical applications.
Collapse
Affiliation(s)
- Duo Kang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Wenhai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (D.K.); (W.W.); (Y.L.); (Y.M.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Ma H, Peng Y, Zhang S, Zhang Y, Min P. Effects and Progress of Photo-Crosslinking Hydrogels in Wound Healing Improvement. Gels 2022; 8:609. [PMID: 36286110 PMCID: PMC9601727 DOI: 10.3390/gels8100609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 09/18/2023] Open
Abstract
Wound healing is a dynamic physiological process, including three stages: inflammation, tissue formation, and remodeling. The quality of wound healing is affected by many topical and systemic factors, while any small factor may affect the process. Therefore, improving the quality of wound healing is a complex and arduous challenge. Photo-crosslinking reaction using visible light irradiation is a novel method for hydrogel preparation. Photo-crosslinking hydrogels can be controlled in time and space, and are not interfered by temperature conditions, which have been widely used in the fields of medicine and engineering. This review aims to summarize the application of photo-crosslinking hydrogels in improving the quality of wound healing, mainly including the material design, application mechanism, and effect of photo-crosslinking hydrogels applied in wound healing, followed by the applicable animal models for experimental research. Finally, this review analyzes the clinical application prospects of photo-crosslinking hydrogels in the field of wound healing.
Collapse
Affiliation(s)
| | | | | | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
3
|
Green starch/graphene oxide hydrogel nanocomposites for sustained release applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractGreen nanocomposite hydrogels (ST-PHEMA/GO) comprised of starch and 2-Hydroxyethyl methacrylate (HEMA) reinforced with different ratios of graphene oxide (GO) were prepared via gamma radiation induced crosslinking polymerization. The chemical structure and morphology and the crystallinity were studied by FTIR FE-SEM, AFM, TEM and XRD, respectively. The swelling behavior of the claimed hydrogels was verified versus time and the pH-dependent swelling at three different irradiation dose:10, 20 and 30 kGy was also investigated. The results of the swelling study showed that the swelling capacity of the hydrogel networks varied with the changes of the pH of the solution, the GO content and the irradiation doses. Moreover, the swelling isotherm of all the prepared hydrogels followed a Fickian diffusion mechanism n < 0.5.
Graphical abstract
Collapse
|
4
|
Zhang Z, Guo J, He Y, Han J, Chen M, Zheng Y, Zhang S, Guo S, Shi X, Yang J. Injectable double network hydrogel with hemostasis and antibacterial activity for promoting multidrug−resistant bacteria infected wound healing. Biomater Sci 2022; 10:3268-3281. [PMID: 35583113 DOI: 10.1039/d2bm00347c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug−resistant bacteria infections frequently occur in wound care due to the excessive use of antibiotics. It can cause scars formation, wound closure delaying, multiple organ failure, and high mortality. Here,...
Collapse
Affiliation(s)
- Zibo Zhang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Jiadong Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Yuxiang He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
- College of Chemistry, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, The 900th Hospital of Joint Logistic Support Force, PLA, No. 156 West Second Ring Road, Fuzhou 350025, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| |
Collapse
|
5
|
He X, Liu R, Liu H, Wang R, Xi Z, Lin Y, Wang J. Facile Preparation of Tunicate-Inspired Chitosan Hydrogel Adhesive with Self-Healing and Antibacterial Properties. Polymers (Basel) 2021; 13:polym13244322. [PMID: 34960874 PMCID: PMC8708530 DOI: 10.3390/polym13244322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
In order to replace traditional wound treatments such as sutures, tissue adhesives with strong wet tissue adhesion and biocompatibility have attracted more attention to the applications of non-invasive wound closure. Herein, inspired by tunicate adhesive protein, a series of 2,3,4-trihydroxybenzaldehyde (TBA)-modified chitosan hydrogels (CS-TBA-Fe) were prepared by easily mixing the solutions of chitosan-FeCl3 and TBA via the Schiff-base reaction and the coordination between Fe3+ and pyrogallol groups. The gelation time was greatly shortened to only several seconds after induced even trace Fe3+. The hydrogel (CS-TBA-Fe) exhibited ~12-fold enhanced wet tissue adhesion strength (60.3 kPa) over the commercial fibrin glue. Meanwhile, the hydrogel also showed robust adhesion to various substrates such as wood, PMMA, and aluminum. The swelling ratio and rheological property can be simply controlled by changing the concentrations of chitosan, TBA, and Fe3+. Moreover, the hydrogel displayed a rapid and highly efficient self-healing ability and an excellent antibacterial activity against E. coli. The overall results show that the CS-TBA-Fe hydrogel with enhanced wet adhesiveness will be a promising tissue adhesive material.
Collapse
Affiliation(s)
- Xiang He
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
- Shanghai Key Laboratory of Multiphase Materials, Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruyue Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
- Shanghai Key Laboratory of Multiphase Materials, Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiqing Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
| | - Ruixiao Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
- Shanghai Key Laboratory of Multiphase Materials, Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Correspondence: (Z.X.); (J.W.)
| | - Yixiang Lin
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.H.); (R.L.); (H.L.); (R.W.); (Y.L.)
- Correspondence: (Z.X.); (J.W.)
| |
Collapse
|
6
|
Yang Y, Liang Y, Chen J, Duan X, Guo B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact Mater 2021; 8:341-354. [PMID: 34541405 PMCID: PMC8427086 DOI: 10.1016/j.bioactmat.2021.06.014] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
With the increasing prevalence of drug-resistant bacterial infections and the slow healing of chronically infected wounds, the development of new antibacterial and accelerated wound healing dressings has become a serious challenge. In order to solve this problem, we developed photo-crosslinked multifunctional antibacterial adhesive anti-oxidant hemostatic hydrogel dressings based on polyethylene glycol monomethyl ether modified glycidyl methacrylate functionalized chitosan (CSG-PEG), methacrylamide dopamine (DMA) and zinc ion for disinfection of drug-resistant bacteria and promoting wound healing. The mechanical properties, rheological properties and morphology of hydrogels were characterized, and the biocompatibility of these hydrogels was studied through cell compatibility and blood compatibility tests. These hydrogels were tested for the in vitro blood-clotting ability of whole blood and showed good hemostatic ability in the mouse liver hemorrhage model and the mouse-tail amputation model. In addition, it has been confirmed that the multifunctional hydrogels have good inherent antibacterial properties against Methicillin-resistant Staphylococcus aureus (MRSA). In the full-thickness skin defect model infected with MRSA, the wound closure ratio, thickness of granulation tissue, number of collagen deposition, regeneration of blood vessels and hair follicles were measured. The inflammation-related cytokines (CD68) and angiogenesis-related cytokines (CD31) expressed during skin regeneration were studied. All results indicate that these multifunctional antibacterial adhesive hemostatic hydrogels have better healing effects than commercially available Tegaderm™ Film, revealing that they have become promising alternative in the healing of infected wounds. Antibacterial antioxidant adhesion hydrogel was obtained by photopolymerization. These hydrogels exhibited good hemostatic property and cell compatibility. The hydrogels showed good antibacterial property against MRSA. The hydrogels significantly enhanced wound healing of infected skin wound.
Collapse
Affiliation(s)
- Yutong Yang
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.,Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jueying Chen
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.,Second Department of General Surgery, Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Samadian H, Maleki H, Allahyari Z, Jaymand M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213432] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Abstract
To stop blood loss and accelerate wound healing, conventional wound closure techniques such as sutures and staples are currently used in the clinic. These tissue-piercing wound closure techniques have several disadvantages such as the potential for causing inflammation, infections, and scar formation. Surgical sealants and tissue adhesives can address some of the disadvantages of current sutures and staples. An ideal tissue adhesive will demonstrate strong interfacial adhesion and cohesive strength to wet tissue surfaces. Most reported studies rely on the liquid-to-solid transition of organic molecules by taking advantage of polymerization and crosslinking reactions for improving the cohesive strength of the adhesives. Crosslinking reactions triggered using light are commonly used for increasing tissue adhesive strength since the reactions can be controlled spatially and temporally, providing the on-demand curing of the adhesives with minimum misplacements. In this review, we describe the recent advances in the field of naturally derived tissue adhesives and sealants in which the adhesive and cohesive strengths are modulated using photochemical reactions.
Collapse
|
9
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods. Int J Biol Macromol 2019; 139:760-772. [DOI: 10.1016/j.ijbiomac.2019.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022]
|
10
|
An injectable and self‐healing novel chitosan hydrogel with low adamantane substitution degree. POLYM INT 2019. [DOI: 10.1002/pi.5800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/4249581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although the exposure of polymeric materials to radiation is a well-established process, little is known about the relationship between structure and property and the biological behavior of biomaterials obtained by thermal phenomena at 1070 nm wavelength. This study includes results concerning the use of a novel infrared radiation source (ytterbium laser fiber) for the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel in order to produce medical devices. The materials were obtained by means of free radical polymerization mechanism and evaluated regarding its cross-linking degree, polymer chain mobility, thermal, and mechanical properties. Their potential use as a biomaterial toward cartilage tissue was investigated through incubation with chondrocytes cells culture by dimethylmethylene blue (DMMB) dye and DNA quantification. Differential scanning calorimetry (DSC) results showed that glass transition temperature (Tg) was in the range 103°C–119°C, the maximum degree of swelling was 70.8%, and indentation fluency test presented a strain of 56%–85%. A significant increase of glycosaminoglycans (GAGs) concentration and DNA content in cells cultured with 40 wt% 2-hydroxyethyl methacrylate was observed. Our results showed the suitability of infrared laser fiber in the free radicals formation and in the rapid polymer chain growth, and further cross-linking. The porous material obtained showed improvements concerning cartilage tissue regeneration.
Collapse
|
12
|
Gershon E, Hadas R, Elbaz M, Booker E, Muchnik M, Kleinjan-Elazary A, Karasenti S, Genin O, Cinnamon Y, Gray PC. Identification of Trophectoderm-Derived Cripto as an Essential Mediator of Embryo Implantation. Endocrinology 2018; 159:1793-1807. [PMID: 29506220 DOI: 10.1210/en.2017-03039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/17/2018] [Indexed: 01/09/2023]
Abstract
Cripto-1 (TDGF1) is a multifunctional signaling factor that stimulates cellular effects, including proliferation, migration, survival, epithelial-to-mesenchymal transition, and angiogenesis, to regulate embryogenesis, tissue homeostasis, and tumorigenesis. Those cell behaviors are also associated with implantation of the embryo into the uterine wall, and this led us to investigate the role of embryo-derived Cripto in embryo attachment and implantation. In this study, we show that Cripto and its signaling mediator GRP78 are uniquely localized to embryo implantation sites. We knocked down Cripto expression specifically in trophoblast cells and found that this resulted in a corresponding decrease in the levels of its downstream signaling mediators, phosphorylated (phospho-)SMAD2, phospho-SRC, phospho-extracellular signal-regulated kinase, and phospho-AKT, which are also known mediators of embryo implantation. We then transplanted Cripto knockdown and control embryos into uteri of pseudopregnant female mice and found that embryos with Cripto-depleted trophoblast cells had dramatically impaired capacity to attach to the uterine wall when compared with controls. This loss of appropriate embryo attachment following Cripto knockdown in trophoblast cells was associated with abnormally enlarged implantation sites that were almost completely devoid of microvessels. A role for Cripto in embryo implantation was further supported by our demonstration that attachment of trophoblast-derived spheroids to endometrial cells in vitro was stimulated by Cripto treatment and diminished by treatment with either of two mechanistically distinct Cripto blocking agents. Collectively, our findings identify Cripto as a novel and critical embryo attachment factor and suggest that modulation of Cripto signaling may have significant therapeutic potential for the treatment of infertility and other related disorders.
Collapse
Affiliation(s)
- Eran Gershon
- Department of Ruminant Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Ron Hadas
- Department of Biological Regulation, the Weizmann Institute of Science, Rehovot, Israel
| | - Michal Elbaz
- Department of Ruminant Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Evan Booker
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California
| | - Moran Muchnik
- Department of Ruminant Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Alona Kleinjan-Elazary
- Department of Ruminant Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Sharon Karasenti
- Department of Ruminant Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Olga Genin
- Department of Poultry and Aquaculture Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yuval Cinnamon
- Department of Poultry and Aquaculture Science, Agricultural Research Organization, Rishon LeZion, Israel
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
13
|
Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin. Int J Biol Macromol 2017; 96:569-577. [DOI: 10.1016/j.ijbiomac.2016.12.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
|
14
|
O’Rorke RD, Pokholenko O, Gao F, Cheng T, Shah A, Mogal V, Steele TWJ. Addressing Unmet Clinical Needs with UV Bioadhesives. Biomacromolecules 2017; 18:674-682. [DOI: 10.1021/acs.biomac.6b01743] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Richard D. O’Rorke
- Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Oleksandr Pokholenko
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ting Cheng
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Ankur Shah
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| | - Vishal Mogal
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
- Faculty
of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Terry W. J. Steele
- School
of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, Singapore 639798
| |
Collapse
|
15
|
Feng G, Djordjevic I, Mogal V, O'Rorke R, Pokholenko O, Steele TWJ. Elastic Light Tunable Tissue Adhesive Dendrimers. Macromol Biosci 2016; 16:1072-82. [DOI: 10.1002/mabi.201600033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Gao Feng
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| | - Ivan Djordjevic
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| | - Vishal Mogal
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| | - Richard O'Rorke
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| | - Terry W. J. Steele
- School of Materials Science and Engineering (SME); Division of Materials Technology; Nanyang Technological University (NTU); Singapore 639798
| |
Collapse
|
16
|
Costa AMS, Alatorre-Meda M, Alvarez-Lorenzo C, Mano JF. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3648-3652. [PMID: 25764987 DOI: 10.1002/smll.201500192] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.
Collapse
Affiliation(s)
- Ana M S Costa
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
| | - Manuel Alatorre-Meda
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
- Investigador de Cátedras CONACyT comisionado al Centro de Graduados e Investigación en Química del Instituto, Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, 22510, Tijuana, BC, Mexico
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - João F Mano
- 3B's Research group - Biomaterials, Biodegradables and Biomimetics - Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, GMR, Portugal
| |
Collapse
|
17
|
Annabi N, Tamayol A, Shin SR, Ghaemmaghami AM, Peppas NA, Khademhosseini A. Surgical Materials: Current Challenges and Nano-enabled Solutions. NANO TODAY 2014; 9:574-589. [PMID: 25530795 PMCID: PMC4266934 DOI: 10.1016/j.nantod.2014.09.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surgical adhesive biomaterials have emerged as substitutes to sutures and staples in many clinical applications. Nano-enabled materials containing nanoparticles or having a distinct nanotopography have been utilized for generation of a new class of surgical materials with enhanced functionality. In this review, the state of the art in the development of conventional surgical adhesive biomaterials is critically reviewed and their shortcomings are outlined. Recent advancements in generation of nano-enabled surgical materials with their potential future applications are discussed. This review will open new avenues for the innovative development of the next generation of tissue adhesives, hemostats, and sealants with enhanced functionality for various surgical applications.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ali Tamayol
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Su Ryon Shin
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Nicholas A Peppas
- Department of Biomedical Engineering, Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ali Khademhosseini
- Center for Biomaterials Innovation, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA ; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA ; Department of Biomedical Engineering, Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA ; Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea ; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
18
|
Li C, Wang T, Hu L, Wei Y, Liu J, Mu X, Nie J, Yang D. Photocrosslinkable bioadhesive based on dextran and PEG derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:300-6. [DOI: 10.1016/j.msec.2013.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 09/02/2013] [Accepted: 10/29/2013] [Indexed: 01/11/2023]
|
19
|
Thermal responsive hydrogels based on semi interpenetrating network of poly(NIPAm) and cellulose nanowhiskers. Carbohydr Polym 2014; 102:159-66. [DOI: 10.1016/j.carbpol.2013.10.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/05/2013] [Accepted: 10/11/2013] [Indexed: 11/23/2022]
|
20
|
Affiliation(s)
- Samaneh Khanlari
- Department of Chemical and Biological Engineering; Centre for Catalysis Research and Innovation; University of Ottawa; 161 Louis Pasteur Pvt. Ottawa ON, Canada K1N 6N5
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering; Centre for Catalysis Research and Innovation; University of Ottawa; 161 Louis Pasteur Pvt. Ottawa ON, Canada K1N 6N5
| |
Collapse
|