1
|
Zhang W, Sun J, Li Q, Liu C, Yue R, Zhang Y, Niu F, Zhu H, Ma C, Deng S. Effects of different extraction solvents on the compositions, primary structures, and anti-inflammatory activity of pectin from sweet potato processing by-products. Carbohydr Polym 2025; 347:122766. [PMID: 39486993 DOI: 10.1016/j.carbpol.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
To examine the effects of different solvents on the molecular weight, yield, chemical composition, and bioactivity of pectins, four RG-I type pectins were separately extracted from sweet potato residue (SPR) using hot water extraction (HWSP), sodium hydroxide extraction (SHSP), hydrochloric acid extraction (HASP), and chelating agents (CASP). The results showed that the four pectin samples comprised GalUA, Gal, Rha, Ara, Glc, GlcUA, Man, and Xyl components. Among these components, GalA content was the highest in all four pectins. SHSP exhibited relatively higher yield (3.16 %, w/w). Additionally, SHSP exhibited a lower molecular weight (44.49 kDa) and the largest proportion of the RG-I region (75.42 %) compared with other extraction methods. On the contrary, HASP showed relatively lower yield (2.14 %, w/w), and its corresponding prepared pectin had relatively high molecular weight (69.81 kDa) and the minimum range of RG-I region (46.87 %) compared with HWSP, SHSP, and CASP. The anti-inflammation effect of the four SPR pectin samples was investigated using in vitro experiments. Results showed that all of SPR pectin significantly inhibited the levels of IL-1β, IL-6, and TNF-α in lipopolysaccharide (LPS)-treated iBMDM macrophage cells. The preliminary structure-activity relationship between pectin structure and anti-inflammatory activity was also analyzed. SPR pectin can be developed as a potential bioactive ingredient for applications in the food and medicine industries.
Collapse
Affiliation(s)
- Wenting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China; School of life sciences, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China.
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China.
| | - Chanmin Liu
- School of life sciences, Jiangsu Normal University, Xuzhou, People's Republic of China
| | - Ruixue Yue
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Yi Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Hong Zhu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Chen Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Shaoying Deng
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| |
Collapse
|
2
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
3
|
Ju H, Fang W, Li HH, Fu Z, Gong PX, Liu Y, Lu S, Wu YC, Li HJ. Optimization of extraction process of polysaccharide from Phylloporia fontanesiae and its simulated digestion in vitro. J Food Sci 2024. [PMID: 39437231 DOI: 10.1111/1750-3841.17381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024]
Abstract
In this study, Phylloporia fontanesiae polysaccharide was successfully isolated through a sequential water extraction and alcohol precipitation process. Utilizing the Box-Behnken design, the extraction process was optimized based on single-factor experiments, considering variables such as the material-to-liquid ratio, extraction temperature, extraction time, and the number of extractions. The polysaccharide composition of P. fontanesiae is predominantly composed of mannose, glucuronic acid, glucose, and galactose, with a molar mass ratio of 4.31:4.10:36.83:1, along with minor amounts of aminoglucose and fucose. The polysaccharide fraction of P. fontanesiae comprises two distinct components, possessing relative molecular masses of 8.85 kDa and 134.03 kDa. Notably, the polysaccharide exhibited significant antioxidant activity. After undergoing simulated gastrointestinal digestion, no significant changes were observed in its antioxidant activity, molecular weight, or monosaccharide composition. This study not only enhanced the extraction efficiency of P. fontanesiae polysaccharide but also provided valuable insights into its composition, structure, and digestion characteristics. PRACTICAL APPLICATION: The optimum extraction process, stability, and antioxidant activity of Phylloporia fontanesiae polysaccharide during simulated digestion of gastrointestinal tract were studied. The results provide a theoretical basis for the development and application of this polysaccharide in the field of food and health products.
Collapse
Affiliation(s)
- Hao Ju
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Wei Fang
- Department of Pharmacy, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, PR China
| | - Hai-Huang Li
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Ze Fu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Pi-Xian Gong
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Yang Liu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Siqi Lu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Yan-Chao Wu
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| | - Hui-Jing Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
- Weihai Key Laboratory of Active Factor of Marine Products, Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, PR China
| |
Collapse
|
4
|
Li B, Yang Y, Kou X, Yang M, Normakhamatov N, Alasmari AF, Xin B, Tan Y. Water-soluble polysaccharides extracted from Enteromorpha prolifera/PVA composite film functionalized as ε-polylysine with improved mechanical and antibacterial properties. Int J Biol Macromol 2024; 282:136697. [PMID: 39427792 DOI: 10.1016/j.ijbiomac.2024.136697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The issue of environmental protection has received sustained and widespread attention. In order to reduce environmental pollution related to traditional plastics, it is an incessant demand to design novel environment-friendly food packaging materials with excellent performance. Sulfated polysaccharide extracted from the "green tide" marine pollution Enteromorpha prolifera (SPE) has been innovatively transformed into a film-forming material for better utilization. The insufficient mechanical properties and limited functionalities, however, hinder its wide application. In this study, polyvinyl alcohol (PVA) was blended to enhance its mechanical properties and ε-polylysine (ε-PL) was incorporated to endow it with antimicrobial performance. A novel and biodegradable film composed of SPE, PVA, and ε-PL was fabricated by casting method. We further determined the physicochemical properties of composited films. Mechanical performance test revealed the tensile strength of SPE-PVA-PL films increased from 5.56 MPa to 6.65 MPa and the E% increased from 128.8 % to 246.9 % compared with that of SPE-PVA films. Antimicrobial tests showed the excellent antibacterial activity of SPE-PVA-PL films against representative microbial species, Staphylococcus aureus and Escherichia coli. The results of this study suggested that the SPE-based composite film has the potential to be used as a potential food packaging and wound dressing materials.
Collapse
Affiliation(s)
- Bing Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yingying Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Xinhua Kou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Manli Yang
- College of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek str, 45, Tashkent 100015, Uzbekistan
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bingchang Xin
- Department of Cariology and Endodontology, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Yulong Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, PR China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China.
| |
Collapse
|
5
|
Wang Y, Liu R, Xie Z, Du L, Wang Y, Han J, Zhang L. Structure characterization and immunological activity of capsular polysaccharide from live and heat-killed Lacticaseibacillus paracasei 6235. Int J Biol Macromol 2024; 277:134010. [PMID: 39032891 DOI: 10.1016/j.ijbiomac.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Capsular polysaccharide (CPS) as a probiotic component has the ability to regulate the function of the host's immune system. However, how the structure and function of heat-killed CPS are altered remains unclear. In the present study, CPS were isolated and purified from live (LCPS) and heat-killed (HCPS) Lacticaseibacillus paracasei 6235. The differences in structure and immunomodulation between LCPS and HCPS were compared and analyzed. The results demonstrate that after heat killed, the molecular weight of CPS decreased from 23.4 kDa to 17.5 kDa, with the disappearance of galactosamine in the monosaccharide composition, and changes in the microstructure. Methylation analysis and nuclear magnetic resonance analysis revealed that the LCPS and HCPS are similar in structure, which main units of →3,4)-α-D-Glcp-(1→4)-α-D-Galp-(1→3)-β-L-Rhap-(1→6)-β-D-Galp-(1→, and repeating units of →3,4)-α-D-Glcp-(1→, →3)-β-L-Rhap-(1→, and →4)-α-D-Galp-(1→ residues. Furthermore, both LCPS and HCPS significantly downregulated the expression of pro-inflammatory cytokines in RAW264.7 cells induced by LPS. Specifically, HCPS reduced the levels of IL-6 and IL-1β by 79.38 % and 88.42 %, respectively, compared to LCPS. Concurrently, both LCPS and HCPS effectively mitigated inflammatory responses through the NF-κB and MAPK signaling pathways. Moreover, compared to LCPS, HCPS increased the protein expression levels of NF-κB/p-NF-κB and IκB/p-IκB by 26.14 % and 28.92 %, respectively. These results suggest that CPS has a role in modulating immune responses and that HCPS is more effective. This study can be further developed into new products related to postbiotics.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingnan Wang
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Li C, Wang H, Zhu B, Yao Z, Ning L. Polysaccharides and oligosaccharides originated from green algae: structure, extraction, purification, activity and applications. BIORESOUR BIOPROCESS 2024; 11:85. [PMID: 39237778 PMCID: PMC11377408 DOI: 10.1186/s40643-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
With the proceeding of global warming and water eutrophication, the phenomenon of green tide has garnered significant societal interest. Consequently, researchers had increasingly focused on the potential applications of green algae biomass, particularly its polysaccharides. The polysaccharide serves as the primary active constituent of green algae and has demonstrated numerous advantageous biological activities, including antioxidant, antiviral, anticoagulant, hypolipidemic and immuno-modulatory activities. The favorable bioavailability and solubility of green algae oligosaccharides are attributed to their low molecular weight. So there has been a growing interest in researching green algae polysaccharides and oligosaccharides for the utilization of marine biological resources. This review summarized the extraction, purification, chemical structure, composition, biological activity, and potential applications prospect of polysaccharides and oligosaccharides derived from green algae. The review could be helpful for expanding the applications of polysaccharides and oligosaccharides of green algae.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Limin Ning
- College of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhou Z, Li G, Gao L, Zhou Y, Xiao Y, Bi H, Yang H. Lichen pectin-containing polysaccharide from Xanthoria elegans and its ability to effectively protect LX-2 cells from H 2O 2-induced oxidative damage. Int J Biol Macromol 2024; 265:130712. [PMID: 38471602 DOI: 10.1016/j.ijbiomac.2024.130712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Xanthoria elegans, a drought-tolerant lichen, is the original plant of the traditional Chinese medicine "Shihua" and effectively treats a variety of liver diseases. However, thus far, the hepatoprotective effects of polysaccharides, the most important chemical constituents of X. elegans, have not been determined. The aim of this study was to screen the polysaccharide fraction for hepatoprotective activity by using free radical scavenging assays and a H2O2-induced Lieming Xu-2 cell (LX-2) oxidative damage model and to elucidate the chemical composition of the bioactive polysaccharide fraction. In the present study, three polysaccharide fractions (XEP-50, XEP-70 and XEP-90) were obtained from X. elegans by hot-water extraction, DEAE-cellulose anion exchange chromatography separation and ethanol gradient precipitation. Among the three polysaccharide fractions, XEP-70 exhibited the best antioxidant activity in free radical scavenging capacity and reducing power assays. Structural studies showed that XEP-70 was a pectin-containing heteropolysaccharide fraction that was composed mainly of (1 → 4)-linked and (1 → 4,6)-linked α-D-Glcp, (1 → 4)-linked α-D-GalpA, (1 → 2)-linked, (1 → 6)-linked and (1 → 2,6)-linked α-D-Manp, and (1 → 6)-linked and (1 → 2,6)-linked β-D-Galf. Furthermore, XEP-70 exhibited effectively protect LX-2 cells against H2O2-induced oxidative damage by enhancing cellular antioxidant capacity by activating the Nrf2/Keap1/ARE signaling pathway. Thus, XEP-70 has good potential to protect hepatic stellate cells against oxidative damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubi Zhou
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuancan Xiao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongxia Yang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining 810001, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Liang Y, Yu W, Wang H, Yao L, He Z, Sun M, Feng T, Yu C, Yue H. Flash extraction of ulvan polysaccharides from marine green macroalga Ulva linza and evaluation of its antioxidant and gut microbiota modulation activities. Int J Biol Macromol 2024; 262:130174. [PMID: 38360235 DOI: 10.1016/j.ijbiomac.2024.130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
In this study, flash extraction was used to rapidly extract water-soluble polysaccharides from Ulva linza. The optimal extraction process for the flash extraction was determined by Box-Behnken design with extraction temperature 80 °C, extraction time 117 s, liquid-solid ratio 46:1 (mL/g) and a corresponding yield of 18.5 %. The crude Ulva linza polysaccharides (CULP) were subsequently isolated by chromatography technology to obtain purified Ulva linza polysaccharide (ULP) and characterized by monosaccharide composition and molecular weight determination analysis. Furthermore, the antioxidant bioactivity of ULP was studied and the results revealed that it had a good scavenging effect on DPPH, ABTS and OH, with IC50 values of 149.2 μg/mL, 252.5 μg/mL and 1073 μg/mL, respectively. After in vitro fermentation by human fecal microbiota, the pH value of fermentation culture significantly decreased to 5.06, suggesting that ULP could be hydrolyzed and utilized by gut microbiota. The abundance of beneficial bacteria including Bacteroides, Parabacteroides and Faecalibacterium was improved. Meanwhile, the relative abundance of Prevotella, Blautia and Ruminococcus was decreased, and the low ratio of these organisms might reveal positive effects on maintaining the balance of gut microbial biodiversity. These results suggested that the composition of the human gut microbiota could be modulated by ULP, and ULP might possess the potential to maintain gut homeostasis and improve human intestinal health.
Collapse
Affiliation(s)
- Yi Liang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Wanguo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Zengyang He
- Technology Centre of China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Heng Yue
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
9
|
Yang SH, Wang XL, Zhang HN, Zhu LF, Qu SH, Zhang MY, Zhang H, Liu PF. Phosphorylation Modification, Structural Characterization, Antioxidant and DNA Protection Capacities of Polysaccharides from Asarum Sieboldii Miq. Chem Biodivers 2024; 21:e202301781. [PMID: 38146649 DOI: 10.1002/cbdv.202301781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
Polysaccharide from Asarum sieboldii Miq (ASP) was extracted and five phosphorylation polysaccharides with different degree of substitution were obtained, namely ASPP1, ASPP2, ASPP3, ASPP4, and ASPP5 (ASPPs). The physical and chemical structure and biological activities were studied. The results suggested that the carbohydrate and protein content were reduced while uronic acid was increased after phosphorylation modification. The molecular weight of ASPPs was significantly lower than that of ASP. ASPPs were acidic heteropolysaccharides mainly composed of galacturonic acid, galactose, glucose, fructose, and arabinose. The UV-vis spectrum indicated that the polysaccharides did not contain nucleic acid or protein after modification. The Fourier transform infrared spectrum demonstrated that ASPPs contained characteristic absorption peaks of P=O and P-O-C near 1270 and 980 cm-1 . ASPPs presented a triple helix conformation, but it was not presented in ASP. The scanning electron microscopy analysis showed that the surface topography and particle structure of ASP were different after modification. Compared with ASP, ASPPs enhanced the activity to scavenge DPPH and ABTS free radicals and possessed more protective ability to DNA oxidation caused by OH⋅, GS⋅, and AAPH free radicals. These results suggest that chemical modification is beneficial for the exploitation and utilization of natural polysaccharides.
Collapse
Affiliation(s)
- Shun-He Yang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Xiao-Li Wang
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Hao-Nan Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Li-Fei Zhu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Shu-Hao Qu
- College of Animal Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China, 450046
| | - Ming-Yue Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| | - Peng-Fei Liu
- College of Tobacco Science, Henan Agricultural University/Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Zhengzhou, China, 450046
| |
Collapse
|
10
|
Heng BL, Wu FY, Liu JH, Ouyang JM. Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells. Bioinorg Chem Appl 2023; 2023:9968886. [PMID: 38161486 PMCID: PMC10757664 DOI: 10.1155/2023/9968886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Objective This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by Auricularia auricular polysaccharides (AAPs) with different viscosity-average molecular weights (Mv), the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. Methods The scavenging capability and reducing capacity of four kinds of AAPs (Mv of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. Results The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest Mv, had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. Conclusion AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.
Collapse
Affiliation(s)
- Bao-Li Heng
- Yingde Center, Institute of Kidney Surgery, Jinan University, Guangzhou, Guangdong, China
- Department of Urology, People's Hospital of Yingde City, Yingde, China
| | - Fan-Yu Wu
- Yingde Center, Institute of Kidney Surgery, Jinan University, Guangzhou, Guangdong, China
- Department of Urology, People's Hospital of Yingde City, Yingde, China
| | - Jing-Hong Liu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Khaffache R, Dehane A, Merouani S, Hamdaoui O, Ferkous H, Alrashed MM, Gasmi I, Chibani A. Sonochemistry dosimetries in seawater. ULTRASONICS SONOCHEMISTRY 2023; 101:106647. [PMID: 37944338 PMCID: PMC10654036 DOI: 10.1016/j.ultsonch.2023.106647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Due to the complex physical and chemical interactions taking place in the sonicated medium, various methods have been proposed in the literature for a better understanding of the sonochemical system. In the present paper, the performance of calorimetry, iodometry, Fricke, 4-nitrophenol, H2O2, and ascorbic acid dosimetry techniques have been evaluated over the electric power range from 20 to 80 W (f = 300 kHz). These methods have been analyzed for distilled and seawater in light of the literature findings. It has been found that the lowest temperatures and calorimetric energies were obtained for seawater in comparison to distilled water. However, the discrepancy between both mediums disappears with the increase in the electric power up to 80 W. Compared to the calorimetry results, a similar trend was obtained for the KI dosimetry, where the discrepancy between both solutions (seawater and distilled water) increased with the reduction in the electric power down to 20 W. In contrast, over the whole range of the electric power (20-80 W), the H2O2 dosimetry was drastically influenced by the salt composition of seawater, where, I3- formation was clearly reduced in comparison to the case of the distilled water. On the other hand, a fluctuated behavior was observed for the Fricke and 4-nitrophenol dosimetry methods, especially at the low electric powers (20 and 40 W). It has been found that dosimetry techniques based on ascorbic acid or potassium iodide are the best means for accurate quantification of the sonochemical activity in the irradiated liquid. As a result, it has been concluded, in terms of the dosimetry process's performance, that the dosimetry methods are in the following order: Ascorbic acid ≈ KI > Fricke > 4-nitrophenol > H2O2.
Collapse
Affiliation(s)
- Rabiaa Khaffache
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Aissa Dehane
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria.
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, 25000 Constantine, Algeria
| | - Oualid Hamdaoui
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Hamza Ferkous
- Laboratory of Environmental Engineering, Department of Process Engineering, Faculty of Engineering, Badji Mokhtar - Annaba University, P.O. Box 12, 23000 Annaba, Algeria
| | - Maher M Alrashed
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421 Riyadh, Saudi Arabia
| | - Intissar Gasmi
- Laboratoire Ampère, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Atef Chibani
- Research Center in Industrial Technologies CRTI, P.O.Box 64, Cheraga 16014, Algiers, Algeria
| |
Collapse
|
12
|
Chen SK, Wang X, Guo YQ, Song XX, Yin JY, Nie SP. Exploring the partial degradation of polysaccharides: Structure, mechanism, bioactivities, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4831-4870. [PMID: 37755239 DOI: 10.1111/1541-4337.13244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Polysaccharides are promising biomolecules with lowtoxicity and diverse bioactivities in food processing and clinical drug development. However, an essential prerequisite for their applications is the fine structure characterization. Due to the complexity of polysaccharide structure, partial degradation is a powerful tool for fine structure analysis, which can effectively provide valid information on the structure of backbone and branching glycosidic fragments of complex polysaccharides. This review aims to conclude current methods of partial degradation employed for polysaccharide structural characterization, discuss the molecular mechanisms, and describe the molecular structure and solution properties of degraded polysaccharides. In addition, the effects of polysaccharide degradation on the conformational relationships between the molecular structure and bioactivities, such as antioxidant, antitumor, and immunomodulatory activities, are also discussed. Finally, we summarize the prospects and current challenges for the partial degradation of polysaccharides. This review will be of great value for the scientific elucidation of polysaccharide fine structures and potential applications.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
13
|
Tang MT, Jiang H, Wan C, Wang XL, Zhou S, Zhou T. Hypolipidemic Activity and Mechanism of Action of Sargassum fusiforme Polysaccharides. Chem Biodivers 2023; 20:e202300264. [PMID: 37370194 DOI: 10.1002/cbdv.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Sargassum fusiforme polysaccharide (SFP) is a kind of biologically active macromolecule with biological functions. In this study, oxidative stress and high-fat HepG2 cell models were established to investigate its lipid-lowering activity and mechanism of action. It was found that SFP and its two isolated fractions had antioxidant effects on the cells. It was also found the polysaccharides decreased the content of total cholesterol and total triglyceride in the high-fat cells. RT-qPCR assays revealed that the three polysaccharides down-regulated the mRNA expression level of ACC, PPARγ, and SREBP-2. It could be concluded that the hypolipidemic effect of SFPs is achieved via multiple pathways, including the regulation on the expression level of lipid metabolism-related key enzymes and factors, and binding with bile acids. The hypolipidemic effect of SFPs could be partially due to their antioxidant activity. SFPs developed in the present work have potential as ingredients of functional foods with hypolipidemic effect.
Collapse
Affiliation(s)
- Meng-Ting Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, P. R. China
| | - Hui Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, P. R. China
| | - Cheng Wan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, P. R. China
| | - Xiao-Ling Wang
- Faculty of Food Science, Zhejiang Pharmaceutical College, 888 East of Yinxian Road, Ningbo, Zhejiang, 315100, P.R. China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, P. R. China
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham, ME4 4TB, UK
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang, 310018, P. R. China
| |
Collapse
|
14
|
Muhaxi M, Liu F, Ng TB. Structural characterization and in vitro hepatoprotective activity of a novel antioxidant polysaccharide from fruiting bodies of the mushroom Pleurotus ferulae. Int J Biol Macromol 2023:125124. [PMID: 37290546 DOI: 10.1016/j.ijbiomac.2023.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
In the present study, three novel antioxidant polysaccharides (G-1, AG-1, and AG-2) were isolated and purified from Pleurotus ferulae using mouse erythrocyte hemolysis inhibitory activity as an indicator. These components showed antioxidant activity at the chemical and cellular levels. Given that G-1 displayed superior performance in protecting the human hepatocyte L02 cells against oxidative damage caused by H2O2 compared to AG-1 and AG-2 and had a higher yield and purification rate, the detailed structure of G-1 was further characterized. G-1 mainly contains six kinds of linkage type units as A: →4,6)-α-d-Glcp-(1→, B: →3)-β-d-Glcp-(1→, C: →2,6)-β-d-Glcp-(1→, d: β-d-Manp(1→, E: →6)-β-d-Galp-(1→, F: →4)-β-d-Glcp-(1→. Finally, the potential in vitro hepatoprotective mechanism of G-1 was discussed and elucidated. Results suggested that G-1 can protect L02 cells from H2O2-induced damage by reducing the leakage of AST and ALT from the cytoplasm, enhancing the activities of SOD and CAT, and suppressing lipid peroxidation and production of LDH. G-1 could further reduce the production of ROS, stabilize mitochondrial membrane potential and maintain cell morphology. Hence, G-1 could be a valuable functional food with antioxidant and hepatoprotective activities.
Collapse
Affiliation(s)
- Muguli Muhaxi
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
15
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
16
|
Wang H, Cao Z, Yao L, Feng T, Song S, Sun M. Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. Foods 2023; 12:foods12081622. [PMID: 37107417 PMCID: PMC10137591 DOI: 10.3390/foods12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine green algae, has been extensively used in various sectors. However, there are fewer commercial applications of this sugar in the food packaging industry compared to many other algae-derived polysaccharides, such as alginates, carrageenan, and agar. This article aims to review the unparalleled chemical composition/structure and physiochemical properties of ulvan and the latest developments in ulvan-based edible films and coatings, thus highlighting their potential applications in the food packaging industry.
Collapse
Affiliation(s)
- Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
17
|
Xu X, Deng G, Li X, Li P, Chen T, Zhou L, Huang Y, Yuan M, Ding C, Feng S. Extraction, Structural, and Antioxidant Properties of Oligosaccharides Hydrolyzed from Panax notoginseng by Ultrasonic-Assisted Fenton Degradation. Int J Mol Sci 2023; 24:ijms24054506. [PMID: 36901937 PMCID: PMC10003133 DOI: 10.3390/ijms24054506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Plant polysaccharides exhibit many biological activities that are remarkably affected by molecular size and structures. This study aimed to investigate the degradation effect of ultrasonic-assisted Fenton reaction on the Panax notoginseng polysaccharide (PP). PP and its three degradation products (PP3, PP5, and PP7) were obtained from optimized hot water extraction and different Fenton reaction treatments, respectively. The results showed that the molecular weight (Mw) of the degraded fractions significantly decreased after treatment with the Fenton reaction. But the backbone characteristics and conformational structure were similar between PP and PP-degraded products, which was estimated by comparing monosaccharides composition, functional group signals in FT-IR spectra, X-ray differential patterns, and proton signals in 1H NMR. In addition, PP7, with an Mw of 5.89 kDa, exhibited stronger antioxidant activities in both the chemiluminescence-based and HHL5 cell-based methods. The results indicated that ultrasonic-assisted Fenton degradation might be used to improve the biological activities of natural polysaccharides by adjusting the molecular size.
Collapse
|
18
|
Wan C, Jiang H, Tang MT, Zhou S, Zhou T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int J Biol Macromol 2022; 223:490-499. [PMID: 36356868 DOI: 10.1016/j.ijbiomac.2022.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
The biological activities of Sargassum fusiforme polysaccharides (SFP) were affected significantly by the extraction method. In order to screen the optimum extraction technology for SFP with high yield and biological activities, six extraction methods, including hot water extraction (HWE), acid-assisted extraction (ACAE), alkali-assisted extraction (ALAE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) and hydrogen peroxide/ascorbic acid-assisted extraction (HAE) were compared for the preparation of SFP. Based on the yield and in vitro antioxidant activity of the crude polysaccharides obtained by the six extraction methods, HAE was selected for the extraction of SFP. The SFP prepared by HAE (H-SFP) was purified by cellulose DEAE-52 ion-exchange chromatography, obtaining two purified fractions, namely H-SFP3 and H-SFP5. The analyses of their chemical composition, physico-chemical properties and the antioxidant capacity were performed. It was found that the crude SFP and the purified fractions possessed considerable ability to scavenge DPPH, hydroxyl and ABTS•+ radicals. These polysaccharide fractions were also found to effectively reduce the reactive oxygen species (ROS) level and increase the superoxide dismutase (SOD) activity in H2O2-induced oxidative stress RAW264.7 cells. The SFP prepared by the HAE has the potential as a natural non-toxic antioxidant and can be used as an ingredient in functional foods.
Collapse
Affiliation(s)
- Cheng Wan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Hui Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Meng-Ting Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Shaobo Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China; School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, United Kingdom
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
19
|
Ma Y, Li C, Xiu W, Wang X. In vivo and in vitro evaluation of stability and antioxidant activity of lycopene-nanostructured lipid carriers. Food Sci Biotechnol 2022; 32:833-845. [PMID: 37041811 PMCID: PMC10082695 DOI: 10.1007/s10068-022-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
This study evaluates the stability of lycopene in the presence of the prepared nanostructured lipid carriers (NLCs) under different environments and food systems and the in vitro and in vivo antioxidant activity of the lycopene nanostructured lipid carriers (Lyco-NLCs) was studied. As observed in the stability experiment, Lyco-NLCs have good storage stability within 30 days. Food additives have little effect on its stability except for metal ions. Compared with free lycopene, Lyco-NLCs showed an improved antioxidant property. In in-vitro experiments, the DPPH radical scavenging rate, hydroxyl radical scavenging capacity, and ferric reducing capacity of Lyco-NLCs increased by 90.47%, 47.43%, and 45.12%, respectively. The animal experiments showed that the activities of catalase in the kidney, superoxide dismutase in the heart, and glutathione peroxidase in the liver increased by 31.48%, 42.50%, and 21.47%, respectively. The content of malondialdehyde in serum decreased by 14.13%. The results have some significance for the practical application of lycopene.
Collapse
Affiliation(s)
- Yongqiang Ma
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Chenchen Li
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Weiye Xiu
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| | - Xin Wang
- Key Laboratory of Grain Resources and Grain Processing of Heilongjiang Province, Harbin University of Commerce, Harbin, 150076 China
| |
Collapse
|
20
|
Du Y, Zhang S, Sun-Waterhouse D, Zhou T, Xu F, Waterhouse GI, Wu P. Physicochemical, structural and emulsifying properties of RG-I enriched pectin extracted from unfermented or fermented cherry pomace. Food Chem 2022; 405:134985. [DOI: 10.1016/j.foodchem.2022.134985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
21
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Zou YF, Li CY, Fu YP, Jiang QX, Peng X, Li LX, Song X, Zhao XH, Li YP, Chen XF, Feng B, Huang C, Jia RY, Ye G, Tang HQ, Yin ZQ. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115446. [PMID: 35675860 DOI: 10.1016/j.jep.2022.115446] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bing Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
23
|
Ren CG, Liu ZY, Zhong ZH, Wang XL, Qin S. Integrated biotechnology to mitigate green tides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119764. [PMID: 35841985 DOI: 10.1016/j.envpol.2022.119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Zheng-Yi Liu
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhi-Hai Zhong
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China
| | | | - Song Qin
- Key Laboratory of Biology and Utilization of Biological Resources of Coastal Zone, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
24
|
Liang J, Zhao Y, Yang F, Zheng L, Ma Y, Liu Q, Cai L, Gong W, Wang B. Preparation and structure-activity relationship of highly active black garlic polysaccharides. Int J Biol Macromol 2022; 220:601-612. [PMID: 35988729 DOI: 10.1016/j.ijbiomac.2022.08.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023]
Abstract
The aim of this study was to establish a method to improve the biological activity of polysaccharides. Three acid-treated polysaccharides (BGPS-2, BGPS-3 and BGPS-4) were obtained by treating black garlic polysaccharides (BGPS-1) with sulfuric acid at different intensities. The structure was characterized using the sulfuric acid-carbazole assay, IC, HPSEC-MALLS and FT-IR. The biological functions were evaluated using antioxidant and melanin biosynthesis inhibition assays. Compared with BGPS-1, the molecular weight of acid-treated polysaccharides significantly decreased, and the uronic acid content significantly increased. Antioxidant capacity negatively correlated with molecular weight, whereas melanin inhibition activity positively correlated with uronic acid content. BGPS-4 had the highest antioxidant capacity and the lowest molecular weight (1.25 × 103 Da), 79.41 % lower than that of BGPS-1. BGPS-3 was the strongest inhibitor of melanin formation and had the highest uronic acid content (50.73 %), 238.2 % higher than that of BGPS-1. Molecular weight and uronic acid content were the main structural characteristics that affected the antioxidant and melanin biosynthesis inhibition activities, respectively. BGPS-1, BGPS-2, BGPS-3, and BGPS-4 all had β-linked pyranose, multi-branched, and non-triple helical spiral structures. Therefore, the acid hydrolysis method markedly modified the structural characteristics of black garlic polysaccharides, and increased their antioxidant capacity and melanin biosynthesis inhibition activity.
Collapse
Affiliation(s)
- Jie Liang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yonglei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Furui Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lan Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yaohong Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qingai Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Lei Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Weili Gong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Binglian Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
25
|
Pang X, Jing Y, Li P, Qiu X, Zheng Y, Wang Q, Wu L. Structural characterization and antioxidant activities of polysaccharides from Angelica dahurica as extracted by optimized ultrasonic-assisted method. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyue Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
| | - Qian Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
26
|
Li M, Liu Y, Zhang H, Liu Y, Wang W, You S, Hu X, Song M, Wu R, Wu J. Anti-cancer Potential of Polysaccharide Extracted From Polygonatum sibiricum on HepG2 Cells via Cell Cycle Arrest and Apoptosis. Front Nutr 2022; 9:938290. [PMID: 35903453 PMCID: PMC9320318 DOI: 10.3389/fnut.2022.938290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 01/20/2023] Open
Abstract
Polygonatum sibiricum is one of the most widely used traditional Chinese medicine in China. Polygonatum sibiricum polysaccharide (PSP) is the main functional component of Polygonatum sibiricum. In this study, a water-soluble polysaccharide (PSP-1) was first isolated from Polygonatum sibiricum with a molecular weight of 38.65 kDa. Structural analysis was performed via methylation and FT-IR spectroscopy analyses, which in combination with NMR spectroscopy, revealed that PSP-1 has a → 4-α-D-Glcp-1 → backbone with the substitution at O-6 with the β-D-Glcp-1 → residues. Furthermore, PSP-1 exhibited potent and concentration-dependent anticancer effects, inducing HepG2 cell apoptosis and arresting the cell cycle at the G1 phase. Moreover, PSP-1 also decreased the mitochondrial membrane potential, damaged the nucleus of HepG2 cells, and increased the activity of caspase-9 and−3 in the intrinsic apoptotic pathways to induce HepG2 cell apoptosis. To conclude, PSP-1 might be a good candidate for the treatment of liver cancer, and this work provides important information for understanding the relationship between structure and antitumor activity of PSP-1, which is relevant for the treatment of hepatocellular carcinoma in clinic.
Collapse
Affiliation(s)
- Mo Li
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- College of Criminal Science and Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Yumeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yanfeng Liu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Weiming Wang
- Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shengbo You
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyu Hu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Meijun Song
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- *Correspondence: Rina Wu
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
- Junrui Wu
| |
Collapse
|
27
|
Li B, Li H, Liu J, Zhang Z, Chen M, Yue L, Lu W, Ji S, Wang D, Zhu H, Wang J. Enzymatic degradation, antioxidant and rheological properties of a sphingan WL gum from Sphingomonas sp. WG. Int J Biol Macromol 2022; 210:622-629. [PMID: 35508228 DOI: 10.1016/j.ijbiomac.2022.04.218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
A molecular weight (Mw) controllable degradation strategy using the lyase WelR as the efficient tool was established, and the relationship between the Mw and the rheological properties and antioxidant activity of WL gum was systematically investigated. Four different WL samples WL1-WL4 with a gradient Mw change (from 4.70 × 106 to 1.45 × 106 Da) were obtained by controlling the enzymatic reaction conditions. As the Mw decreased, its apparent viscosity, intrinsic viscosity, viscous modulus (G″) and elastic modulus (G') decreased. More interestingly, in contrast to the native WL, the G″ of the degraded WL became higher than G'. Besides, the biodegraded WL samples possessed much higher hydroxyl radicals scavenging activity than the original WL. WL4 with the lowest Mw showed the highest HO radical scavenging activity, about 94.65% at 1 mg/mL. This work provided a useful method to obtain a series of WL samples with controllable Mw and properties, which will broaden the application of sphingans.
Collapse
Affiliation(s)
- Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Lin Yue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China; Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, People's Republic of China; College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, People's Republic of China.
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
28
|
Guan T, Wei X, Xu P, Chen K, Zou Y, Chen M, Zhu Z. Comparison of structural and antioxidant activity of polysaccharide extracted from truffles. J Food Sci 2022; 87:2999-3012. [PMID: 35674229 DOI: 10.1111/1750-3841.16207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/01/2022]
Abstract
As the main component of truffles, polysaccharides have a variety of biological activities such as anti-oxidation, anti-tumor, and hypoglycemic activity, and these activities are closely related to its structure. In this study, Tuber Aestivum crude polysaccharide (TACP) and Tuber Melanosporum crude polysaccharide (TMCP) were obtained from Tuber Aestivum and Tuber Melanosporum by using microwave-assisted hot water, and then the Sephadex G-200 column was utilized to further separate and purify Tuber Aestivum polysaccharide (TAP) and Tuber Melanosporum polysaccharide (TMP) from TACP and TMCP. The structural characterization results showed that the molecular weight of TAP was 2.18 × 104 kDa, while TMP was 8.79 × 103 kDa. Although the two polysaccharide components were mainly composed of mannose (Man) and glucose (Glc), the molar ratio of Man and Glc in TAP was 14.76: 12.31, with a molar ratio of 5.43:10.94 in TMP. Furthermore, the antioxidant activity of two polysaccharide components was evaluated. TAP and TMP could protect porcine jejunal epithelial (IPEC-J2) cells from oxidative damage by H2 O2 , but TAP exhibited stronger antioxidant effects. It was mainly reflected that TAP could increase the secretion level of intracellular antioxidant enzymes (superoxide dismutase and catalase) in IPEC-J2 cells, and had a significant effect on the total antioxidant capacity of cells. The reactive oxygen species and malondialdehyde had better scavenging ability at the concentration of 20 µg/ml. The difference between TAP and TMP may be due to the dissimilar structure. Its structure-activity relationship needs further study. PRACTICAL APPLICATION: The structure of TAP and TMP were different, and TAP had higher molecular weight. Besides, TAP and TMP can protect IPEC-J2 cells from oxidative stress, providing a theoretical basis for developing potential antioxidant drugs of practical significance.
Collapse
Affiliation(s)
- Tongwei Guan
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Xinyue Wei
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Pei Xu
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Kebao Chen
- School of Food and Biological Engineering, Xihua University, Chengdu, P. R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mengsi Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhenyuan Zhu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
29
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
30
|
Structural Characterization of Degraded Lycium barbarum L. Leaves’ Polysaccharide Using Ascorbic Acid and Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14071404. [PMID: 35406277 PMCID: PMC9002820 DOI: 10.3390/polym14071404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/03/2023] Open
Abstract
Plant-derived polysaccharide’s conformation and chain structure play a key role in their various biological activities. Lycium barbarum L. leaves’ polysaccharide is well renowned for its health functions. However, its functional bioactivities are greatly hindered by its compact globular structure and high molecular weight. To overcome such issue and to improve the functional bioactivities of the polysaccharides, degradation is usually used to modify the polysaccharides conformation. In this study, the ethanol extract containing crude Lycium barbarum L. leaves’ polysaccharide was first extracted, further characterized, and subsequently chemically modified with vitamin C (Ascorbic acid) and hydrogen peroxide (H2O2) to produce degraded Lycium barbarum L. leaves’ polysaccharide. To explore the degradation effect, both polysaccharides were further characterized using inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography–mass spectrometry (GC–MS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), high performance gel permeation chromatography (HPGPC), and scanning electron microscope (SEM). Results shown that both polysaccharides were rich in sugar and degradation had no significant major functional group transformation effect on the degraded product composition. However, the molecular weight (Mw) had decreased significantly from 223.5 kDa to 64.3 kDa after degradation, indicating significant changes in the polysaccharides molecular structure caused by degradation.
Collapse
|
31
|
Mittal A, Singh A, Hong H, Benjakul S. Chitooligosaccharides from shrimp shell chitosan prepared using H
2
O
2
or ascorbic acid/H
2
O
2
redox pair hydrolysis: characteristics, antioxidant and antimicrobial activities. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation Faculty of Agro‐Industry Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
32
|
Ning L, Yao Z, Zhu B. Ulva (Enteromorpha) Polysaccharides and Oligosaccharides: A Potential Functional Food Source from Green-Tide-Forming Macroalgae. Mar Drugs 2022; 20:md20030202. [PMID: 35323501 PMCID: PMC8949424 DOI: 10.3390/md20030202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
The high-valued utilization of Ulva (previously known as Enteromorpha) bioresources has drawn increasing attention due to the periodic blooms of world-wide green tide. The polysaccharide is the main functional component of Ulva and exhibits various physiological activities. The Ulva oligosaccharide as the degradation product of polysaccharide not only possesses some obvious activities, but also possesses excellent solubility and bioavailability. Both Ulva polysaccharides and oligosaccharides hold promising potential in the food industry as new functional foods or food additives. Studies on Ulva polysaccharides and oligosaccharides are increasing and have been the focus of the marine bioresources field. However, the comprehensive review of this topic is still rare and do not cover the recent advances of the structure, isolation, preparation, activity and applications of Ulva polysaccharides and oligosaccharides. This review systematically summarizes and discusses the recent advances of chemical composition, extraction, purification, structure, and activity of Ulva polysaccharides as well as oligosaccharides. In addition, the potential applications as new functional food and food additives have also been considered, and these will definitely expand the applications of Ulva oligosaccharides in the food and medical fields.
Collapse
Affiliation(s)
- Limin Ning
- School of Medicine and Holistic Integrated Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Zhong Yao
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Benwei Zhu
- Laboratory of Marine Bioresource, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
- Correspondence: ; Tel.: +86-25-58139419
| |
Collapse
|
33
|
Yuan L, Qiu Z, Yang Y, Liu C, Zhang R. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach. Food Chem 2022; 385:132637. [PMID: 35278736 DOI: 10.1016/j.foodchem.2022.132637] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the structural features and antioxidant activity in vitro of crude blackened jujube polysaccharides (BJPs) and five purified polysaccharides based on the activity-oriented approach. The crude BJPs exhibited dose-dependent radical scavenging activity and total reducing capacity, and provided excellent protective effects against H2O2-damaged HUVECs via up-regulating mitochondrial membrane potential and down-regulating intracellular reactive oxygen species. After fractionation by column chromatography, the five purified components differed in chemical composition, molecular weight, monosaccharide composition (type and relative proportion) and FTIR band (peak pattern or intensity, especially in the range of 1000.0-1200.0 cm-1), as well as protective effects against H2O2-induced HUVECs. As the most abundant and potent antioxidant component, the backbone of BJP-3 was mainly composed of →4)-α-l-GalpA (1→, →5)-α-l-Araf (1→ residues with two terminals of T-α-l-Araf (1→ and T-β-d-Galp (1→. The above results compared the structural and bioactive properties of different blackened jujube polysaccharides and highlighted their potential as antioxidants for functional foods.
Collapse
Affiliation(s)
- Lulu Yuan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Yanmin Yang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Chuang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
34
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Wu DT, He Y, Fu MX, Gan RY, Hu YC, Peng LX, Zhao G, Zou L. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107085] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Effects of different depolymerisation methods on the physicochemical and antioxidant properties of polysaccharides derived from Sparassis latifolia. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Zou YF, Zhang YY, Paulsen BS, Rise F, Chen ZL, Jia RY, Li LX, Song X, Feng B, Tang HQ, Huang C, Ye G, Yin ZQ. New pectic polysaccharides from Codonopsis pilosula and Codonopsis tangshen: structural characterization and cellular antioxidant activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6043-6052. [PMID: 33857333 DOI: 10.1002/jsfa.11261] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Codonopsis pilosula and Codonopsis tangshen are plants widely used in traditional Chinese medicine. Two pectic polysaccharides from the roots of C. pilosula and C. tangshen named as CPP-1 and CTP-1 were obtained by boiling water extraction and column chromatography. RESULTS The core structures of both CPP-1 and CTP-1 comprise the long homogalacturonan region (HG) as the backbone and the rhamnogalacturonan I (RG-I) region as the side chains. CPP-1 has methyl esterified galacturonic acid units and a slightly lower molecular weight than CTP-1. Biological testing suggested that CPP-1 and CTP-1 can protect IPEC-J2 cells against the H2 O2 -induced oxidative stress by up-regulating nuclear factor-erythroid 2-related factor 2 and related genes in IPEC-J2 cells. The different antioxidative activities of polysaccharides from different source of C. pilosula may be result of differences in their structures. CONCLUSION All of the results indicated that pectic polysaccharides CPP-1 and CTP-1 from different species of C. pilosula roots could be used as a potential natural antioxidant source. These findings will be valuable for further studies and new applications of pectin-containing health products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Berit S Paulsen
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Zheng-Li Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Department of Pharmacy, Section Pharmaceutical Chemistry, Area Pharmacognosy, University of Oslo, Oslo, Norway
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Antioxidant activity of a polysaccharide from Dictyophora indusiata volva and MECC analysis of its monosaccharide composition. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Degraded polysaccharides from Porphyra haitanensis: purification, physico-chemical properties, antioxidant and immunomodulatory activities. Glycoconj J 2021; 38:573-583. [PMID: 34515910 DOI: 10.1007/s10719-021-10009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023]
Abstract
To explore effect of the structural properties of porphyra haitanensis polysaccharide on its biological activity, degraded porphyra polysaccharides were separated and purified by Cellulose DEAE-52 and Sephadex G-100 chromatography, obtaining three purified components (P1, P2 and P3). All the three components were sulfate polysaccharides containing the repeating units of → 3) β-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →, and → 3) β-D-galactose (1 → 4) α-L-galactose-6-S (1 →, and → 3) 6-O-methyl-β-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →. The molecular weight of the three fractions was measured to be 300.3, 130.4 and 115.1 kDa, respectively. Their antioxidant activity was investigated by the determination of the free radical scavenging effect and ferric reducing power. It was found that P1, P2 and P3 possessed marked antioxidant activity. It was also found that they appreciably enhanced the proliferation, phagocytic ability and nitric oxide secretion in RAW264.7 cells. Lower molecular weight and higher sulfate content were beneficial to bioactivities of P. haitanensis polysaccharides. Overall, P2 and P3 possess superior immuno-modulatory activity to that of P1 and PHP. Thus, the current work will provide the basis for the better utilization of P. haitanensis to develop the related functional foods.
Collapse
|
40
|
Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by Fenton reaction. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Al-Wraikat M, Hou C, Zhao G, Lu H, Zhang H, Lei Y, Ali Z, Li J. Degraded polysaccharide from Lycium barbarum L. leaves improve wheat dough structure and rheology. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Liu Q, Zhou Y, Gao Y, Shu Z, Zhang J, Liu H, Cao M, Liu G, Sun J. Degraded Porphyra haitanensis sulfated polysaccharide relieves ovalbumin-induced food allergic response by restoring the balance of T helper cell differentiation. Food Funct 2021; 12:4707-4719. [PMID: 33929475 DOI: 10.1039/d1fo00335f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously described that Porphyra haitanensis sulfated polysaccharide (PHSP) maintains the balance of pro-inflammation and immunosuppression. However, it is unclear whether degraded PHSP (DPHSP) still shows the immunomodulatory activity. Here, we degraded PHSP by four different methods alone or combined in pairs, and the results showed that the molecular weight and viscosity of DPHSP were significantly decreased, while the main chemical bonds and functional structure were consistent with those of PHSP. We then investigated the immunomodulatory function of DPHSP in vitro and in vivo. Actually, DPHSP enhances the inhibitory effects on mast cell activation and improves the suppression activity of PHSP on the food anaphylactic response. In an ovalbumin-induced food allergy mouse model, the production of allergic mediators and cytokines (interleukin-4 and 13, and interferon-γ) was inhibited by DPHSP. Meanwhile, DPHSP had a stronger ability to up-regulate the differentiation of regulatory T (Treg) cells and its related cytokines. These results suggested that DPHSP showed a better anti-food allergic ability than PHSP by regulating T helper cell balance and promoting Treg cell differentiation, which indicates that DPHSP is a novel potential nutrient component against food allergy.
Collapse
Affiliation(s)
- Qingmei Liu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yan S, Pan C, Yang X, Chen S, Qi B, Huang H. Degradation of Codium cylindricum polysaccharides by H 2O 2-Vc-ultrasonic and H 2O 2-Fe 2+-ultrasonic treatment: Structural characterization and antioxidant activity. Int J Biol Macromol 2021; 182:129-135. [PMID: 33831452 DOI: 10.1016/j.ijbiomac.2021.03.193] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
In this study, two degraded polysaccharides were obtained by H2O2-Vc-ultrasonic and H2O2-Fe2+-ultrasonic treatment from Codium cylindricum. The basic structure of polysaccharides was characterized and the relationship between structure and antioxidant activity was studied. FTIR spectrum indicated that the degraded polysaccharides had similar functional groups (OH, CH, CO group) with ordinary polysaccharides. LC-MS analysis showed that the degraded polysaccharides were composed of the same monosaccharide units (mannose, galactose, arabinose, glucose, ribose) with Codium cylindricum polysaccharides, but the molar ratio was different. Meanwhile, the molecular weight and morphological feature of polysaccharides had been changed after degradation. Additionally, the antioxidant activity assay revealed that two degraded polysaccharides with lower molecular weight possessed better antioxidant property than ordinary polysaccharides. These results suggested that the basic structure of polysaccharides had not been damaged by two degradation methods, while the antioxidant activity was significantly enhanced.
Collapse
Affiliation(s)
- Shanglong Yan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
44
|
Ofoedu CE, You L, Osuji CM, Iwouno JO, Kabuo NO, Ojukwu M, Agunwah IM, Chacha JS, Muobike OP, Agunbiade AO, Sardo G, Bono G, Okpala COR, Korzeniowska M. Hydrogen Peroxide Effects on Natural-Sourced Polysacchrides: Free Radical Formation/Production, Degradation Process, and Reaction Mechanism-A Critical Synopsis. Foods 2021; 10:699. [PMID: 33806060 PMCID: PMC8064442 DOI: 10.3390/foods10040699] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous reactive oxygen species (ROS) entities exist, and hydrogen peroxide (H2O2) is very key among them as it is well known to possess a stable but poor reactivity capable of generating free radicals. Considered among reactive atoms, molecules, and compounds with electron-rich sites, free radicals emerging from metabolic reactions during cellular respirations can induce oxidative stress and cause cellular structure damage, resulting in diverse life-threatening diseases when produced in excess. Therefore, an antioxidant is needed to curb the overproduction of free radicals especially in biological systems (in vivo and in vitro). Despite the inherent properties limiting its bioactivities, polysaccharides from natural sources increasingly gain research attention given their position as a functional ingredient. Improving the functionality and bioactivity of polysaccharides have been established through degradation of their molecular integrity. In this critical synopsis; we articulate the effects of H2O2 on the degradation of polysaccharides from natural sources. Specifically, the synopsis focused on free radical formation/production, polysaccharide degradation processes with H2O2, the effects of polysaccharide degradation on the structural characteristics; physicochemical properties; and bioactivities; in addition to the antioxidant capability. The degradation mechanisms involving polysaccharide's antioxidative property; with some examples and their respective sources are briefly summarised.
Collapse
Affiliation(s)
- Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
| | - Chijioke M. Osuji
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Jude O. Iwouno
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Ngozi O. Kabuo
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Moses Ojukwu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Ijeoma M. Agunwah
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - James S. Chacha
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, 3006 Morogoro, Tanzania
| | - Onyinye P. Muobike
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, 460114 Imo, Nigeria; (C.M.O.); (J.O.I.); (N.O.K.); (M.O.); (I.M.A.); (O.P.M.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (J.S.C.); (A.O.A.)
- Department of Food Technology, University of Ibadan, 200284 Ibadan, Nigeria
| | - Giacomo Sardo
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council (CNR), Via Vaccara, 61, 91026 Mazara del Vallo, Italy; (G.S.); (G.B.)
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
45
|
Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules 2021; 26:molecules26051434. [PMID: 33800895 PMCID: PMC7961577 DOI: 10.3390/molecules26051434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The biological activity of apple pectin extracted conventionally or enzymatically using endo-xylanase and endo-cellulase, was tested in vitro. The analyses were performerd in tetraplicates and the statistical significance of the differences were assessed using ANOVA, Tukey post hoc and LSD (the least significant difference) tests. Multivariate regression analysis was applied to determine the structural components that have a crucial importance for antioxidant and antitumor properties of pectins. The pectins extracted by enzymes contained up to four times more ferulic acid and showed twice as great ability to neutralize free radicals and Fe(III) reduction. The antiradical potential positively correlated with phenols, fucose and rhamnose content. In the assays performed on HT-29 human adenocarcinoma and B16F10 melanoma cell cultures, the “green” pectins, contrary to acid isolated ones, exhibited remarkable anti-neoplastic potential while being nontoxic to nontransformed L929 cell line. The pectins in the dose of 1 mg/mL were capable of inhibiting adhesion (max 23.1%), proliferation (max 40.4%), invasion (max 76.9%) and anchorage-independent growth (max 90%) of HT-29 cells (significance level p < 0.001). These pectin preparations were slightly less active towards B16F10 cells. The enzyme-isolated apple pectins may be useful as a functional food additive and an ingredient of the ointment formulas for post-surgical melanoma treatment.
Collapse
|
46
|
Wang F, Kong LM, Xie YY, Wang C, Wang XL, Wang YB, Fu LL, Zhou T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J Food Biochem 2021; 45:e13661. [PMID: 33595138 DOI: 10.1111/jfbc.13661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The degraded polysaccharides from Porphyra yezoensis (DPPY) prepared using the H2 O2 -Vc method under optimized conditions were isolated and purified by DEAE Cellulose-52, and Sephadex G-100, providing four pure components, namely, DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5. Their relative molecular weights were measured to be 10.8, 10.7, 18.7, and 35.5 kDa, respectively. GC-MS analysis revealed that all the four fractions were mainly composed of galactose, together with a small portion of glucose, mannose, xylose, and rhamnose. Structural analysis revealed that the purified polysaccharides mainly possess a backbone of (1 → 3)-β-D-galactose (1 → 4)-3,6-anhydro-α-L-galactopyranose (G-A) units and (1 → 3)-β-D-galactose (1 → 4)-α-L-galactose-6-sulfate (G-L6S) units. They were found to promote the proliferation of RAW264.7 macrophages and enhance phagocytosis of the RAW264.7 cells. Antioxidant assays indicated that DPPY-0.5 possessed the most potent reducing power and free radical scavenging ability among the four purified polysaccharides. High sulfate content and proper molecular weight of these fractions are favorable to their immunomodulatory and antioxidant activities. PRACTICAL APPLICATIONS: Porphyra yezoensis, common economic red algae widely distributed in East Asian countries, contains a high content of polysaccharides with a variety of biological activities. However, P. yezoensis polysaccharide (PPY) has not been well utilized due to the relatively low biological activities and lack of understanding of its structure-activity relationship. Thus, it is necessary to improve the bioactivities and elucidate the structure-activity relationship of this polysaccharide for its practical use. In the present work, four purified fractions (DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5) were isolated from the degraded P. yezoensis polysaccharide, and were investigated for their antioxidant and immunoregulatory activities. The results of the present work will lay a foundation for the application of the degraded P. yezoensis polysaccharide in the food industry as a functional food ingredient.
Collapse
Affiliation(s)
- Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Li-Min Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiao-Ling Wang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, P.R. China
| | - Yan-Bo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Ling-Lin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
47
|
Guo Y, Balasubramanian B, Zhao ZH, Liu WC. Marine algal polysaccharides alleviate aflatoxin B1-induced bursa of Fabricius injury by regulating redox and apoptotic signaling pathway in broilers. Poult Sci 2020; 100:844-857. [PMID: 33518138 PMCID: PMC7858151 DOI: 10.1016/j.psj.2020.10.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) causes toxic effect and leads to organ damage in broilers. Marine algal polysaccharides (MAP) of Enteromorpha prolifera exert multiple biological activities, maybe have a potential detoxification effect on AFB1, but the related research in broilers is extremely rare. Therefore, the purpose of this study was to investigate whether MAPs can alleviate AFB1-induced oxidative damage and apoptosis of bursa of Fabricius in broilers. A total of 216 five-week-old male indigenous yellow-feathered broilers (with average initial body weight 397.35 ± 6.32 g) were randomly allocated to one of three treatments (6 replicates with 12 broilers per replicate), and the trial lasted 4 wk. Experimental groups were followed as basal diet (control group); basal diet mixed with 100 μg/kg AFB1 (AFB1 group, the AFB1 is purified form); basal diet with 100 μg/kg AFB1 + 2,500 mg/kg MAPs (AFB1 + MAPs group). The results showed that the diet with AFB1 significantly decreased the relative weight of bursa of Fabricius (P < 0.05), antioxidant enzymes activities of total superoxide dismutase (T-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and total antioxidation capacity (T-AOC), while increased malondialdehyde (MDA) content (P < 0.05). Besides, compared with AFB1 group, dietary MAPs improved the relative weight of bursa of Fabricius and activities of antioxidant enzymes (T-SOD, GSH-Px, CAT, GST) with decreased MDA contents (P < 0.05). Moreover, the consumption of AFB1 downregulated the mRNA expression of SOD1, SOD2, GSTA3, CAT1, GPX1, GPx3, GSTT1, Nrf2, HO-1, and p38MAPK (P < 0.05). Dietary MAPs upregulated the mRNA expression of SOD2, GSTA3, CAT1, GPX1, GSTT1, p38MAPK, Nrf2, and HO-1 in comparison with AFB1 group (P < 0.05). The histological analysis confirmed restoration of apoptotic cells of bursa of Fabricius (P < 0.01), which seen with MAPs supplemented broilers. Besides, dietary MAPs down-regulated the mRNA expression of caspase-3 and Bax (P < 0.05), while up-regulated the mRNA expression of Bcl-2 (P < 0.05) compared with AFB1 group. In addition, according to protein expression results, dietary MAPs up-regulated the protein expression level of antioxidant and apoptosis-associated proteins (Nrf2, HO-1, p38MAPK, Bcl-2) (P < 0.01), but down-regulated the protein expression level of caspase-3 and Bax (P < 0.01). In conclusion, dietary MAPs alleviated AFB1-induced bursa of Fabricius injury through regulating Nrf2-mediated redox and mitochondrial apoptotic signaling pathway in broilers.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| | | | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P. R. China
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, P. R. China.
| |
Collapse
|
48
|
Wu Q, Qin D, Cao H, Bai Y. Enzymatic hydrolysis of polysaccharide from Auricularia auricula and characterization of the degradation product. Int J Biol Macromol 2020; 162:127-135. [DOI: 10.1016/j.ijbiomac.2020.06.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
|
49
|
Li X, Zhu Z, Ye L, Kang Z, Zhang X, Huang Y, Zhang B, Zou Y. Comparison of the Partial Structure and Antioxidant Activity of Polysaccharides from Two Species of Chinese Truffles. Molecules 2020; 25:molecules25184345. [PMID: 32971949 PMCID: PMC7571095 DOI: 10.3390/molecules25184345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Truffles are world-renowned premium commodities. Due to their unique aroma and rarity, the price of truffles has always been very high. In this study, Diethylaminoethyl anion exchange chromatography and gel filtration were employed for polysaccharide purification from two different species of Chinese truffles. Three polysaccharide fractions were obtained from Tuber panzhihuanense and referred to as TPZ-NP, TPZ-I, and TPZ-II. Additionally, two polysaccharide fractions were purified from T. pseudoexcavatum (TPD-NP and TPD-I). The results of structural elucidation indicated that the polysaccharide from different species showed different monosaccharide composition and linkage units, as well as molecular weight. Two of the polysaccharide fractions with the highest yield, TPZ-I and TPD-I, were chosen for biological testing. The results indicated that both fractions displayed antioxidant properties through mediation of the intestinal cellular antioxidant defense system, which could protect cultured intestinal cells from oxidative stress-induced damage and cell viability suppression. The TPD-I fraction showed stronger antioxidant effects, which may be due to the difference in structure. Further study on the structure-activity relationship is needed to be done.
Collapse
Affiliation(s)
- Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Zhongkai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Zongjing Kang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (X.L.); (L.Y.); (Z.K.); (X.Z.); (Y.H.); (B.Z.)
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: ; Tel.: +86-28-86291470
| |
Collapse
|
50
|
Advance diversity of enzymatically modified arabinoxylan from wheat chaff. Food Chem 2020; 339:128093. [PMID: 33152881 DOI: 10.1016/j.foodchem.2020.128093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 01/24/2023]
Abstract
Hydrolysates of arabinoxylan extracted from wheat chaff were prepared using different enzymatic treatments with an emphasis on improvements in their anti-diabetic, antioxidant and functional characteristics. The extracted arabinoxylan was subjected to enzymatic hydrolysis using individual xylanase, arabinofuranosidase, and feruloyl esterase, and their combinations. In all obtained hydrolysates, peaks corresponding to molecular weight lower than 38 kDa were noticed, while non-hydrolysed arabinoxylan had only peaks corresponding to 580 and 38 kDa. Results indicated that applied enzymes could hydrolyse polymeric arabinoxylan while their synergistic actions successfully modified its structure reflecting in lowered viscosity. Besides, it has been observed that the synergistic actions of enzymes improved the biological activities of arabinoxylan more than twice. Chemometric classification analysis showed that synergistic enzymes' actions were predominantly responsible for the improvement of biological activities. It indicated that they might be a useful tool for diversification and enhancement of biological activities of arabinoxylan from wheat chaff.
Collapse
|