1
|
Huang X, Chen X, Xian Y, Jiang F. Anti-virus activity and mechanisms of natural polysaccharides from medicinal herbs. Carbohydr Res 2024; 542:109205. [PMID: 38981321 DOI: 10.1016/j.carres.2024.109205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/11/2024]
Abstract
There has been a sudden increase in viral diseases, such as coronavirus disease 2019 (COVID-19), causing significant harm to human and animal well-being, as well as economic development. Medicinal herbs, with a history of thousands of years in clinical use, contain versatile polysaccharides as one of their primary compounds. This review offers an overview of the antiviral effects of polysaccharides from medicinal herbs on viruses in humans, poultry, swine and aquaculture in recent years. The mechanism of these antiviral polysaccharides, involved in hindering various stages of the viral life cycle thereby blocking virus infection, is summarized. The review also explores other underlying mechanisms of antiviral effects, such as enhancing the immune response, regulating inflammatory reactions, balancing gut flora, reducing oxidative stress, and suppressing apoptosis through various corresponding signaling pathways. The structure-function relationships discussed in this article also aid in understanding the antiviral mechanism of natural polysaccharides, indicating the need for more in-depth research and analysis. Natural polysaccharides from medicinal herbs have emerged as valuable resources in the fight against viral infections, exhibiting high effectiveness. This review emphasizes the promising role of polysaccharides from medicinal herbs as potential candidates for blocking viral infections in humans and animals.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Xingyin Chen
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Yuanhua Xian
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China
| | - Faming Jiang
- Faculty of Modern Agriculture, Yibin Vocational & Technical College, Sichuan, 644100, China.
| |
Collapse
|
2
|
Mao X, Chen J, Yao Y, Liu D, Wang H, Chen Y. Progress in phosphorylation of natural products. Mol Biol Rep 2024; 51:697. [PMID: 38802698 DOI: 10.1007/s11033-024-09596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Natural medicines are a valuable resource for the development of new drugs. However, factors such as low solubility and poor bioavailability of certain constituents have hindered their efficacy and potential as pharmaceuticals. Structural modification of natural products has emerged as an important research area for drug development. Phosphorylation groups, as crucial endogenous active groups, have been extensively utilized for structural modification and development of new drugs based on natural molecules. Incorporating phosphate groups into natural molecules not only enhances their stability, bioavailability, and pharmacological properties, but also improves their biological activity by altering their charge, hydrogen bonding, and spatial structure. This review summarizes the phosphorylation mechanism, modification approaches, and biological activity enhancement of natural medicines. Notably, compounds such as polysaccharides, flavonoids, terpenoids, anthraquinones, and coumarins exhibit increased antioxidation, anticancer, antiviral, immune regulatory, Antiaging, enzyme inhibition, bacteriostasis, liver protection, and lipid-lowering effects following phosphorylation modification.
Collapse
Affiliation(s)
- Xiaoran Mao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaqi Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yingrui Yao
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Defu Liu
- Department of Pharmacy, Characteristic Medical Center of PAP, Tianjin, 300162, China
| | - Haiying Wang
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuzhou Chen
- Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Guo Y, Liu F, Zhang J, Chen J, Chen W, Hong Y, Hu J, Liu Q. Research progress on the structure, derivatives, pharmacological activity, and drug carrier capacity of Chinese yam polysaccharides: A review. Int J Biol Macromol 2024; 261:129853. [PMID: 38311141 DOI: 10.1016/j.ijbiomac.2024.129853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Chinese yam is a traditional Chinese medicine that has a long history of medicinal and edible usage in China and is widely utilised in food, medicine, animal husbandry, and other industries. Chinese yam polysaccharides (CYPs) are among the main active components of Chinese yam. In recent decades, CYPs have received considerable attention because of their remarkable biological activities, such as immunomodulatory, antitumour, hypoglycaemic, hypolipidaemic, antioxidative, anti-inflammatory, and bacteriostatic effects. The structure and chemical alterations of polysaccharides are the main factors affecting their biological activities. CYPs are potential drug carriers owing to their excellent biodegradability and biocompatibility. There is a considerable amount of research on CYPs; however, a systematic summary is lacking. This review summarises the structural characteristics, derivative synthesis, biological activities, and their usage as drug carriers, providing a basis for future research, development, and application of CYPs.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Qiu T, Shi Y, He M, Wang W, Meng J, Ding J, Wang W, Li S, Li K, Liu J. Phosphorylated bush sophora root polysaccharides protect the liver in duck viral hepatitis by preserving mitochondrial function. Int J Biol Macromol 2023; 245:125419. [PMID: 37364809 DOI: 10.1016/j.ijbiomac.2023.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
In order to ascertain the mechanism underlying the therapeutic efficacy of Bush sophora root polysaccharides (BSRPS) and phosphorylated Bush sophora root polysaccharides (pBSRPS) in the treatment of in duck viral hepatitis (DVH), an investigation was conducted to assess the protective impact of BSRPS and pBSRPS against duck hepatitis A virus type 1 (DHAV-1) induced mitochondrial dysfunction both in vivo and vitro. The BSRPS underwent modification through the utilization of the sodium trimetaphosphate - sodium tripolyphosphate method, and was subsequently characterized though Fourier infrared spectroscopy and scanning electron microscopy. Following this, the degree of mitochondrial oxidative damage and dysfunction was described through the use of fluorescence probes and various antioxidative enzyme assay kits. Furthermore, the utilization of transmission electron microscopy facilitated the observation of alterations in the mitochondrial ultrastructure within the liver tissue. Our findings demonstrated that both BSRPS and pBSRPS effectively mitigated mitochondrial oxidative stress and conserved mitochondrial functionality, as evidenced by heightened antioxidant enzyme activity, augmented ATP production, and stabilized mitochondrial membrane potential. Meanwhile, the histological and biochemical examinations revealed that the administration of BSRPS and pBSRPS resulted in a reduction of focal necrosis and infiltration of inflammatory cells, thereby mitigating liver injury. Additionally, both BSRPS and pBSRPS exhibited the ability to maintain liver mitochondrial membrane integrity and enhance the survival rate of ducklings infected with DHAV-1. Notably, pBSRPS demonstrated superior performance in all aspects of mitochondrial function compared to BSRPS. The findings indicated that maintaining mitochondrial homeostasis is a crucial factor in DHAV-1 infections, and the administration of BSRPS and pBSRPS may mitigate mitochondrial dysfunction and safeguard liver function.
Collapse
Affiliation(s)
- Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yu Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao He
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenjia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Siya Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Traditional Chinese Veterinary medicine research Center, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Treatment effects of phosphorylated Chrysanthemum indicum polysaccharides on duck virus hepatitis by protecting mitochondrial function from oxidative damage. Vet Microbiol 2022; 275:109600. [DOI: 10.1016/j.vetmic.2022.109600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
|
6
|
Luo Q, Zhang C, Chen Y, Chen H, Yang Y. Alpiniae oxyphyllae fructus polysaccharide 3 inhibits porcine epidemic diarrhea virus entry into IPEC-J2 cells. Res Vet Sci 2022; 152:434-441. [PMID: 36126510 DOI: 10.1016/j.rvsc.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is deadly for suckling piglets and is a significant threat to most pig farms. Alpiniae oxyphyllae fructus polysaccharide 3 (AOFP3) shows antiviral activity against PEDV. However, the anti-PEDV mechanism of AOFP3 is unknown. Entering the host cell is important for viral infection, and many drugs play antiviral roles by inhibiting this process. To understand the antiviral mechanism of AOFP3 against PEDV, the effect of AOFP3 on PEDV entering IPEC-J2 cells was investigated in the present study. Real-time PCR and immunofluorescence were used to study the effect of AOFP3 on PEDV binding and penetrating IPEC-J2 cells. The effect of PEDV on AOFP3 attachment to IPEC-J2 cells was also investigated. Afterward, the effect of AOFP3 on PEDV spike (S) protein binding to porcine aminopeptidase was tested by using coimmunoprecipitation, and the effect of AOFP3 on the cholesterol level of IPEC-J2 cells was detected. The results showed that AOFP3 competitively inhibited PEDV adsorption on IPEC-J2 cells by blocking PEDV S protein binding to porcine aminopeptidase in IPEC-J2 cells. Furthermore, AOFP3 decreased PEDV penetration into host cells by decreasing the cholesterol level in IPEC-J2 cells.
Collapse
Affiliation(s)
- Qiyuan Luo
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Chenglong Zhang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yun Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| | - Huricha Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yuhui Yang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| |
Collapse
|
7
|
Gao Y, Li Y, Niu Y, Ju H, Chen R, Li B, Song X, Song L. Chemical Characterization, Antitumor, and Immune-Enhancing Activities of Polysaccharide from Sargassum pallidum. Molecules 2021; 26:7559. [PMID: 34946640 PMCID: PMC8709291 DOI: 10.3390/molecules26247559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Searching for natural products with antitumor and immune-enhancing activities is an important aspect of cancer research. Sargassum pallidum is an edible brown alga that has been used in Chinese traditional medicine for the treatment of tumors. However, the purification and application of its active components are still insufficient. In the present study, the polysaccharides from S. pallidum (SPPs) with antitumor and immune-enhancing activities were isolated and purified, and five polysaccharide fractions (SPP-0.3, SPP-0.5, SPP-0.7, SPP-1, and SPP-2) were obtained. The ratio of total saccharides, monosaccharide composition, and sulfated contents was determined, and their structures were analyzed by Fourier transform infrared spectroscopy. Moreover, bioactivity analysis showed that all five fractions had significant antitumor activity against three types of cancer cells (A549, HepG2, and B16), and can induce cancer cell apoptosis. In addition, the results indicated that SPPs can enhance the proliferation of immune cells and improve the expression levels of serum cytokines (IL-6, IL-1β, iNOS, and TNF-α). SPP-0.7 was identified as the most active fraction and selected for further purification, and its physicochemical properties and antitumor mechanism were further analyzed. Transcriptome sequencing result showed that SPP-0.7 can significantly induce the cell apoptosis, cytokine secretion, and cellular stress response process, and inhibit the normal physiological processes of cancer cells. Overall, SPPs and SPP-0.7 may be suitable for use as potential candidate agents for cancer therapy.
Collapse
Affiliation(s)
- Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Yizhen Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Bin Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266042, China
| |
Collapse
|
8
|
Antiviral and virucidal activities of lycorine on duck tembusu virus in vitro by blocking viral internalization and entry. Poult Sci 2021; 100:101404. [PMID: 34478911 PMCID: PMC8414183 DOI: 10.1016/j.psj.2021.101404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Duck tembusu virus (DTMUV) was firstly identified in 2010 in China; since then, it has caused enormous economic loss to breeding industry. Great efforts have been made to develop drugs and vaccines against DTMUV. However, current available vaccines or anti-DTMUV drugs are consistently inefficient. Hence, various more broadly effective drugs have become important for the treatment of DTMUV infection; among these, lycorine, one of the important sources of active alkaloids, is a promising example. Nevertheless, it is not known whether lycorine has any antiviral activities against DTMUV. Therefore, the purpose of the present study is to investigate the anti-DTMUV abilities of lycorine. The cytotoxicity of lycorine was evaluated on BHK-21 cells by CCK-8 assay, and its antiviral effect against DTMUV was examined by real-time PCR assays, virus titer determination, Western blot and immunofluorescence (IFA) assays, respectively. Furthermore, the underlying mechanisms of the anti-DTMUV effects of lycorine were also investigated. The results indicated that the highest nontoxicity concentration of lycorine on BHK-21 cells was 5 µM. Lycorine possessed the antiviral ability against DTMUV on BHK-21 cells, as demonstrated by the reduction of virus titers and copy numbers in vitro. Western blot and IFA analysis showed the inhibitory effect of lycorine on DTMUV envelope (E) protein expression. Moreover, using time-of-addition assays, we found that lycorine displays its antivirus and virucidal activities through blocking viral internalization and entry in vitro. Taken together, our findings firstly demonstrate the antiviral activities of lycorine against DTMUV, suggesting that lycorine can be a potential drug for the treatment of DTMUV infection.
Collapse
|
9
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
10
|
Chen Y, Luo Q, Li S, Li C, Liao S, Yang X, Zhou R, Zhu Y, Teng L, Chen H, Yang Y. Antiviral activity against porcine epidemic diarrhea virus of Pogostemon cablin polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:113009. [PMID: 32450234 DOI: 10.1016/j.jep.2020.113009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dry overground parts of Pogostemon cablin (Blanco) Benth. is widely used in China as a traditional Chinese medicine for the treatment of diarrhea, vomiting, nausea and fever. Polysaccharide is an important component of Pogostemon cablin (Blanco) Benth. but has not been studied. Pogostemon cablin (Blanco) Benth. is used to treat porcine epidemic diarrhea. But it is not known whether Pogostemon cablin polysaccharides (PCPs) has the antiviral activities against porcine epidemic diarrhea virus (PEDV). AIM OF THE STUDY The purpose of present study is to investigate the structural characterization and the anti-PEDV activities of PCPs. MATERIALS AND METHODS PCPs were prepared by water extraction and alcohol precipitation method and purified with DEAE-52 cellulose column and Sephadex G-100 column. Then, the structural characterization of the polysaccharides including the infrared spectrum, molecular weight and monosaccharide composition were analyzed. Afterwards, the antiviral effect of PCPs against PEDV on IPEC-J2 cells was studied by MTT method and real-time PCR method. Additionally, the effects of PCPs on PEDV adsorption, penetration and replication were analyzed by real-time PCR method. Furthermore, we also investigate whether the anti-oxidative effects of PCPs were important to the anti-PEDV activities. RESULTS Four polysaccharides were obtained and named as PCP1.1 (31.3 kDa), PCP1.2 (3.5 kDa), PCP2.1 (9.1 kDa) and PCP2.2 (8.3 kDa). PCP1.1, PCP1.2 and PCP2.1 were composed of fucose, arabinose, galactose, glucose, mannose, galacturonic acid and glucuronic acid; and PCP2.2 was composed of arabinose, galactose, glucose, galacturonic acid and glucuronic acid. All PCPs showed anti-PEDV activities. PCP1.1 and PCP1.2 inhibited PEDV replication, while PCP2.1 and PCP2.2 inhibited PEDV penetration and replication. All PCPs showed anti-oxidative effects, which were important to the anti-PEDV activities. CONCLUSIONS The treatment effect of Pogostemon cablin (Blanco) Benth. on porcine epidemic diarrhea might be related to the anti-PEDV effect of PCPs. Furthermore, the anti-oxidative effects of PCPs play important roles in their antiviral activities against PEDV.
Collapse
Affiliation(s)
- Yun Chen
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Qiyuan Luo
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Shanman Li
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Chengheng Li
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Suya Liao
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Xin Yang
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Ruigang Zhou
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Yongjian Zhu
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Ling Teng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Huricha Chen
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| | - Yuhui Yang
- College of Animal Science and Technology, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
11
|
Chen Y, Yao F, Ming K, Shi J, Zeng L, Wang D, Wu Y, Hu Y, Liu J. Assessment of the Effect of Baicalin on Duck Virus Hepatitis. Curr Mol Med 2020; 19:376-386. [PMID: 30950349 DOI: 10.2174/1566524019666190405095301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Duck virus hepatitis (DVH) caused by duck hepatitis A virus type 1 (DHAV-1) is a malignant disease in ducklings, causing economic losses in the duck industry. However, there is still no antiviral drug against DHAV-1 in the clinic. OBJECTIVE Our aim is to investigate the anti-DHAV-1 effect of baicalin, which is a flavonoid derived from the Chinese medicinal herb huangqin (Scutellaria baicalensis Georgi). METHODS Here, we first detected its anti-DHAV-1 ability in vitro and in vivo. At the same time, the inhibition of baicalin on DHAV-1 reproduction was determined. Finally, we tested and verified the anti-oxidative and immuno-enhancing roles of baicalin on its curative effect on DVH. RESULTS Baicalin possessed anti-DHAV-1 effect. It improved the cytoactive of DEH which was infected by DHAV-1 as well as reduced the DHAV-1 reproduction in DEH. Under baicalin treatment, mortality of ducklings infected by DHAV-1 decreased, additionally the DHAV-1 level and liver injury in such ducklings were significantly reduced or alleviated. The in vitro mechanism study indicated baicalin inhibited DHAV-1 reproduction via interfering the viral replication and release. Furthermore, the in vivo mechanism study manifested both the anti-oxidative and immuno-enhancing abilities of baicalin, which played crucial roles in its curative effect on DVH. CONCLUSION This study may provide a scientific basis for developing baicalin as one or a part of the anti-DHAV-1 drugs.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jintong Shi
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Zeng
- Animal husbandry and Veterinary Bureau of Yuhang District of Hangzhou, Hangzhou 311100, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Ming K, He M, Su L, Du H, Wang D, Wu Y, Liu J. The inhibitory effect of phosphorylated Codonopsis pilosula polysaccharide on autophagosomes formation contributes to the inhibition of duck hepatitis A virus replication. Poult Sci 2020; 99:2146-2156. [PMID: 32241500 PMCID: PMC7587719 DOI: 10.1016/j.psj.2019.11.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV) infection causes duck viral hepatitis and results in enormous loss to poultry farming industry. We reported that phosphorylated Codonopsis pilosula polysaccharide (pCPPS) inhibited DHAV genome replication. Here we further explored its underlying antiviral mechanisms. Autophagosomes formation is essential for the genome replication of picornaviruses. In this study, Western blot, confocal microscopy observation, and ELISA methods were performed to analyze polysaccharides' effects on autophagy by the in vitro and in vivo experiments. Results obtained from in vitro and in vivo experiments showed that Codonopsis pilosula polysaccharide did not play a role in regulating autophagy and had no therapeutic effects on infected ducklings. However, pCPPS treatment downregulated LC3-II expression level activated by DHAV and rapamycin, indicating the inhibition of autophagosomes formation. The interdiction of autophagosomes formation resulted in the inhibition of DHAV genome replication. Further study showed that pCPPS treatment reduced the concentration of phosphatidylinositol-3-phosphate (PI3P), an important component of membrane, in cells and serum, and consequently, autophagosomes formation was downregulated. In vivo experiments also verified the therapeutic effect of pCPPS. Phosphorylated Codonopsis pilosula polysaccharide treatment increased the infected ducklings' survival rate and alleviated hepatic injury. Our studies verified the effects of pCPPS against DHAV infection in duck embryo hepatocytes and ducklings and confirmed that phosphorylated modification enhanced the bioactivities of polysaccharides. The results also stated pCPPS's antiviral mechanisms, provided fundamental basis for the development of new anti-DHAV agents.
Collapse
Affiliation(s)
- Ke Ming
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Miao He
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linglin Su
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
13
|
Song S, Li P, Zhang R, Chen J, Lan J, Lin S, Guo G, Xie Z, Jiang S. Oral vaccine of recombinant Lactococcus lactis expressing the VP1 protein of duck hepatitis A virus type 3 induces mucosal and systemic immune responses. Vaccine 2019; 37:4364-4369. [PMID: 31227355 DOI: 10.1016/j.vaccine.2019.06.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/27/2023]
Abstract
Duck hepatitis A virus (DHAV) is the major pathogen of duck viral hepatitis, which has caused great economic losses to duck breeding industry. As an effective delivery tool for protein antigens, Lactococcus lactis (L. lactis) has been successfully used to stimulate mucosal and systemic immune response. In this study, a recombinant L. lactis named NZ3900-VP1 was constructed, which could express VP1 protein of DHAV type 3 (DHAV-3) by using a nisin-controlled expression (NICE) system. The animal experiment in both mice and ducklings were performed to detect the immune response and protection effect of oral vaccination by the recombinant L. lactis. The results showed that oral vaccination with L. lactis NZ3900-VP1 significantly induced specific anti-VP1 IgG antibodies and mucosal secretory immunoglobulin A (sIgA) of DHAV-3 in mice and ducklings, and cytokines including interleukin-2 (IL-2), interferon gamma (IFN-γ), interleukin-10 (IL-10) and interleukin-4 (IL-4). Notably, the ducklings vaccinated with L. lactis NZ3900-VP1 were effectively protected when facing natural infestation of DHAV-3, which indicated that the recombinant L. lactis could serve as an effective vaccine to prevent DHAV-3 infection in ducklings.
Collapse
Affiliation(s)
- Shasha Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Pengfei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Junhao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Jingjing Lan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shaoli Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Guanjie Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
14
|
Du H, Bai J, Wang J, He M, Xiong W, Yuan W, Qiao M, Ming K, Wu Y, Wang D, Hu Y, Liu J. Assessment of the hepatocyte protective effects of gypenoside and its phosphorylated derivative against DHAV-1 infection on duck embryonic hepatocytes. BMC Vet Res 2019; 15:134. [PMID: 31064364 PMCID: PMC6505245 DOI: 10.1186/s12917-019-1891-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background Duck viral hepatitis (DVH) is an acute disease of young ducklings with no effective veterinary drugs for treatment. Gynostemma pentaphyllum is a well-known traditional Chinese medicine that plays an important role in the treatment of various diseases. Gypenoside (GP), one of the main ingredients of Gynostemma pentaphyllum, was reported with good hepatoprotective effects. However, its low solubility limits its application in the clinics. To improve its solubility and bioactivity, a phosphorylated derivative of gypenoside (pGP) was prepared by the sodium trimetaphosphate-sodium tripolyphosphate (STMP-STPP) method. An infrared spectroscopy method was applied to analyse the structures of GP and pGP. Then, a methyl thiazolyl tetrazolium (MTT) colorimetric assay was applied to study the hepatocyte protective efficacy of these two drugs against duck hepatitis A virus type 1 (DHAV-1) infection, and qPCR, TUNEL labelling and flow cytometry methods were used to study the relevant hepatocyte protective in vitro. Results The infrared spectroscopy detection results showed that the phosphorylation modification of GP was successful. The MTT colorimetric assay results showed that both GP and pGP possessed good hepatocyte protective efficacy in vitro, and pGP performed better than GP when the drug was added before or after virus inoculation. Furthermore, the qPCR results revealed that both drugs could effectively inhibit the adsorption (when adding GP and pGP pre-virus inoculation), replication and release of DHAV-1, and the viral inhibition rate of pGP was greater than that of GP. The subsequent TUNEL labelling and flow cytometry assays showed that both GP and pGP could significantly inhibit duck embryo hepatocyte apoptosis induced by DHAV-1, and the inhibition effect of pGP was much stronger than that of GP. Conclusions GP exerts good hepatocyte protective efficacy not only by inhibiting the proliferation of DHAV-1 but also by inhibiting duck embryonic hepatocyte apoptosis induced by DHAV-1, and phosphorylation modification significantly improves the antiviral and the anti-apoptotic effects of GP. Therefore, pGP has the potential to be developed into a novel drug against DHAV-1 infection.
Collapse
Affiliation(s)
- Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingying Bai
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinli Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Miao He
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenjuan Yuan
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mingyu Qiao
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine and MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
15
|
Ming K, Yuan W, Chen Y, Du H, He M, Hu Y, Wang D, Wu Y, Liu J. PI3KC3-dependent autophagosomes formation pathway is of crucial importance to anti-DHAV activity of Chrysanthemum indicum polysaccharide. Carbohydr Polym 2019; 208:22-31. [DOI: 10.1016/j.carbpol.2018.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
|
16
|
Chen Y, Yuan W, Yang Y, Yao F, Ming K, Liu J. Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication. Poult Sci 2018; 97:3816-3825. [DOI: 10.3382/ps/pey255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022] Open
|
17
|
Chen Y, Yang Y, Wang F, Yang X, Yao F, Ming K, Yuan W, Zeng L, Liu J. Antiviral effect of baicalin phospholipid complex against duck hepatitis A virus type 1. Poult Sci 2018; 97:2722-2732. [PMID: 29757435 DOI: 10.3382/ps/pey155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens of ducklings and causes a high mortality rate. Baicalin (BA) has potent antiviral effect, but the solubility is very poor. In order to increase the absorption, solubility, and pharmacological activity, the phospholipid complex was used to modify BA in present study. Therefore, BA phospholipid complex (BAPC) was prepared. The anti-DHAV-1 abilities of BA and BAPC in vitro was evaluated by cell counting kit-8 and reverse transcription quantitative PCR. The curative effects of BA and BAPC on ducklings which were infected by DHAV-1 in addition to the ALT and AST levels were also detected. The results indicated the anti-DHAV-1 ability of BAPC was stronger than that of BA both in vitro and in vivo. To explore the anti-DHAV-1 mechanism, the influence of BAPC on DHAV-1 adsorption, replication, and release was studied. Furthermore, the anti-oxidative and immuno-enhancing abilities of BAPC in the treatment of infected ducklings were also determined. The results showed BAPC inhibited DHAV-1 adsorption, replication and release. Furthermore, it played anti-oxidative and immno-enhancing roles in the treatment, and the immno-enhancing role was crucial to the treatment.
Collapse
Affiliation(s)
- Y Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China.,College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, P R China
| | - Y Yang
- College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, P R China
| | - F Wang
- College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, P R China
| | - X Yang
- College of Animal Science and Technology, College of Tropical Agriculture and Forestry, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, Haikou 570228, P R China
| | - F Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - K Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - W Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - L Zeng
- Animal husbandry and Veterinary Bureau of Yuhang District of Hangzhou, Hangzhou 311100, PR China
| | - J Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
18
|
Effects of Bush Sophora Root polysaccharide and its sulfate on DHAV-1 replication. Carbohydr Polym 2018; 197:508-514. [DOI: 10.1016/j.carbpol.2018.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/29/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
|
19
|
Bai R, Li W, Li Y, Ma M, Wang Y, Zhang J, Hu F. Cytotoxicity of two water-soluble polysaccharides from Codonopsis pilosula Nannf. var. modesta (Nannf.) L.T.Shen against human hepatocellular carcinoma HepG2 cells and its mechanism. Int J Biol Macromol 2018; 120:1544-1550. [PMID: 30248423 DOI: 10.1016/j.ijbiomac.2018.09.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023]
Abstract
Two water-soluble polysaccharides named CPP1a and CPP1c were isolated from C. pilosula Nannf. var. modesta L.T.Shen by hot-water extraction and purified by graded alcohol precipitation and DEAE-52 cellulose column. The structure of CPP1c with higher yield has been characterized while its antitumor activities has not been elucidated. In this study, we firstly analyzed the chemical structure of CPP1a. The results of instrumental analysis combined with chemical analysis showed that CPP1a was composed of →1)- β‑l‑Rhap‑(4→, →1)- β‑Arap‑(5→, →1)- β‑d‑GalpA‑(4→, →1)- β‑d‑Galp‑(6→, terminal‑β‑d‑Glcp in a molar ratio of 1:12:1:10:3 and its relative and absolute molecular weight were 1.01 × 105 Da and 1.03 × 105 Da respectively. Further, the cytotoxicity assay indicated that CPP1a and CPP1c were more sensitive to HepG2 cells than cervical carcinoma Hela cells and gastric carcinoma MKN45 cells. Both of CPP1a and CPP1c could influence cell morphology, inhibit the migration and induce apoptosis by affecting the G2/M phase of HepG2 cells. Preliminary mechanism studies confirmed that CPP1a and CPP1c could induce apoptosis through up-regulating the ratio of Bax/Bcl-2 and activating caspase-3. According to previous research, we might speculate that the reason for the stronger cytotoxicity and pro-apoptotic effect of CPP1c than that of CPP1a can be attributed to its high uronic acid content.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuyan Li
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yingdong Li
- Institute of Integrated Traditional Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Ming Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Gan F, Yang Y, Chen Y, Che C, Pan C, Huang K. Bush sophora root polysaccharide could help prevent aflatoxin B1-induced hepatotoxicity in the primary chicken hepatocytes. Toxicon 2018; 150:180-187. [PMID: 29857086 DOI: 10.1016/j.toxicon.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effects of bush sophora root polysaccharide (BSRPS) on the aflatoxin B1 (AFB1)-induced hepatotoxicity and to explore the underlying mechanisms. The primary chicken hepatocytes were used as the model in the present experiment. The results showed that AFB1 induced hepatotoxicity of chicken hepatocytes in a dose dependent manner as demonstrated by decreasing cell viability and increasing LDH activity, ALT and AST levels. AFB1 at 0.16 μM significantly increased the levels of hepatic cytochrome P450 1A5 (CYP450 1A5) mRNA and malondialdehyde (MDA) and decreased the activity and mRNA level of manganese superoxide dismutase(SOD2) and the glutathione peroxidases (GSH-Px) activity in the hepatocytes compared with the blank control. BSRPS at 8.93 μM, 17.86 μM, and 35.72 μM supplementation could significantly reverse the above-mentioned changes induced by AFB1, and 17.86 μM of BSRPS has the largest effects on protecting the AFB1-induced hepatocytes damage. Knock-down of SOD2 by SOD2-specific siRNA significantly eliminated the protective effects of BSRPS on AFB1-induced the increase of CYP450 1A5 mRNA levels and hepatotoxicity. These results suggested that the BSRPS has protective effects on AFB1-induced hepatotoxicity by down-regulating CYP450 1A5 mRNA level via up-regulating SOD2 expression in the primary chicken hepatocytes.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yulan Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chaoping Che
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
21
|
Chen Y, Zeng L, Lu Y, Yang Y, Xu M, Wang Y, Liu J. Treatment effect of a flavonoid prescription on duck virus hepatitis by its hepatoprotective and antioxidative ability. PHARMACEUTICAL BIOLOGY 2017; 55:198-205. [PMID: 27927057 PMCID: PMC6130485 DOI: 10.1080/13880209.2016.1255977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/29/2016] [Accepted: 10/29/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Duck virus hepatitis (DVH) caused by duck hepatitis A virus type 1 (DHAV-1) is an acute and lethal disease of young ducklings. However, there is still no effective drug to treat DVH. OBJECTIVE This study assessed the curative effect on DVH of a flavonoid prescription baicalin-linarin-icariin-notoginsenoside R1 (BLIN) as well as the hepatoprotective and antioxidative effects of BLIN. MATERIALS AND METHODS MTT method was used to test the anti-DHAV-1 ability of BLIN in vitro. We then treated ducklings by BLIN (3 mg per duckling, once a day for 5 days) to evaluate the in vivo efficacy. To study the hepatoprotective and antioxidative roles of BLIN in its curative effect on DVH, we investigated the hepatic injury evaluation biomarkers and the oxidative stress evaluation indices of the ducklings. RESULTS On duck embryonic hepatocytes, DHAV-1 inhibitory rate of BLIN at 20 μg/mL was 69.3%. The survival rate of ducklings treated by BLIN was about 35.5%, which was significantly higher than that of virus control (0.0%). After the treatment of BLIN, both the hepatic injury and the oxidative stress of infected ducklings alleviated. At the same time, a significant positive correlation (p < 0.05) existed between the hepatic injury indices and the oxidative stress indices. CONCLUSIONS BLIN showed a significant curative effect on DVH. The antioxidative and hepatoprotective effects of BLIN made great contributions to the treatment of DVH. Furthermore, BLIN is expected to be exploited as a new drug for the clinical treatment of DVH.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Yu Lu
- National Research Center of Veterinary Biologicals Engineering and Technology, Jiangsu Academy of Agricultural Science, Nanjing, PR China
| | - Yulan Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Meiyun Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
- CONTACT Liu Jiaguo, Ph.DInstitute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, P R China
| |
Collapse
|
22
|
Chen Y, Zeng L, Yang J, Wang Y, Yao F, Wu Y, Wang D, Hu Y, Liu J. Anti-DHAV-1 reproduction and immuno-regulatory effects of a flavonoid prescription on duck virus hepatitis. PHARMACEUTICAL BIOLOGY 2017; 55:1545-1552. [PMID: 28385083 PMCID: PMC6130687 DOI: 10.1080/13880209.2017.1309554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT The flavonoid prescription baicalin-linarin-icariin-notoginsenoside R1 (BLIN) has a curative effect on duck virus hepatitis (DVH) caused by duck hepatitis A virus type 1 (DHAV-1). However, the mechanism of this curative effect is not understood. OBJECTIVE This study investigates the mechanism of the curative effect of BLIN on DVH caused by DHAV-1. We analyzed the anti-DHAV-1 reproduction mechanism and immuno-regulatory effect of BLIN. MATERIALS AND METHODS The anti-DHAV-1 reproduction effects of BLIN at 20, 10, 5 and 2.5 μg/mL in vitro, as well as the influence of BLIN at 20 μg/mL on DHAV-1 adsorption, replication and release were tested using the qRT-PCR method. The promotion abilities of BLIN at 20, 10, 5 and 2.5 μg/mL on T- and B-lymphocyte proliferation were investigated by the MTT method. IL-2 and IFN-γ levels and total anti-DHAV-1 antibody secretion after treatment with DHAV-1 for 4, 8 and 54 h were determined by ELISA. RESULTS BLIN showed a dose-dependent DHAV-1 reproduction inhibitory effect. The inhibitory effect was highest at 20 μg/mL, where DHAV-1 adsorption and release were significantly lower. Meanwhile, BLIN at 5 μg/mL significantly increased T and B lymphocyte proliferation. BLIN stimulated total anti-DHAV-1 antibody secretion in ducklings at the dosage of 4 mg per duckling, but did not stimulate IL-2 and IFN-γ secretion significantly. CONCLUSIONS BLIN inhibits DHAV-1 reproduction by suppressing its adsorption and release. Additionally, BLIN promoted the duckling antiviral response.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P R China
- CONTACT Jiaguo Liu Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing210095, P R China
| |
Collapse
|
23
|
Xiong W, Zhang W, Yuan W, Du H, Ming K, Yao F, Bai J, Chen Y, Liu J, Wang D, Hu Y, Wu Y. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways. Front Microbiol 2017; 8:1850. [PMID: 29018425 PMCID: PMC5622922 DOI: 10.3389/fmicb.2017.01850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more antioxidant activity that could regulate oxidative stress-related indicators, and inhibited the phosphorylation of MAPKs signaling pathway.
Collapse
Affiliation(s)
- Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjuan Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jingying Bai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Ming K, Chen Y, Shi J, Yang J, Yao F, Du H, Zhang W, Bai J, Liu J, Wang D, Hu Y, Wu Y. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury. Int J Biol Macromol 2017; 102:813-821. [DOI: 10.1016/j.ijbiomac.2017.04.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
|
25
|
Song M, Chen Y, Du H, Zhang S, Wang Y, Zeng L, Yang J, Shi J, Wu Y, Wang D, Hu Y, Liu J. RAW REHMANNIA RADIX POLYSACCHARIDE CAN EFFECTIVELY RELEASE PEROXIDATIVE INJURY INDUCED BY DUCK HEPATITIS A VIRUS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638862 PMCID: PMC5471485 DOI: 10.21010/ajtcam.v14i4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Duck viral hepatitis (DVH), caused by duck hepatitis A virus (DHAV), is a fatal contagious infectious disease which spreads rapidly with high morbidity and high mortality, and there is no effective clinical drug against DVH. Materials and Methods: Raw Rehmannia Radix Polysaccharide (RRRP), Lycii Fructus polysaccharides and Astragalus Radix polysaccharides were experimented in vitro and in vivo. Mortality rate, livers change, liver lesion scoring, peroxidative injury evaluation indexes in vitro and in vivo, and hepatic injury evaluation indexes of optimal one were detected and observed in this experiment. Results: RRRP could reduce mortality with the protection rate about 20.0% compared with that of the viral control (VC) group, finding that RRRP was the most effective against DHAV. The average liver scoring of the VC, blank control (BC), RRRP groups were 3.5, 0, 2.1. Significant difference (P<0.05) appeared between any two groups, demonstrating that it can alleviate liver pathological change. RRRP could make the hepatic injury evaluation indexes similar to BC group while the levels of the VC group were higher than other two groups in general. The levels of SOD, GSH-Px, CAT of RRRP group showed significant higher than that of VC group while the levels of NOS and MDA showed the opposite tendency, thus, RRRP could release peroxidative injury. Conclusion: RRRP was the most effective against duck hepatitis A virus (DHAV). RRRP could reduce mortality, alleviate liver pathological change, down-regulate liver lesion score, release peroxidative injury and hepatic injury. The antiviral and peroxidative injury releasing activity of RRRP for DHAV provided a platform to test novel drug strategies for hepatitis A virus in human beings.
Collapse
Affiliation(s)
- Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Shuaibing Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jintong Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
26
|
Feng H, Fan J, Yang S, Zhao X, Yi X. Antiviral activity of phosphorylated Radix Cyathulae officinalis polysaccharide against Canine Parvovirus in vitro. Int J Biol Macromol 2017; 99:511-518. [DOI: 10.1016/j.ijbiomac.2017.02.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 12/15/2022]
|
27
|
Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide. Int J Biol Macromol 2017; 94:28-35. [DOI: 10.1016/j.ijbiomac.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 12/14/2022]
|
28
|
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016; 21:E1705. [PMID: 27983593 PMCID: PMC6273901 DOI: 10.3390/molecules21121705] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/23/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangke Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Wang Y, Chen Y, Du H, Yang J, Ming K, Song M, Liu J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp Biol Med (Maywood) 2016; 242:344-353. [PMID: 27703041 DOI: 10.1177/1535370216672750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus (DHAV) (Picornaviridae) causes an infectious disease in ducks which results in severe losses in duck industry. However, the proper antiviral supportive drugs for this disease have not been discovered. Polysaccharide is the main ingredient of Astragalus that has been demonstrated to directly and indirectly inhibit RNA of viruses replication. In this study, the antiviral activities of Astragalus polysaccharide (APS) and its derivatives against DHAV were evaluated and compared. APS was modified via the sodium trimetaphosphate and sodium tripolyphosphate (STMP-STPP) method and chlorosulfonic acid-pyridine method to obtain its phosphate (pAPS) and sulfate (sAPS), respectively. The infrared structures of APS, pAPS, and sAPS were analyzed with the potassium bromide disc method. Additionally, the antiviral activities were evaluated with the MTT ((4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) method in vitro and the artificial inoculation method in vivo. The clinical therapy effects were evaluated by mortality rate, liver function-related biochemical indicators, and visual changes in pathological anatomy. The anti-DHAV proliferation effects of APS, pAPS, and sAPS on the viral multiplication process in cell and blood were observed with the reverse transcription-polymerase chain reaction method. The results revealed that pAPS inhibited DHAV proliferation more efficiently in the entire process of viral multiplication than APS and sAPS. Moreover, only pAPS significantly improved the survival rate to 33.5% and reduced the DHAV particle titer in the blood as well as liver lesions in clinical trials. The results indicated that pAPS exhibited greater anti-DHAV activity than APS and sAPS both in vitro and in vivo.
Collapse
Affiliation(s)
- Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jingjing Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| |
Collapse
|
30
|
Yao F, Chen Y, Shi J, Ming K, Liu J, Xiong W, Song M, Du H, Wang Y, Zhang S, Wu Y, Wang D, Hu Y. Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes. Virology 2016; 491:73-8. [DOI: 10.1016/j.virol.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 12/11/2022]
|
31
|
Assessment of a Flavone-Polysaccharide Based Prescription for Treating Duck Virus Hepatitis. PLoS One 2016; 11:e0146046. [PMID: 26731101 PMCID: PMC4701506 DOI: 10.1371/journal.pone.0146046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023] Open
Abstract
Because polysaccharide and flavone ingredients display good antiviral activity, we developed a flavone/polysaccharide-containing prescription that would be effective against duck viral hepatitis (DVH) and investigated its hepatoprotective effects. Flavones were derived from Hypericum japonicum (HJF) (entire herb of Hypericum japonicum Thunb) and Salvia plebeia (SPF) (entire herb of Salvia plebeia R. Br.), and polysaccharides were derived from Radix Rehmanniae Recens (RRRP) (dried root of Rehmannia glutinosa Libosch). This prescription combination was based on the theory of syndrome differentiation and treatment in traditional Chinese veterinary medicine. In vitro and in vivo experiments were conducted using the three single ingredients compared to the combined HRS prescription to determine their anti-duck hepatitis A viral (anti-DHAV) activity. The results showed that all experimental conditions displayed anti-DHAV activity, but the HRS prescription presented the best effect. To further investigate the hepatoprotective effect of the HRS prescription on DHAV-induced hepatic injury, we tested the mortality rate, the hepatic pathological severity score, plasma biochemical indexes of hepatic function, blood DHAV gene expression levels and peroxidation damage evaluation indexes and then analyzed correlations among these indexes. The results demonstrated that the HRS prescription significantly decreased the mortality rate, reduced the severity of hepatic injury, decreased the hepatic pathological severity score, depressed blood DHAV gene expression levels, and returned the indexes of hepatic function and peroxidation almost to a normal level. These results indicate that the HRS prescription confers an outstanding hepatoprotective effect, and we expect that it will be developed into a new candidate anti-DHAV drug.
Collapse
|
32
|
Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides. Mar Drugs 2015; 14:4. [PMID: 26729137 PMCID: PMC4728501 DOI: 10.3390/md14010004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Xiaodong Liu
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Fubo Zhang
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Linfeng Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
33
|
Chen J, Zhao Q, Wang L, Zha S, Zhang L, Zhao B. Physicochemical and functional properties of dietary fiber from maca ( Lepidium meyenii Walp.) liquor residue. Carbohydr Polym 2015; 132:509-12. [DOI: 10.1016/j.carbpol.2015.06.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/21/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
|
34
|
Chen Y, Wu Y, Xian L, Song M, Zeng L, Xiong W, Liu J, Sun W, Wang D, Hu Y. Effects of Bush Sophora Root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. Int J Biol Macromol 2015; 80:217-24. [PMID: 26118485 DOI: 10.1016/j.ijbiomac.2015.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/22/2015] [Accepted: 06/13/2015] [Indexed: 12/01/2022]
Abstract
Bush Sophora Root polysaccharide (BSRPS) and its sulfate, sulfated Bush Sophora Root polysaccharide (sBSRPS), possess the antiviral activities against duck hepatitis A virus. However their antiviral mechanisms are still not clear. This paper reported their immuno-enhancing roles in the therapeutic effects for duck virus hepatitis (DVH). The effects of BSRPS and sBSRPS on stimulating lymphocyte proliferation were investigated by MTT methods. After that, ducklings were challenged with DHAV and treated with BSRPS and sBSRPS. Meanwhile, the total antibody (Ab), cytokines including interferon gamma (IFN-γ), hepatocyte growth factor (HGF), interleukin (IL)-2, IL-6 and IL-8 were determined by enzyme-linked immuno sorbent assay methods. The results showed that BSRPS owned a fine hepatoprotective effect with stable HGF producing ability. Sulfated modification was able to increase the proliferation rates of B and T lymphocytes and the secretions of total Ab, IFN-γ and IL-2, as comparison with those of BSRPS group. In summary, both of them exhibited immuno-enhancing effects on the therapeutic effects for DVH, and the capacity of sBSRPS was stronger than that of BSRPS.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Luanting Xian
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Weidong Sun
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
35
|
Chen Y, Zeng L, Xiong W, Song M, Du H, Wang Y, Ming K, Wu Y, Wang D, Hu Y, Liu J. Anti-duck virus hepatitis mechanisms of Bush Sophora Root polysaccharide and its sulfate verified by intervention experiments. Virus Res 2015; 204:58-67. [PMID: 25901935 DOI: 10.1016/j.virusres.2015.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023]
Abstract
In our previous study, Bush Sophora Root polysaccharide (BSRPS) and its sulfate (sBSRPS) exhibited anti-duck virus hepatitis (DVH) abilities as well as anti-oxidative and immuno-enhancement effects. The aim of this paper was to ulteriorly investigate the exact anti-DVH mechanisms of BSRPS and sBSRPS by intervention experiments. Hinokitiol and FK506 were used as the pro-oxidant and immunosuppressant, respectively. The dynamic deaths, oxidative and immune evaluation indexes and hepatic pathological change scores were detected. When was intervened by hinokitiol, sBSRPS still possessed therapeutic effect while BSPRS was useless. Under the condition of immunosuppression, BSRPS lost a part role in treating DVH; however such a role of sBSRPS completely exhausted. These results suggested both anti-oxidative and immuno-enhancement effects of BSRPS played roles in healing DVH, and the former was more crucial; unlike BSRPS, only immuno-enhancement ability of sBSRPS was imperative for its curative effect on DVH.
Collapse
Affiliation(s)
- Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ling Zeng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Xiong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Meiyun Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongxu Du
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yixuan Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ke Ming
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanliang Hu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
36
|
Chen J, Sun C, Han L, Lin X, Wang L, Shen M, Yu F, Chen J. Extraction of crude polysaccharides from Duchesnea indica (Andrews) Focke: optimization by response surface methodology. Biosci Biotechnol Biochem 2015; 79:1246-56. [PMID: 25849714 DOI: 10.1080/09168451.2015.1025689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A full set of optimization procedure was applied to the extraction of anti-viral polysaccharides from Duchesnea indica (Andrews) Focke. By Plackett-Burman factorial design, three parameters (extraction time, extraction temperature, and ratio of water to raw material) were identified as significant to the extraction yield. However, no significant parameters had been identified for antiviral activity. A three-level-three-factor Box-Behnken factorial design was then employed to further optimize the extraction condition. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and also examined using appropriate statistical methods. This led to the construction of a response surface indicating the optimal values for each parameter and response studied. Concerning the extraction yield, an extraction at 98.51 ºC for 6.16 h with a ratio of water to raw material of 30.94 mL/g was found to be optimal. Under the optimized conditions, the experimental yield was 6.430 ± 0.078%, which was well matched with the predicted yield of 6.509%.
Collapse
Affiliation(s)
- Jing Chen
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Song M, Wang Y, Xiong W, Zeng L, Zhang S, Xu M, Du H, Liu J, Wang D, Wu Y, Hu Y. The anti-DHAV activities of Astragalus polysaccharide and its sulfate compared with those of BSRPS and its sulfate. Carbohydr Polym 2015; 117:339-345. [DOI: 10.1016/j.carbpol.2014.09.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/03/2014] [Accepted: 09/21/2014] [Indexed: 12/18/2022]
|
38
|
Antiviral effect of sulfated Chuanmingshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus. Virology 2015; 476:316-322. [PMID: 25577148 DOI: 10.1016/j.virol.2014.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 11/20/2022]
Abstract
Newcastle disease virus (NDV) belonging to the Paramyxovirinae subfamily is one of the most devastating pathogens in poultry. Although vaccines are widely applied to control the infection, outbreaks of Newcastle disease (ND) repeatedly happen. Currently, there are no alternative control measures available for ND. In the present study, we found that sulfated Chuanmingshen violaceum polysaccharide (sCVPS) were potent inhibitors of NDV in specific pathogen free chickens infected with a virulent strain. With sCVPS treatment, the survival rate increased by almost 20% and virus titers in test organs, including brain, lung, spleen and thymus, were significantly decreased. The sCVPS also exhibited the ability to prevent viral transmission by reducing the amount of virus shed in saliva and feces. Higher concentrations of interferon α and γ in serum were detected in chickens treated with sCVPS, indicating that one of the antiviral mechanisms may be attributed to the property of immunoenhancement. Histopathological examination showed that sCVPS could alleviate the tissue lesions caused by NDV infection. These results suggest that sCVPS are expected to be a new alternative control measure for NDV infection and further studies could be carried out to evaluate the antiviral activity of sCVPS against other paramyxoviruses.
Collapse
|
39
|
Xiong W, Chen Y, Wang Y, Liu J. Roles of the antioxidant properties of icariin and its phosphorylated derivative in the protection against duck virus hepatitis. BMC Vet Res 2014; 10:226. [PMID: 25244948 PMCID: PMC4177705 DOI: 10.1186/s12917-014-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/18/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Duck viral hepatitis (DVH) is an acute disease of young ducklings with few convenient and effective veterinary drugs to treat. In pathology, present study mainly focused on the immune mechanism, but very few studies have concerned with the role of oxidative stress in the pathogenesis of DVH. To study the antioxidative and hepatoprotective effects of icariin and its phosphorylated derivative against DVH, we prepared phosphorylated icariin (p-icariin) using the sodium trimetaphosphate-sodium tripolyphosphate method. Ducklings were drunk with icariin and p-icariin after being challenged with duck hepatitis virus 1 (DHV-1). We recorded the number of dead ducklings, gross pathological changes in the liver, and changes in indices of oxidative stress and liver injury. The correlations between these indices were also analyzed. RESULTS Exposure to DHV-1 induced significant oxidative damage in ducklings. Administration of icariin or p-icariin attenuated liver pathological injury and significantly increased the survival rate, with better outcomes in ducklings treated with p-icariin than in those treated with icariin. Icariin and p-icariin also attenuated the changes in oxidative stress and liver injury. We found positive correlations among indices of oxidative stress (malondialdehyde and inducible nitric oxide synthase) and liver injury (alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase), suggesting that DHV-1 causes significant oxidative damage, which is related to the extent of hepatic injury. CONCLUSIONS Icariin and p-icariin improved the survival and attenuated oxidative stress and liver dysfunction induced by DHV-1. These outcomes were better in ducklings treated with p-icariin than in those treated by icariin. The clinical effects of both components were related to their antioxidant activities.
Collapse
|
40
|
Wen XJ, Cheng AC, Wang MS, Jia RY, Zhu DK, Chen S, Liu MF, Liu F, Chen XY. Detection, differentiation, and VP1 sequencing of duck hepatitis A virus type 1 and type 3 by a 1-step duplex reverse-transcription PCR assay. Poult Sci 2014; 93:2184-92. [PMID: 25012848 DOI: 10.3382/ps.2014-04024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Duck hepatitis A virus (DHAV) is an infectious pathogen causing fatal duck viral hepatitis in ducklings. Although both the inactivated vaccines and live attenuated vaccines have been used to protect ducklings, DHAV-1 and DHAV-3 still cause significant serious damage to the duck industry in China and South Korea. For rapid detection, differentiation, and epidemic investigation of DHAV in China, a genotype-specific 1-step duplex reverse-transcription (RT) PCR assay was established in this study. The sensitivity and specificity of the developed RT-PCR assay was evaluated with nucleic acids extracted from 2 DHAV reference strains, and 9 other infectious viruses and bacteria. The genotype-specific primers amplified different size DNA fragments encompassing the complete VP1 gene of the DHAV-1 or DHAV-3. The assay detected the liver samples collected from experimentally infected ducklings and dead ducklings collected from different regions of China. Sequence analysis of these DNA fragments indicated that VP1 sequences of DHAV-1 can be used to distinguish wild type and vaccine strains. The phylogenetic analysis of VP1 sequences indicated that the developed RT-PCR assay can be used for epidemic investigation of DHAV-1 and DHAV-3. The developed RT-PCR assay can be used as a specific molecular tool for simultaneous detection, differentiation, and sequencing the VP1 gene of DHAV-1 and DHAV-3, which can be used for understanding the epidemiology and evolution of DHAV.
Collapse
Affiliation(s)
- X J Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China
| | - A C Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - M S Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - R Y Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - D K Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - S Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - M F Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, Sichuan 625014, P. R. China
| | - F Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China
| | - X Y Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, P. R. China
| |
Collapse
|
41
|
Bush Sophora Root polysaccharide and its sulfate can scavenge free radicals resulted from duck virus hepatitis. Int J Biol Macromol 2014; 66:186-93. [DOI: 10.1016/j.ijbiomac.2014.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/18/2022]
|