1
|
Liu J, Bi J, Liu X, Liu D, Fogliano V, Dekker M, Verkerk R. Effect of pectin structure on the in vitro bioaccessibility of carotenoids in simulated juice model. Int J Biol Macromol 2024; 273:133098. [PMID: 38871101 DOI: 10.1016/j.ijbiomac.2024.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The impact of pectin structure on carotenoid bioaccessibility is still uncertain. This study aims to investigate how the different pectic polymers affected the bioaccessibility of carotenoids in a simulated juice model during static in vitro digestion. This study includes homogalacturonan (HG), which is a linear pectic polymer, rhamnogalacturonan-I (RG-I), which is a branched pectic polymer, and rhamnogalacturonan (RG), which is a diverse pectic polymer rich in RG-I, rhamnogalacturonan-II (RG-II), and xylogalacturonan domains. Juice models without pectin had the highest carotenoid bioaccessibility, suggesting pectin has negative effects on carotenoid bioaccessibility. During the intestinal phase, systems with HG showed the highest viscosity, followed by systems with RG and systems with RG-I. Systems with RG-I had lower carotenoid bioaccessibility than systems with HG and RG-II. Both the percentage of RG-I and the average side chain length of RG-I had negative correlations with carotenoid bioaccessibility. RG-I side chains with more arabinose and/or galactose might cause lower carotenoid bioaccessibility in this juice model system. This study offers valuable insights into the relationship between pectin structure and carotenoid bioaccessibility in a simulated juice model, highlighting the importance of considering pectin composition for maximizing carotenoid bioaccessibility and potential health benefits in fruit-based beverages.
Collapse
Affiliation(s)
- Jianing Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xuan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji 831100, China.
| | - Dazhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| | - Ruud Verkerk
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708, WG, Wageningen, the Netherlands
| |
Collapse
|
2
|
Thangavel P, Saravanakumar I, Sundaram MK, Rathinam B, Muthuvijayan V. Preparation and characterization of a jelly fig (Ficus awkeotsang Makino) polysaccharide-based bioactive 3D scaffold for improved vascularization and skin tissue engineering applications. Int J Biol Macromol 2024; 259:129199. [PMID: 38176487 DOI: 10.1016/j.ijbiomac.2024.129199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Jelly fig polysaccharides (JFP) were extracted from Ficus awkeotsang Makino achenes. The yield of JFP was approximately 10-15 %. FT-IR spectrum of the extracted JFP confirmed that it was made of low methoxyl pectin (LMP). 3D scaffolds of JFP (JFP scaffold) were fabricated using ionic crosslinking of 2 % (w/v) JFP solution with Ca2+ ions and freeze-drying. The JFP scaffold showed 73.46 ± 1.97 % porosity and a 12-fold swelling capacity. The porous morphology was also observed in SEM micrographs. JFP scaffolds were completely degraded in 14 days when incubated in 1 mg/mL lysozyme solution, compared to the 50 % degradation observed in PBS alone. The antioxidant activity of the JFP and JFP scaffold was approximately 40 %. The hemolytic assay of the JFP scaffold showed <5 % (3.0 ± 0.4) RBC lysis. The cytocompatibility of the JFP scaffold was evaluated using L929 mouse fibroblasts and human dermal fibroblasts (HDF). The in vitro studies using L929 cells showed that the JFP scaffold is cytocompatible. HDF cells cultured in the presence of JFP scaffolds show a higher fold cell viability, proliferation, and migration. Collagen expression and deposition were also studied, and no significant changes occurred with JFP scaffold treatment. In vivo CAM assay showed an increase in the number and thickness of blood vessels by 1.185-fold and 1.19-fold, respectively. These results confirm the angiogenic property of the JFP scaffold. These biocompatible and bioactive properties of the JFP scaffold could be beneficial for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Douliu 64002, Taiwan
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
3
|
Zhang C, Wang Y, Lv Y, Yang X, Wei X. Influence of pectin domains and protein on the viscosity and gelation properties of alkali-extracted pectin from green tea residue. Food Chem 2024; 430:137039. [PMID: 37586288 DOI: 10.1016/j.foodchem.2023.137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Alkaline pectin extract (APE) from green tea residues has lower viscosity and gelation properties than commercial citrus pectin. To improve the viscosity and gelation properties of APE, four treatments, namely degradation of homogalacturonan (HG) or rhamnogalacturonan (RG) I domains, esterification, and protein removal and degradation, were applied. With proper degradation of the HG or RG I domains (arabinan or galactan), the viscosity of APE increased from 12 to 2.5×104 or 5.0×103 mPa·s, respectively, and the numbers further increased by approximately 500 times with the addition of Ca2+. Other treatments had slight effects on APE viscosity. The strongest gel (G' = 6.7 × 103 Pa and G″ = 930 Pa) was made using the polygalacturonase treated APE with Ca2+ addition. Degradation of the HG domain or protein enhanced APE's self-crosslink effect, while all methods except protein degradation improved the calcium bridging effect, potentially improving the market potential of pectin from biowaste.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, 362200 Jinjiang, Fujian, China
| | - Yue Wang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Yiming Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xin Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xinyao Wei
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China.
| |
Collapse
|
4
|
Su Y, Chen Y, Qin Y, Qin R, Ahmad A, Yao S. Pectin extracted from Premna Microphylla Turcz for preparation of a "sandwich" multi-property sensor film involved with deep eutectic solvent. Int J Biol Macromol 2023; 253:127171. [PMID: 37788731 DOI: 10.1016/j.ijbiomac.2023.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
An acidic deep eutectic solvent (DES, choline chloride/citric acid) was used to efficiently extract edible pectin from Premna microphylla Turcz (PMTP) and further prepare the film sensor with the purpose of "four birds with one stone" with the roles of extractant, coalescent, conductivity promoter and bacteriostatic agent. The optimized extraction process accorded with pseudo second-order kinetics, which was carried out at 78.2 °C for 1.29 h with the solid-liquid ratio of 1:34.66 g/mL with the yield up to 0.8210 g/g. After comprehensive characterizations of pectin product, a simple casting method was used to prepare the PMTP-DES based composite film. It showed that the composite film has promising compatibility, smooth surface, good breathability and ideal homogeneity. After 30 power on/power off cycles at 10 V, it exhibited satisfied conductivity stability. Moreover, the PMTP-DES film could be simply assembled as the flexible visual temperature sensor, with sensitive response at breathing or finger touch; it exhibited the highest sensitivity of 134 %/°C when the external temperature changed from 15 to 55 °C. Besides, the composite film also has preferable antimicrobial activity. The whole results and findings were aimed to contribute for the raw material, composition, preparation, and functions of the existing flexible functional materials.
Collapse
Affiliation(s)
- Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuting Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruixuan Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Lv D, Chen F, Yang X, Yin L, Rashid MT, Li Y. Spontaneous gelation behaviors and mechanism of Ficus awkeotsang Makino pectin. Int J Biol Macromol 2023; 247:125712. [PMID: 37422243 DOI: 10.1016/j.ijbiomac.2023.125712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Ficus awkeotsang Makino (jelly fig) can produce edible gels by rubbing its seeds in water at room temperature in which pectin is considered as the main gelling component. However, the spontaneous gelation mechanism of Ficus awkeotsang Makino (jelly fig) pectin (JFSP) is still unclear. This study aimed to reveal the structure, physicochemical properties, and spontaneous gelation behaviors and mechanism of JFSP. JFSP was first obtained by water extraction and alcohol precipitation method, with a pectin yield of 13.25 ± 0.42 % (w/w), weight-average molar mass (Mw) of 111.26 kDa, and methoxylation degree (DM) of 26.8 %. Analysis of monosaccharide compositions showed that JFSP was composed of 87.8 % galactose acid, indicating a high percentage of galacturonic acid blocks. Measurement on the gelling capacity suggested that JFSP gels can be easily formed by simply dispersing the pectin in water at room temperature without adding any co-solutes or metal ions. Gelation force analysis indicated that hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the main factors contributing to gel formation. At 1.0 % (w/v) of pectin concentration, JFSP gels exhibited relatively high gel hardness (72.75 ± 1.15 g) and good thermal and freeze-thawing stability. Overall, these findings highlight the potential application of JFSP as a promising commercial pectin resource.
Collapse
Affiliation(s)
- Dingyang Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Japan
| | - Lijun Yin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, PO Box 40, 17 Qinghuadonglu, Haidian, Beijing 100083, PR China
| | - Muhammad Tayyab Rashid
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yafei Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
6
|
Shi Q, Zou MY, Wang JH, Song MM, Xiong SQ, Liu Y. Ultrasonic effects on molecular weight degradation, physicochemical and rheological properties of pectin extracted from Premna microphylla Turcz. Int J Biol Macromol 2022; 221:1065-1076. [PMID: 36108745 DOI: 10.1016/j.ijbiomac.2022.09.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
The high molecular weight and poor solubility of pectin extracted from Premna microphylla Turcz (PEP) limits its application. Therefore, in this paper, the degradation effects of PEP under ultrasound irradiation and the influences of ultrasonic on the PEP processing characteristics were investigated. The results indicated that the Mw of PEP decreased significantly with a narrow distribution after ultrasonic treatment. The degradation kinetics of PEP at different ultrasound intensities were sufficiently described by the 2nd-order kinetics eq. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis suggested that ultrasonic treatment destroyed the ordered structure inside the PEP, resulting in a looser microscopic morphology. Compared with the control, the thermal stability of PEP was significantly boosted after ultrasonic treatment. Rheological analysis illustrated that the sonicated PEP presented lower apparent viscosities than the original PEP. While the elasticity and thermal reversibility of the degraded products was enhanced. Ultrasonic treatment prominently weakened its shear thinning fluid behavior and thixotropy, thus improved its processing quality. Therefore, desirable PEP can be prepared by ultrasonic irradiation. The results can provide a reference for the development and application of PEP.
Collapse
Affiliation(s)
- Qiang Shi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ming-Yue Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Miao-Miao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shan-Qiang Xiong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
7
|
Structure, physicochemical characterisation and properties of pectic polysaccharide from Premma puberula pamp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Extraction of Pectin from Satsuma Mandarin Peel: A Comparison of High Hydrostatic Pressure and Conventional Extractions in Different Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123747. [PMID: 35744870 PMCID: PMC9227400 DOI: 10.3390/molecules27123747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Satsuma mandarin peel pectin was extracted by high hydrostatic pressure-assisted citric acid (HHPCP) or hydrochloric acid (HHPHP), and the physiochemical, structural, rheological and emulsifying characteristics were compared to those from conventional citric acid (CCP) and hydrochloric acid (CHP). Results showed that HHP and citric acid could both increase the pectin yield, and HHPCP had the highest yield (18.99%). Structural characterization, including NMR and FTIR, demonstrated that HHPHP showed higher Mw than the other pectins. The viscosity of the pectin treated with HHP was higher than that obtained with the conventional method, with HHPHP exhibiting significantly higher viscosity. Interestingly, all the pectin emulsions showed small particle mean diameters (D4,3 being 0.2–1.3 μm) and extremely good emulsifying stability with centrifugation and 30-day storage assays, all being 100%. Satsuma mandarin peel could become a highly promising pectin source with good emulsifying properties, and HHP-assisted acid could be a more efficient method for pectin extraction.
Collapse
|
9
|
Gelation behaviors of some special plant-sourced pectins: A review inspired by examples from traditional gel foods in China. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yang Y, Wang P, Cheng H, Cheng Y, Zhao Z, Xu Y, Shen Y, Zhu M. A multi-responsive Au NCs@PMLE/Ca 2+ antitumor hydrogel formed in situ on the interior/surface of tumors for PT imaging-guided synergistic PTT/O 2-enhanced PDT effects. NANOSCALE 2022; 14:7372-7386. [PMID: 35535969 DOI: 10.1039/d2nr00953f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
At present, although phototherapy and related imaging have proven to be promising cancer diagnosis and treatment strategies, the free diffusion of photosensitizers into normal tissues can cause side effects, and the efficiency of photodynamic therapy (PDT) can also be limited by the tumor hypoxic microenvironment. Herein, we designed and prepared a new cancer nanoplatform containing Au nanoclusters (NCs)@Premna microphylla leaf extract (PMLE) with both responsiveness to near-infrared (NIR) laser irradiation and tumor microenvironment (TME) by facile redox and coordination reactions. Then, the Au NCs@PMLE/Ca2+ hydrogel was constructed in situ inside and on the surface of tumors for locoregional antitumor activity under 808 nm laser irradiation. The Au NCs@PMLE nanoplatform showed distinguished performance in killing cancer cells and alleviating tumor hypoxia by enhancing the temperature of the tumor sites and producing reactive oxygen species (ROS) under NIR irradiation as well as catalyzing hydrogen peroxide (H2O2) decomposition in TME for oxygen (O2) generation via catalase in PMLE. The ultra-small size of about 3 nm of the Au NCs in this nanoplatform was obtained using the biological molecules present in PMLE as reductants and coordination agents simultaneously, which also demonstrated the outstanding capability of photothermal (PT) imaging and photothermal therapy (PTT) towards tumors. Furthermore, the Au NCs@PMLE/Ca2+ hydrogel formed in situ through natural PMLE and intrinsic Ca2+ in TME could not only improve the biocompatibility of the nanoplatform and stability of Au NCs but was also highly concentrated around the tumor thus enhancing the therapeutic efficiency and inhibiting its migration to normal tissues, decreasing the side effects. The results of the experiments confirmed that the Au NCs@PMLE/Ca2+ hydrogel possessed PT imaging-guided NIR laser/TME-responsive synergetic cancer PTT/O2-enhanced PDT and remarkable locoregional antitumor effect for cancer therapy. This work may open a new versatile route for multi-responsive localized cancer therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Yongmei Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan 245041, P. R. China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei Anhui 230032, P. R. China
| | - Hanlong Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yinkai Cheng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Zhou Zhao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yahan Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yuhua Shen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Manzhou Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| |
Collapse
|
11
|
On the gelation of Premna microphylla turcz extracts: The effects of supernatant and precipitate of plant ash suspension. Food Res Int 2022; 156:111316. [DOI: 10.1016/j.foodres.2022.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
|
12
|
Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. Int J Biol Macromol 2022; 195:523-529. [PMID: 34920077 DOI: 10.1016/j.ijbiomac.2021.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Nicandra physaloides (Linn.) Gaertn seeds (NPGS) could be manually scrubbed to obtain water-soluble pectin, which forms gel at room temperature without additives. The extraction, characterization and spontaneous gelation (SG) mechanism of the pectin were studied. The results showed that the pectin was located on the surface of NPGS and easily to be dissolved. Chemically, the pectin was low methoxy pectin with esterification degree of 46.93%, Gal-A content of 65.80%, and average molar weight of 631.15 kDa. The SG occurred at the pectin concentration of 1.5%, it can be destroyed by urea and SDS, however, EDTA cannot. In addition, KCl and NaCl induced the gelation of 1.0% pectin solution and the ions of K, Mg, Ca and Na were detected in the pectin. Hydrogen bonding, electrostatic and hydrophobic interaction contributed to the SG. This study could promote the commercial applications of the pectin in the field of edible colloids and cosmetics.
Collapse
|
13
|
Li J, Cui H, Xu X, Li J, Lu M, Yu Y, Song H, Zhu D, Liu H. Effects of pectic fat mimetics and transglutaminase on the regularity of protein and fat degradation and flavour compounds in Cheddar cheese during ripening. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Huaitian Cui
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Xinyue Xu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Jiayi Li
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Miaomiao Lu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Yue Yu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou 121013 China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou 121013 China
- National & Local Joint Engineering Research Center of Storage Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products Jinzhou 121013 China
| |
Collapse
|
14
|
Chi J, Sun L, Cai L, Fan L, Shao C, Shang L, Zhao Y. Chinese herb microneedle patch for wound healing. Bioact Mater 2021; 6:3507-3514. [PMID: 33817424 PMCID: PMC7988348 DOI: 10.1016/j.bioactmat.2021.03.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement. Attempts in this area tend to develop new forms to make their applications more convenient and wider. Here, we propose a novel Chinese herb microneedle (CHMN) patch by integrating the herbal extracts, Premna microphylla and Centella asiatica, with microstructure of microneedle for wound healing. Such path is composed of sap extracted from the herbal leaves via traditional kneading method and solidified by plant ash derived from the brine induced process of tofu in a well-designed mold. Because the leaves of the Premna microphylla are rich in pectin and various amino acids, the CHMN could be imparted with medicinal efficacy of heat clearing, detoxicating, detumescence and hemostatic. Besides, with the excellent pharmaceutical activity of Asiatic acid extracted from Centella asiatica, the CHMN is potential in promoting relevant growth factor genes expression in fibroblasts and showing excellent performance in anti-oxidant, anti-inflammatory and anti-bacterial activity. Taking advantages of these pure herbal compositions, we have demonstrated that the derived CHMN was with dramatical achievement in anti-bacteria, inhibiting inflammatory, collagen deposition, angiogenesis and tissue reconstruction during the wound closure. These results indicate that the integration of traditional Chinese herbs with progressive technologies will facilitate the development and promotion of traditional Chinese medicine in modern society.
Collapse
Affiliation(s)
- Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingyu Sun
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lu Fan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Changmin Shao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Luoran Shang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Zhongshan-Xuhui Hospital, The Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuanjin Zhao
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
15
|
Song G, Chen F, Chen S, Ye S. Polysaccharides from Premna microphylla turcz ameliorate inflammation via the enhancement of intestinal resistance in host. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114208. [PMID: 34010697 DOI: 10.1016/j.jep.2021.114208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premna microphylla turcz is traditionally used as a folk remedy. Its roots, stems and leaves can be invoked as medicines, which have the functions of detoxification, swelling and hemostasis. It belongs to the Premna in the Verbenaceae and is mainly distributed in the mountains of southeastern China. However, there are few reports of in-depth studies on the anti-inflammatory effects of polysaccharide, which was the main component in Premna microphylla turcz. MATERIALS AND METHODS The flies were fed with standard corn flour-yeast medium to cause inflammation by sodium lauryl sulfate (SDS). The treatment group contained Premna microphylla turcz polysaccharide (pPMTLs) extract. The survival rate was obtained by feeding a vial containing five layers of filter paper, which was infiltrated with the 5% sucrose solution contaminated with SDS or SDS polysaccharide. The microvilli and nucleus of the midgut epithelial cells of different treatments were observed by transmission electron microscope, and the expression of inflammation-related genes was detected by real-time quantitative PCR (qRT-PCR). Finally, 16S rDNA analysis was conducted on the differences in the composition of the intestinal microbes of Drosophila. RESULTS In the current study, we showed that pPMTLs significantly prolonged the life span of SDS-inflamed flies from 5 days to 6 days. And pPMTLs reduced the rupture of microvilli in the midgut and restored the nuclear structure. In addition, pPMTLs significantly improved expression level of immune-related genes in Inflammation Drosophila especially the defensin (4.32 ± 0.75 vs 9.97 ± 0.52 SDS-polysaccharide group: SDS group, p < 0.001). The analysis of intestinal microbiota showed that pPMTLs decreased the relative abundance of Raoultella while Wolbachia increased (p < 0.05). CONCLUSIONS Collectively, our results revealed the potential application of pPMTLs in enhancing inflammation defense, which would be enormous significance for the inflammation-related disorders treatment.
Collapse
Affiliation(s)
- Guanglei Song
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Fangyuan Chen
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Shubo Chen
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| | - Shuhui Ye
- School of Food Science and Biotechnology, Institute of Jinhua Food Industry, Zhejiang Gongshang University, 18 Xuezheng str., Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
16
|
Yang N, Li Y, Xing F, Wang X, Li X, Li L, Yang J, Wang Y, Zhang M. Composition and structural characterization of pectin in micropropagated and conventional plants of Premma puberula Pamp. Carbohydr Polym 2021; 260:117711. [PMID: 33712120 DOI: 10.1016/j.carbpol.2021.117711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
The metabolites produced by plants can be enhanced by plant tissue culture. In Premma puberula Pamp., the pectin content in leaves is 30 %-40 %, and it is widely used in the food industry and medicine. However, inefficient propagation has seriously restricted the utilization of pectin resources. Therefore, we established an efficient micropropagation technology for P. puberula through comparative analysis in mature leaves of regenerated and conventionally propagated plants. The results showed that the pectin composition of their leaves was similar in terms of galacturonic acid, monosaccharide composition, degree of esterification, functional groups, nuclear magnetic resonance spectrum and morphological characteristics. Furthermore, micropropagated plants had better hardness, gumminess and chewiness characteristics than conventionally propagated plants and were similar in emulsion stability, adhesiveness, springiness, cohesiveness and viscoelasticity. Therefore, micropropagation technology will provide an important guarantee for the industrial production of pectin from P. puberula. The technical essentials include callus induction, embryoid formation, and root induction, followed by acclimatization and transplanting.
Collapse
Affiliation(s)
- Ningxian Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China; Guiyang Nursing Vocational College, Guiyang, 550081, Guizhou, PR China
| | - Yang Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Feifei Xing
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Xiaohong Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Xue Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Lin Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Jiao Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Yanqiu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China
| | - Mingsheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
17
|
Zhang C, Li J, Chen L, Shi X, Chen B, Lv X, Ni L. Effects of alkali, enzymes, and ultrasound on monosodium glutamate byproduct for a sustainable production of Bacillus subtilis. Food Chem 2021; 360:129967. [PMID: 33984562 DOI: 10.1016/j.foodchem.2021.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Due to the hindrance of flocculated polymers and bacterial cell wall, the production of Bacillus subtilis using monosodium glutamate byproduct (MSGB) was low. With the assistance of scanning electron microscope images, effects of alkali, lysozyme, papain, ultrasound, and their combinations on MSGB were evaluated using the results of soluble protein, carbohydrate, monosaccharides and peptidoglycans. Alkali could dissolve flocculated polymers increasing 21% soluble MSGB, and thus enhanced the subsequent treatments (ultrasound, lysozyme, or papain) to increase 14-17% soluble MSGB. As ultrasound mainly released intercellular components (mannose, and glucose) while lysozyme or papain mainly released cell wall components (peptidoglycans), the combination of alkali, ultrasound, and enzymes led to a highest soluble MSGB (78%), yielding a maximal B. subtilis production of 6.6 × 109 colony-forming units mL-1. This yield was about 33 times that of using untreated MSGB, and the key to improve B. subtilis production was the release of carbohydrate.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Jingjing Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China
| | - Li Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Xiangzhu Shi
- Fujian Xinminke Biotechnology Development Company, 350018 Fuzhou, China
| | - Bingdian Chen
- Institute of Animal Husbandry and Veterinary Medicine, FAAS, 350018 Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, 350108 Fuzhou, China; Fujian Center of Excellence for Food Biotechnology, 350108 Fuzhou, China
| |
Collapse
|
18
|
Gong H, Lin X, Xie Y, Liu L, Zhou J, Liao H, Shang R, Luo X. A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124151. [PMID: 33032091 DOI: 10.1016/j.jhazmat.2020.124151] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Premna microphylla turcz leaves (PMTL) is a resource-rich, biodegradable, renewable biomass. Here, a microsphere adsorbent was prepared from PMTL by a self-crosslinking method without any addition of chemical cross-linking agent, and characterized by SEM, FTIR, and XPS. The influence of preparation methods and conditions on the properties of the microspheres was studied and the self-crosslinking mechanism was analyzed. The effects of temperature, pH, contact time, uranium concentration, and adsorbent dosage on its adsorption performance toward to uranium were systematically explored. The results showed that PMTL endogenous pectin binding with endogenous Ca2+, Mg2+ and other metal ions to form an 'egg box' structure might be the mechanism of its self-crosslinking to form microspheres. The adsorption isotherms fitted well by the Freundlich model and the experimental maximum adsorption capacity of microspheres was 346.65 mg·g-1 at pH of 5, and kinetics data correlated well with the pseudo-second order model. The adsorption mechanism might be the coordination bonding between the uranium and oxygen-containing groups (hydroxyl and carboxyl groups), and the ion exchange between the uranium and metal ions (mainly Ca2+ and Mg2+). The PMTL microspheres are promising in treating uranium-containing wastewater in a more cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Hongying Gong
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Xiaoyan Lin
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China.
| | - Yu Xie
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Lan Liu
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Jian Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Hui Liao
- Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| | - Ran Shang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuegang Luo
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan, China
| |
Collapse
|
19
|
Li X, Wei Z, Wang X, Duan F, Xiong L, Li J, Tian J, Jia L, Gao H. Premna microphylla Turcz leaf pectin exhibited antioxidant and anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Food Chem 2021; 349:129164. [PMID: 33550022 DOI: 10.1016/j.foodchem.2021.129164] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Premna microphylla turcz leaf juice with polysaccharides (PMPs) as its main component, are raw material of jelly-like Chinese traditional food "Guanyin tofu", which were also experiencedly used to relieve inflammation-related symptoms. Here three kinds of PMPs were extracted in alkaline (APMP), water (WPMP) and acidic (HPMP) conditions, being characteristic of RG I, high- and low-methoxyl HG pectin, respectively, in amorphous form with diverse surface microstructures, among which APMP predominantly composed of Glucose instead of galacturonic acid, showing wider molecular weight distribution and more branched chains. PMPs showed remarkable radical scavenging capability, and especially APMP at concentrations above 50 μg/mL effectively inhibited the reactive oxygen species and malondialdehyde production in LPS-stimulated RAW 264.7 macrophages, by enhancing enzymatic activities of endogenous superoxide dismutase, glutathione peroxidase and catalase, and accordingly alleviated inflammatory cytokines. Thus, PMPs could be promising non-toxic natural dietary supplement to improve chronic inflammation-induced diseases.
Collapse
Affiliation(s)
- Xiao Li
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Xingyue Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China
| | - Feixia Duan
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, No. 5, Gong Xing Road, Chengdu, Sichuan, Chengdu 610041, PR China
| | - Jingwen Li
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jing Tian
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lirong Jia
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hong Gao
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
20
|
|
21
|
Zhou FF, Pan MK, Liu Y, Guo N, Zhang Q, Wang JH. Effects of Na+ on the cold gelation between a low-methoxyl pectin extracted from Premna microphylla turcz and soy protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Huang Z, Xing G, Tu C, Rui X, Dong M. Effect of
Premna microphylla
turcz leaves’ extract addition on physicochemical and antioxidant properties of packed tofu by lactic fermentation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhihai Huang
- College of Food Science and Technology Nanjing Agricultural University Nanjing210095Jiangsu Province China
| | - Guangliang Xing
- College of Food Science and Technology Nanjing Agricultural University Nanjing210095Jiangsu Province China
- School of Biology and Food Engineering Changshu Institute of Technology Changshu215500Jiangsu Province China
| | - Chuanhai Tu
- College of Food Science and Technology Nanjing Agricultural University Nanjing210095Jiangsu Province China
| | - Xin Rui
- College of Food Science and Technology Nanjing Agricultural University Nanjing210095Jiangsu Province China
| | - Mingsheng Dong
- College of Food Science and Technology Nanjing Agricultural University Nanjing210095Jiangsu Province China
| |
Collapse
|
23
|
Zhang C, Zhu X, Zhang F, Yang X, Ni L, Zhang W, Liu Z, Zhang Y. Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105246] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Characterizations of a pectin extracted from Premna microphylla turcz and its cold gelation with whey protein concentrate at different pHs. Int J Biol Macromol 2019; 139:818-826. [DOI: 10.1016/j.ijbiomac.2019.08.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
25
|
Lu J, Li J, Jin R, Li S, Yi J, Huang J. Extraction and characterization of pectin from Premna microphylla Turcz leaves. Int J Biol Macromol 2019; 131:323-328. [DOI: 10.1016/j.ijbiomac.2019.03.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023]
|
26
|
Zhang W, Xie F, Liu X, Luo J, Wu J, Wang Z. Pectin from Black Tomato Pomace: Characterization, Interaction with Gallotannin, and Emulsifying Stability Properties. STARCH-STARKE 2018. [DOI: 10.1002/star.201800172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zhang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Fan Xie
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Xiaohui Liu
- College of Longrun Pu-erh Tea, Yunnan Agriculturual University; Kunming 650201 Yunnan China
| | - Jing Luo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| |
Collapse
|
27
|
Tang G, Lin X, Li J, Li R, Wang D, Ji S. Pharmacognostical studies of Premna microphylla. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Corrêa-Ferreira ML, Ferreira DM, Dallazen JL, Silva AMS, Werner MFDP, Petkowicz CLDO. Gastroprotective effects and structural characterization of a pectic fraction isolated from Artemisia campestris subsp maritima. Int J Biol Macromol 2017; 107:2395-2403. [PMID: 29056466 DOI: 10.1016/j.ijbiomac.2017.10.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/03/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the chemical structure and biological activity of a pectic fraction isolated from the aerial parts of A. campestris L. subsp. maritima Arcangeli. The chemical and spectroscopic analyses of the pectic fraction (ACP-E10) demonstrated that ACP-E10 was composed of homogalacturonan (HG) (60%) and rhamnogalacturonan-I (RG-I) (29%) regions. Side chains of the RG-I included mainly branched arabinans and type II arabinogalactans (AG-II). The molar mass of ACP-E10 determined by HPSEC-MALLS was 16,600g/mol. ACP-E10 was evaluated for its gastroprotective effect against ethanol-induced gastric lesions in rats. Oral pretreatment of animals with ACP-E10 (0.3, 3 and 30mg/kg) significantly reduced gastric lesions by 77±7.9%, 55±11.1% and 65±11.8%. ACP-E10 also maintained mucus and glutathione (GSH) contents in the gastric mucosa. In addition, ACP-E10 demonstrated antioxidant activity in vitro by the DPPH assay. These results demonstrated that the pectin from A. campestris had significant gastroprotective effects in vivo, which were likely attributable to their capacity to increase the protective defenses of gastric mucosa.
Collapse
Affiliation(s)
| | | | | | - Artur M S Silva
- Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | |
Collapse
|
29
|
Liu CM, He XH, Liang RH, Liu W, Guo WL, Chen J. Relating physicochemical properties of alginate-HMP complexes to their performance as drug delivery systems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2242-2254. [DOI: 10.1080/09205063.2017.1393176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cheng-mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiao-hong He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Rui-hong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wen-Li Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
30
|
Xu K, Guo M, Du J. Molecular characteristics and rheological properties of water-extractable polysaccharides derived from okra (Abelmoschus esculentus L.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1315594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Mengmeng Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Jinhua Du
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
31
|
Aramrueang N, Zicari SM, Zhang R. Response Surface Optimization of Enzymatic Hydrolysis of Sugar Beet Leaves into Fermentable Sugars for Bioethanol Production. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/abb.2017.82004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Liu CM, Liang RH, Dai TT, Ye JP, Zeng ZC, Luo SJ, Chen J. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Chaouch MA, Hafsa J, Rihouey C, Le Cerf D, Majdoub H. Effect of pH during Extraction on the Antioxidant and Antiglycated Activities of Polysaccharides from Opuntia Ficus Indica. J Food Biochem 2015. [DOI: 10.1111/jfbc.12220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Aymen Chaouch
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA); Faculté des Sciences de Monastir; Université de Monastir; Bd. de l'environnement 5019 Monastir Tunisia
| | - Jawhar Hafsa
- Laboratoire de Biochimie; Faculté de Médecine; Université de Sousse; Sousse Tunisia
| | - Christophe Rihouey
- Normandie Université; Caen France
- Laboratoire Polymères Biopolymères Surfaces; UMR 6270 & FR 3038 CNRS; Université de Rouen; Mont Saint Aignan France
| | - Didier Le Cerf
- Normandie Université; Caen France
- Laboratoire Polymères Biopolymères Surfaces; UMR 6270 & FR 3038 CNRS; Université de Rouen; Mont Saint Aignan France
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA); Faculté des Sciences de Monastir; Université de Monastir; Bd. de l'environnement 5019 Monastir Tunisia
| |
Collapse
|
34
|
Yang J, Kong W. The complete chloroplast genome sequence of Premna microphylla Turcz. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:4164-4165. [PMID: 25629502 DOI: 10.3109/19401736.2014.1003894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The complete nucleotide sequence of the Premna microphylla Turcz chloroplast (cp) genome was reported and characterized in this study. The cp genome is 155,293 bp in length, with 62.13% AT content. A pair of 25,763 bp inverted repeat regions (IR) are separated by 86,078 bp large single-copy regions (LSC) and a 17,689 bp small single-copy regions (SSC). The cp genome encodes 133 predicted functional genes, 115 are individual (80 protein-coding genes, 31 tRNA genes, four rRNA) genes, 18 are duplicated in the IR regions and ycf1 gene extends into the IR region in the junctions between IR and SSC. Of 115 individual genes, 16 genes contain one intron and two genes have two introns.
Collapse
Affiliation(s)
- Jinhong Yang
- a The Key Sericultural Laboratory of Shaanxi , Ankang University , Ankang , Shaanxi , PR China
| | - Weiqing Kong
- a The Key Sericultural Laboratory of Shaanxi , Ankang University , Ankang , Shaanxi , PR China
| |
Collapse
|