1
|
Jo M, Qi J, Du Z, Li Y, Shi YC. Changes in the structure and enzyme binding of starches during in vitro enzymatic hydrolysis using mammalian mucosal enzyme mixtures. Carbohydr Polym 2024; 335:122070. [PMID: 38616092 DOI: 10.1016/j.carbpol.2024.122070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.
Collapse
Affiliation(s)
- Myeongsu Jo
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Zhao Y, Zhu X, Fang Y. Structure, properties and applications of kudzu starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Oliveira H, Fernandes A, F. Brás N, Mateus N, de Freitas V, Fernandes I. Anthocyanins as Antidiabetic Agents-In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020; 25:E3813. [PMID: 32825758 PMCID: PMC7504281 DOI: 10.3390/molecules25173813] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Many efforts have been made in the past two decades into the search for novel natural and less-toxic anti-diabetic agents. Some clinical trials have assigned this ability to anthocyanins, although different factors like the food source, the amount ingested, the matrix effect and the time of consumption (before or after a meal) seem to result in contradictory conclusions. The possible mechanisms involved in these preventive or therapeutic effects will be discussed-giving emphasis to the latest in vitro and in silico approaches. Therapeutic strategies to counteract metabolic alterations related to hyperglycemia and Type 2 Diabetes Mellitus (T2DM) may include: (a) Inhibition of carbohydrate-metabolizing enzymes; (b) reduction of glucose transporters expression or activity; (c) inhibition of glycogenolysis and (d) modulation of gut microbiota by anthocyanin breakdown products. These strategies may be achieved through administration of individual anthocyanins or by functional foods containing complexes of anthocyanin:carbohydrate:protein.
Collapse
Affiliation(s)
| | | | | | | | | | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (H.O.); (A.F.); (N.F.B.); (N.M.); (V.d.F.)
| |
Collapse
|
4
|
Lim J, Zhang X, Ferruzzi MG, Hamaker BR. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Food Chem 2019; 288:413-421. [PMID: 30902312 DOI: 10.1016/j.foodchem.2019.02.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 01/26/2023]
Abstract
An accurate high-performance anion-exchange chromatography (HPAEC) method is presented to measure the inhibition property of flavonoids against mammalian starch digestive enzymes, because flavonoids interfere with commonly used 3,5-dinitrosalicylic acid (DNS) and glucose oxidase/peroxidase (GOPOD) methods. Eriodictyol, luteolin, and quercetin increased absorbance values (without substrate) in the DNS assay and, with substrate, either overestimated or underestimated values in the DNS and GOPOD assays. Using a direct HPAEC measurement method, flavonoids showed different inhibition properties against α-amylase and α-glucosidases, showing different inhibition constants (Ki) and mechanisms. The double bond between C2 and C3 on the C-ring of flavonoids appeared particularly important to inhibit α-amylase, while the hydroxyl group (OH) at C3 of the C-ring was related to inhibition of α-glucosidases. This study shows that direct measurement of starch digestion products by HPAEC should be used in inhibition studies, and provides insights into structure-function aspects of polyphenols in controlling starch digestion rate.
Collapse
Affiliation(s)
- Jongbin Lim
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaowei Zhang
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Reduction of falling number in soft white spring wheat caused by an increased proportion of spherical B-type starch granules. Food Chem 2019; 284:140-148. [PMID: 30744838 DOI: 10.1016/j.foodchem.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 11/19/2022]
Abstract
A low falling number (FN) in wheat indicates high α-amylase activity associated with poor end-use quality. We hypothesize starch - the substrate of α-amylase, can directly influence hot flour pasting properties and its susceptibility to α-amylase, which further affects viscosity. We examined the structural characteristics of starch in three soft white spring wheat cultivars grown in Idaho in 2013 (normal FN year) and 2014 (low FN year with pre-harvest rains). Our data surprisingly show that starch in some low FN wheat was not significantly degraded by α-amylase but had developmental changes with an increased proportion of B-type wheat starch. We reconstituted wheat starch and verified that starch with an increase of B-granules has a relatively low viscosity and high susceptibility to wheat α-amylase, which further facilitates the decrease of viscosity. The influence of starch structure and starch-enzyme interaction must be considered while developing a solution to the low FN issue.
Collapse
|
6
|
Santos CMM, Freitas M, Fernandes E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur J Med Chem 2018; 157:1460-1479. [PMID: 30282319 DOI: 10.1016/j.ejmech.2018.07.073] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022]
Abstract
α-Glucosidase plays an important role in carbohydrate metabolism and is therefore an attractive therapeutic target for the treatment of diabetes, obesity and other related complications. In the last two decades, considerable interest has been given to natural and synthetic xanthone derivatives in this field of research. Herein, a comprehensive review of the literature on xanthones as inhibitors of α-glucosidase activity, their mechanism of action, experimental procedures and structure-activity relationships have been reviewed for more than 280 analogs. With this overview we intend to motivate and challenge researchers (e.g. chemistry, biology, pharmaceutical and medicinal areas) for the design of novel xanthones as multipotent drugs and exploit the properties of this class of compounds in the management of diabetic complications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal; Department of Chemistry, QOPNA &University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Abstract
Starch is the major source of dietary glucose for rapid development of children. Starches from various crops naturally differ in molecular structures and properties. Cooking, processing, and storage may change their molecular properties and affect their digestibility and functionality. Starch digestion is affected by its susceptibility to α-amylase and α-glucosidase (maltase), and the susceptibility is determined by starch granule architecture and glucan structures, as well as the interaction between starch and other food components. Starch is given as a complementary feeding to young children in many cultures, and starch or modified starch, is used in special formulae of infant foods or supplements. Although indigestible starch does not provide much energy, it can benefit colonic health.
Collapse
|
8
|
Brás NF, Santos-Martins D, Fernandes PA, Ramos MJ. Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations. J Phys Chem B 2018; 122:3889-3899. [DOI: 10.1021/acs.jpcb.8b01321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Natércia F. Brás
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE/UCIBIO, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Asaro A, Paggi RA, del Valle JC, López Mañanes AA. Glucose homeostasis in the euryhaline crab Cytograpsus angulatus : Effects of the salinity in the amylase, maltase and sucrase activities in the hepatopancreas and in the carbohydrate reserves in different tissues. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:39-47. [DOI: 10.1016/j.cbpb.2017.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023]
|
10
|
Brownlee IA, Gill S, Wilcox MD, Pearson JP, Chater PI. Starch digestion in the upper gastrointestinal tract of humans. STARCH-STARKE 2018. [DOI: 10.1002/star.201700111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Iain A. Brownlee
- Human Nutrition Research CentreNewcastle Research and Innovation InstituteNewcastle UniversitySingaporeSingapore
| | - Saloni Gill
- Human Nutrition Research CentreNewcastle Research and Innovation InstituteNewcastle UniversitySingaporeSingapore
| | - Matt D. Wilcox
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Jeff P. Pearson
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Peter I. Chater
- Institute for Cell and Molecular BiosciencesThe Medical SchoolNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| |
Collapse
|
11
|
Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements. J Pediatr Gastroenterol Nutr 2017; 65:e35-e42. [PMID: 28267073 DOI: 10.1097/mpg.0000000000001561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. METHODS Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. RESULTS After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. CONCLUSIONS Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.
Collapse
|
12
|
Lin AHM, Nichols BL. The digestion of complementary feeding starches in the young child. STARCH-STARKE 2017. [DOI: 10.1002/star.201700012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amy H.-M. Lin
- Bi-State School of Food Science; University of Idaho; Moscow ID 83844 USA
- Washington State University; Pullman WA 99164 USA
| | - Buford L. Nichols
- USDA-ARS Children's Nutrition Research Center; Baylor College of Medicine; Texas Children's Hospital; Houston TX 77030 USA
| |
Collapse
|
13
|
Chaudet MM, Rose DR. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases. Biochem Cell Biol 2016; 94:323-30. [PMID: 27459002 DOI: 10.1139/bcb-2016-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbohydrates make up an important component of our diet, contributing a significant portion to our total caloric intake. The ability to harvest these molecules for energy is reliant on the activity of carbohydrate-active enzymes. Family 31 α-glucosidases are a group of glycoside hydrolases that has been shown to play a key role in the metabolic process of hydrolyzing dietary starch into monomers of glucose. The purpose of the research presented here is to explore evolutionary changes that occurred within this family of glycoside hydrolases, and to relate these divergences to observed structural differences in relation to predicted substrate preferences. Here we report specific single amino acid changes that are believed to have arisen through evolution, and are directly related to the ability of these enzymes to bind different starch-based glycans. Through phylogenetic analysis we observed a number of evolutionary adaptions that we believe resulted in duplicated genes that allow for the efficient utilization of dietary starch.
Collapse
Affiliation(s)
- M M Chaudet
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - D R Rose
- University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
15
|
Lin AHM, Lee BH, Chang WJ. Small intestine mucosal α-glucosidase: A missing feature of in vitro starch digestibility. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Guo L, Hu J, Zhou X, Li X, Du X. In vitro digestibility of kudzu starch by using α-amylase and glucoamylase. STARCH-STARKE 2015. [DOI: 10.1002/star.201500213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li Guo
- College of Tea and Food Science and Technology; Anhui Agricultural University; Hefei Anhui Province P. R. China
| | - Jian Hu
- College of Tea and Food Science and Technology; Anhui Agricultural University; Hefei Anhui Province P. R. China
| | - Xin Zhou
- College of Tea and Food Science and Technology; Anhui Agricultural University; Hefei Anhui Province P. R. China
| | - Xueling Li
- College of Tea and Food Science and Technology; Anhui Agricultural University; Hefei Anhui Province P. R. China
| | - Xianfeng Du
- College of Tea and Food Science and Technology; Anhui Agricultural University; Hefei Anhui Province P. R. China
| |
Collapse
|
17
|
Guo L, Zhang J, Hu J, Li X, Du X. Susceptibility of glutinous rice starch to digestive enzymes. Carbohydr Polym 2015; 128:154-62. [DOI: 10.1016/j.carbpol.2015.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/15/2022]
|