1
|
Blaj DA, Peptu CA, Balan-Porcarasu M, Peptu C, Tuchilus CG, Ochiuz L. Polymer-Free Electrospinning of β-Cyclodextrin-Oligolactide for Magnolol and Honokiol Pharmaceutical Formulations. Pharmaceutics 2025; 17:130. [PMID: 39861776 PMCID: PMC11768894 DOI: 10.3390/pharmaceutics17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from Magnolia obovata and Magnolia Officinalis trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. Methods: To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives. MALDI MS and NMR were employed for the structural assessment of the β-CDLA derivatives. This polymer-free electrospinning technique utilizes the high solubility of β-CDLA to incorporate MG and HK into fibrous webs. The morphology of the resulting fibers is established by SEM and further characterized using FTIR and NMR spectroscopy to confirm the successful incorporation of MG and HK. The antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, while the antimicrobial activity was evaluated against several standard microorganisms (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans). Results: The MG and HK electrospun formulations were prepared using highly concentrated feed solutions in dimethylformamide (180% w/v). The resulting β-CDLA fibers, with diameters above 400 nm and an active compound content of 7% wt., exhibited enhanced long-term antioxidant activity and improved antimicrobial efficacy, including notable activity against Escherichia coli. Conclusions: This study demonstrates the potential of MG and HK-loaded β-CDLA fibrous formulations as delivery systems with prolonged antioxidant activity and notable antibacterial efficacy, providing a promising platform for biomedical applications.
Collapse
Affiliation(s)
- Diana-Andreea Blaj
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | - Catalina A. Peptu
- Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Mihaela Balan-Porcarasu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (D.-A.B.); (M.B.-P.)
| | | | - Lacramioara Ochiuz
- Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Liu J, Li M, Huang Y, Wang X, Xu Y, Fu Z, Lin Z, Chen J, Wu X. Inclusion Complex of Nimodipine with Sulfobutylether-β-cyclodextrin: Preparation, Characterization, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2025; 26:28. [PMID: 39779582 DOI: 10.1208/s12249-024-03014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Nimodipine (NIMO) is used to treat ischemic nerve injury from subarachnoid hemorrhage (SAH), but its low aqueous solubility limits clinical safety and bioavailability. This study aims to improve NIMO's solubility by preparing inclusion complexes with sulfobutylether-β-cyclodextrin (SBE-β-CD), reducing the limitations of Nimotop® injection, including vascular irritation, toxicity, and poor dilution stability. The NIMO-SBE-β-CD inclusion complex (NIMO-CD) was characterized in both liquid and solid states through phase solubility studies and methods including DSC, FT-IR, XRD, and SEM. Dilution stability, hemolysis, vascular irritation, and acute toxicity tests were performed, with pharmacokinetic and pharmacodynamic studies using Nimotop® as the control. Physical characterization confirmed the successful formation of the inclusion complex. NIMO's solubility improved by 1202-fold (from 0.82 to 986.19 μg/mL at 25℃). NIMO-CD showed stability for 24 h when diluted, exhibited no hemolytic activity, reduced vascular irritation, and its median lethal dose (LD50) was 2.49 times higher than that of Nimotop®. Both NIMO-CD and Nimotop® displayed similar pharmacokinetic profiles. Behavioral assessments (mNSS scoring and CT), along with evaluations of hematoma area and histopathology, demonstrated that NIMO-CD significantly improved outcomes in intracerebral hemorrhage, greatly enhancing neurological recovery, reducing hematoma and edema, and achieving treatment effects comparable to those of Nimotop® injection. NIMO-CD significantly improves NIMO's solubility and stability while maintaining bioequivalence with Nimotop®. Furthermore, its enhanced safety profile indicates its potential as a superior formulation for treating ischemic nerve injuries.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Meichai Li
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Yongjie Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | | | - Youfa Xu
- Shanghai Wei Er Lab, Shanghai, China
| | - Zhiqin Fu
- Shanghai Wei Er Lab, Shanghai, China
| | | | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Shanghai Wei Er Lab, Shanghai, China.
| |
Collapse
|
3
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
5
|
Li S, Shi W, Wang X, Hu X, Li S, Zhang Y. The preparation and characterization of electrospun gelatin nanofibers containing chitosan/eugenol-sulfobutyl-β-cyclodextrin nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Improved Pharmaceutical Properties of Honokiol via Salification with Meglumine: an Exception to Oft-quoted ∆pK a Rule. Pharm Res 2022; 39:2263-2276. [PMID: 35836038 DOI: 10.1007/s11095-022-03335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Honokiol (HK), a BCS class II drug with a wide range of pharmacological activities, has poor solubility and low oral bioavailability, severely limiting its clinical application. In the current study, incorporating a water-soluble meglumine (MEG) into the crystal lattice of HK molecule was performed to improve its physicochemical properties. The binary mixture of HK and MEG was obtained by anti-solvent method and characterized by TGA, DSC, FTIR, and PXRD. The SCXRD analysis showed that two HK- molecules and two MEG+ molecules were coupled in each unit cell via the ionic interaction along with intermolecular hydrogen bonds, suggesting the formation of a salt, which was further confirmed by the XPS measurements. However, the ∆pKa value between HK and MEG was found to be less than 1, which did not follow the oft-quoted ∆pKa rule for salt formation. After salification with MEG, the solubility and dissolution rate of HK exhibited 3.50 and 25.33 times improvement than crystalline HK, respectively. Simultaneously, the powder flowability, tabletability and stability of HK-MEG salt was also significantly enhanced, and the salt was not more hygroscopic, and that salt formation did not compromise processability in that regard. Further, in vivo pharmacokinetic study showed that Cmax and AUC0-t of HK-MEG salt were enhanced by 2.92-fold and 2.01-fold compared to those of HK, respectively, indicating a considerable improvement in HK oral bioavailability.
Collapse
|
7
|
Wang X, Yu K, Du M, Hu X, Li S, Tan W, Zhang X. Preparation and application of thidiazuron nanoparticles via electrostatic self-assembly as defoliant in cotton. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wu W, Xu H. Construction, characterization, and bioavailability evaluation of honokiol-loaded porous starch by melting method without any solvent. Drug Deliv 2021; 28:2574-2581. [PMID: 34866522 PMCID: PMC8654402 DOI: 10.1080/10717544.2021.2009938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In the present study, the porous starch (PS) was used as an efficient carrier of honokiol (HK), and the HK-loaded PS (HPS) delivery system was prepared by melting method without using organic solvents. Its physical-chemical properties, solubility and oral bioavailability were also investigated. The obtained results proved that the HK in the HPS was mostly amorphous when it was loaded into the PSs with 87.54 ± 1.52% of encapsulation efficiency (EE) and 12.51 ± 0.22% of drug loading (DL) capacity. The water-solubility of the HPS was increased to 115.27 ± 2.92 μg/mL (pH = 1.2, artificial gastric juice (AGJ)), 161.58 ± 3.42 (pH = 6.8, artificial intestinal juice (AIJ)) and 148.5 ± 1.89 μg/mL (pH = 5.5, simulated tumor microenvironment), being 6.07, 4.38 and 4.87-folds higher than free HK. In vitro dissolution tests showed the HK was significantly higher from HPS than from free HK. Furthermore, compared with free HK, the release rate and the bioavailability was also substantially improved for HK from the HPS. Meanwhile, the HPS generated a higher inhibition to HepG2 cells than free HK.
Collapse
Affiliation(s)
- Weiwei Wu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Haiyang Xu
- School of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
9
|
In silico and in vitro study of epiisopiloturine/ hydroxypropyl-β-cyclodextrin inclusion complexes obtained by different methods. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
11
|
Preparation, characterization and pharmacokinetic studies of sulfobutyl ether-β-cyclodextrin-toltrazuril inclusion complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10:354-367. [PMID: 31788762 PMCID: PMC7097340 DOI: 10.1007/s13346-019-00691-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nanoparticles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals. Graphical Abstract.
Collapse
Affiliation(s)
- Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| | | | - Daniel Porat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
13
|
Wu W, Xue W. Evaluation of anticancer activity of honokiol by complexation with hydroxypropyl-β-cyclodextrin. Colloids Surf B Biointerfaces 2020; 196:111298. [PMID: 32798987 DOI: 10.1016/j.colsurfb.2020.111298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Honokiol (HK), an active compound derived from Magnolia officinalis Rehd. et Wils, possesses many beneficial biological activities for human beings. However, its poor solubility and low bioavailability severely limits its application. In this way, to improve the pharmaceutical properties, the HK was complexed in hydroxypropyl-β-cyclodextrin (HP-β-CD) and its oral bioavailability and antitumor effects were evaluated. The HK/HP-β-CD inclusion complex (1:1) was prepared by saturated aqueous solution method. The inclusion complex (HK-HP-β-CD) obtained had a higher solubility, about 1497 times that of the free HK. The dissolution rate and the oral bioavailability of HK was also significantly higher from inclusion complex than from free HK. Furthermore, the HK-HP-β-CD exhibited higher antitumor activity against Human Hepatoma Cell Line (HepG2) than free HK. More cells were arrested in the sub-G1 phase of the cell cycle and were induced to undergo late apoptosis when treated with the HK-HP-β-CD than when treated with free HK.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China; Institute of Life and Health Engineering, Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| |
Collapse
|
14
|
Boakye‐Yiadom KO, Kesse S, Aquib M, Filli MS, Farooq MA, Wang B. Solid dispersion systems engineered from
hydroxypropyl‐β‐cyclodextrin
and
water‐soluble
polymers for enhanced oral bioavailability of nimodipine. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kofi Oti Boakye‐Yiadom
- School of PharmacyShanghai Jiao Tong University Shanghai China
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Samuel Kesse
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Md Aquib
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Bo Wang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| |
Collapse
|
15
|
Kumar R, Sinha VR, Dahiya L, Singh G, Sarwal A. Impact of cyclodextrin derivatives on systemic release of duloxetine HCl via buccal route. Drug Dev Ind Pharm 2020; 46:931-945. [PMID: 32420753 DOI: 10.1080/03639045.2020.1764019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of this work was to develop buccoadhesive tablets for the systemic delivery of duloxetine HCl (DXT) using more soluble derivatives of β-cyclodextrin, i.e. hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD) and to investigate enhanced cellular uptake of inclusion complexed drug.Materials and methods: Freeze dried and spray dried complexes of both cyclodextrin derivatives with DXT (1:1 molar) were prepared and characterized with DSC, FTIR, and PXRD techniques. C971 and PC, on the basis of swelling behavior, erosion and in vitro residence time, were selected for further study at different levels (-1, 0, +1) to optimize the formulation in terms of enhanced drug release and ex vivo permeation.Results: SBEβCD based complexes show more aqueous solubility of DXT (0.782 and 0.958 mM) and more complexation efficiency compared to HPβCD at 25 °C and 37 °C, respectively. Apparent stability constant was reported to be higher (1109.94 and 1693.25 M-1) for DXT-SBEβCD at 25 °C and 37 °C, respectively, than the corresponding values for DXT-HPβCD systems. Enhanced cellular uptake using fibroblast cells was revealed for complexed drug compared to free drug .Conclusion: Both cyclodextrin derivatives are able to enhance drug release and permeation in vitro and ex vivo.
Collapse
Affiliation(s)
- Rajiv Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Lalita Dahiya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Amita Sarwal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
He Y, Hou X, Guo J, He Z, Guo T, Liu Y, Zhang Y, Zhang J, Feng N. Activation of a gamma-cyclodextrin-based metal-organic framework using supercritical carbon dioxide for high-efficient delivery of honokiol. Carbohydr Polym 2020; 235:115935. [PMID: 32122478 DOI: 10.1016/j.carbpol.2020.115935] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/29/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
A facile method for the activation of γ-cyclodextrin metal-organic framework (CD-MOF) without channel blockage and framework collapse was first developed using supercritical carbon dioxide (scCO2), which enabled higher surface area and larger pore volume. The scCO2-assisted impregnation method was also applied to introduce the insoluble drug, honokiol (HNK), into the pores of CD-MOF with higher cargo loading compared to the conventional liquid phase incorporation in ethanol. Notably, the resulting HNK-loaded CD-MOF (HNK@CD-MOF) had improved apparent solubility and enhanced dissolution rate. The intestinal cellular uptake and transport experiments demonstrated that CD-MOF could enhance cellular uptake and increase drug transport across the intestinal epithelial cells compared to the cyclodextrin inclusion complex. Moreover, the in vivo pharmacokinetic studies further confirmed that CD-MOF could significantly improve the oral absorption and bioavailability of HNK. Overall, the scCO2 activation and scCO2-assisted impregnation approaches were demonstrated as promising strategies to maximize the potential capability of CD-MOF.
Collapse
Affiliation(s)
- Yuanzhi He
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Wang L, Wu W, Wang L, Wang L, Zhao X. Highly Water-Soluble Solid Dispersions of Honokiol: Preparation, Solubility, and Bioavailability Studies and Anti-Tumor Activity Evaluation. Pharmaceutics 2019; 11:E573. [PMID: 31683964 PMCID: PMC6920775 DOI: 10.3390/pharmaceutics11110573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Honokiol (HK), a well-tolerated natural product, has many multiple pharmacological activities. However, its poor water solubility and low bioavailability limit its clinical application and development. The aim of this research was to prepare the solid dispersion (SD) formulation of honokiol (HK) with poloxamer-188 (PLX) as the carrier, thereby improving its solubility and oral bioavailability. Firstly, by investigating the relationship between the addition amount of the PLX and the solubility of HK, and the effects of solid dispersions with different ratios of HK-PLX on the solubility of HK, we determined that the optimum ratio of PLX to HK was (1:4). Then, the HK-PLX (1:4) SD of HK was prepared using the solvent evaporation method. The morphology of the obtained HK-PLX (1:4) SD was different from that of free HK. The HK in the HK-PLX (1:4) SD existed in amorphous form and formed intermolecular hydrogen bonds with PLX. Additionally, the solubility values of the HK-PLX (1:4) SD were about 32.43 ± 0.36 mg/mL and 34.41 ± 0.38 mg/mL in artificial gastric juice (AGJ) and in artificial intestinal juice (AIJ), respectively. Compared with free HK, the release rate and the bioavailability was also substantially improved for HK in its SD form. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that the HK-PLX (1:4) SD showed higher inhibition of HepG2 cells than free HK. Taken together, the present study suggests that the HK-PLX (1:4) SD could become a new oral drug formulation with high bioavailability and could produce a better response for clinical applications of HK.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heihongjiang, China.
| | - Weiwei Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heihongjiang, China.
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heihongjiang, China.
| | - Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heihongjiang, China.
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin 150040, Heihongjiang, China.
| |
Collapse
|
18
|
Xavier-Júnior F, Tavares C, Rabello M, Hernandes M, Bezerra B, Ayala A, Pessoa O, Ximenes R, Santos-Magalhães N. Elucidation of the mechanism of complexation between oncocalyxone A and cyclodextrins by isothermal titration calorimetry and molecular modeling. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Rescifina A, Surdo E, Cardile V, Avola R, Eleonora Graziano AC, Stancanelli R, Tommasini S, Pistarà V, Ventura CA. Gemcitabine anticancer activity enhancement by water soluble celecoxib/sulfobutyl ether-β-cyclodextrin inclusion complex. Carbohydr Polym 2018; 206:792-800. [PMID: 30553385 DOI: 10.1016/j.carbpol.2018.11.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
We investigated the complexation of celecoxib (CCB) into sulfobuthyl-ether-β-cyclodextrin (SBE-β-CD) for the realization of an inhalable dry-powder formulation containing gemcitabine (GEM) for lung anticancer therapy. Complexation increased the water solubility of CCB (0.003 mg/mL and 0.834 mg/mL for CCB free and complexed, respectively) and produced a quantitative dissolution of the drug within 15 min. The CCB/SBE-β-CD inclusion complex showed a high stability constant (8131 M-1) not influenced by the presence of GEM in solution. Two-dimensional NMR experiments and computational studies demonstrated that the pyrazole ring of CCB penetrates deeper into SBE-β-CD from the secondary rim. The aromatic rings are positioned at the edge of the cavity, establishing hydrogen bonds with the SBE-β-CD that stabilized the complex. CCB showed limited cytotoxic activity on A549 cell lines. Complexation significantly increased activity passing from 30% to 45% cell mortality. Moreover, CCB/SBE-β-CD strongly improved the cytotoxicity of GEM, observing about 60% of cell mortality for the combined formulation.
Collapse
Affiliation(s)
- Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6 - 95125 Catania, Italy.
| | - Emanuela Surdo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno D'Alcontrés, 31 - 98166 Messina, Italy.
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97 - 95125 Catania, Italy.
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97 - 95125 Catania, Italy.
| | | | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno D'Alcontrés, 31 - 98166 Messina, Italy.
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno D'Alcontrés, 31 - 98166 Messina, Italy.
| | - Venerando Pistarà
- Department of Drug Sciences, University of Catania, V.le A. Doria, 6 - 95125 Catania, Italy.
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno D'Alcontrés, 31 - 98166 Messina, Italy.
| |
Collapse
|
20
|
Wu W, Wang L, Wang L, Zu Y, Wang S, Liu P, Zhao X. Preparation of honokiol nanoparticles by liquid antisolvent precipitation technique, characterization, pharmacokinetics, and evaluation of inhibitory effect on HepG2 cells. Int J Nanomedicine 2018; 13:5469-5483. [PMID: 30271141 PMCID: PMC6149943 DOI: 10.2147/ijn.s178416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Honokiol is a bioactive lignanoid and has been utilized in traditional Chinese medicine for a long time. It exhibits several pharmacological properties, such as anticancer effects, anti-inflammatory effects, and antianxiety effects. However, the poor aqueous solubility of honokiol has impeded clinical applications. Materials and methods In the present study, we adopted the liquid antisolvent precipitation (LAP) technique to prepare nanoparticles of honokiol for enhancement of solubility and bioavailability. Moreover, the honokiol nanoparticles obtained were investigated and evaluated in terms of morphology, physicochemical properties, saturation solubility, dissolution in vitro, bioavailability in vivo, toxicity, and the inhibitory effect on growth of HepG2 cells. Results The obtained honokiol nanoparticles existed nearly in spherical shape and could be turned into amorphous structure by the LAP method. Moreover, the solubility of the honokiol nanoparticles was extremely higher than that of free honokiol, and the nanoparticle dissolution rate was also higher than that of free honokiol, which was about 20.41 times and 26.2 times than that of free honokiol in artificial gastric juice and in artificial intestinal juice. The area under the curve [AUC(0–t)] value of honokiol nanoparticles was about 6.52 times greater than that of free honokiol; therefore, the honokiol nanoparticles had a higher bioavailability than free honokiol but were innoxious to the organs of rats. Additionally, the honokiol nanoparticles exhibited a higher inhibition of HepG2 cells due to their lower IC50 compared to free honokiol. Conclusion Honokiol nanoparticles have high solubility and bioavailability, and can become a new oral drug formulation and produce a better response for its clinical applications.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field (SAVER), Northeast Forestry University, Harbin, China
| | - Li Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Lingling Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Yuangang Zu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Siying Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Peiyan Liu
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, China,
| |
Collapse
|
21
|
Song Z, Sun J, Deng P, Zhou F, Xu H, Wen Y, Teng F, Ge D, Feng R. Oligochitosan-pluronic 127 conjugate for delivery of honokiol. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:740-750. [DOI: 10.1080/21691401.2018.1434785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Jingjie Sun
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, PR China
| | - Peizong Deng
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Feilong Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Hongmei Xu
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Yi Wen
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Fangfang Teng
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, Jinan, PR China
| |
Collapse
|
22
|
Santos P, Souza LKM, Araújo TSL, Medeiros JVR, Nunes SCC, Carvalho RA, Pais ACC, Veiga FJB, Nunes LC, Figueiras A. Methyl-β-cyclodextrin Inclusion Complex with β-Caryophyllene: Preparation, Characterization, and Improvement of Pharmacological Activities. ACS OMEGA 2017; 2:9080-9094. [PMID: 30023600 PMCID: PMC6044968 DOI: 10.1021/acsomega.7b01438] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/27/2017] [Indexed: 05/24/2023]
Abstract
β-Caryophyllene (BCP) is a sesquiterpene that shows high potential in pharmacological applications. However, these have been drastically limited by the respective volatility and poor water solubility. The present study investigates the formation of inclusion complexes between BCP and methyl-β-cyclodextrin (MβCD) and shows that these complexes promote a significant improvement of the anti-inflammatory, gastric protection, and antioxidant activities relative to neat BCP. It is shown that the solubility of BCP is significantly increased through complexation in phase solubility studies. Inclusion complexes with MβCD in solid state were prepared by three different methods, kneading, rotary evaporation, and lyophilization, with the latter confirmed by differential scanning calorimetry, Fourier transformed infrared spectroscopy, scanning electron microscopy, 1H NMR spectroscopy, and molecular dynamics studies. This study provides for the first time a full characterization of inclusion complexes between BCP and MβCD and highlights the impact of complex formation upon pharmacological activity.
Collapse
Affiliation(s)
- Pauline
S. Santos
- Postgraduate
Program of Northeast Biotechnology Network, Faculty of Pharmacy, Federal University of Piauí, Teresina, 64049-550, Piauí, Brazil
| | - Luan K. M. Souza
- Northeast
Biotechnology Network, Postgraduate Program in Biotechnology, Federal University of Piauí, 64202-020, Parnaíba, Piauí, Brazil
| | - Thiago S. L. Araújo
- Northeast
Biotechnology Network, Postgraduate Program in Biotechnology, Federal University of Piauí, 64202-020, Parnaíba, Piauí, Brazil
| | - Jand Venes R. Medeiros
- Northeast
Biotechnology Network, Postgraduate Program in Biotechnology, Federal University of Piauí, 64202-020, Parnaíba, Piauí, Brazil
| | - Sandra C. C. Nunes
- Department of Chemistry, CQC, Department of Biochemistry, NMR Spectroscopy
Center, Faculty of Sciences and Technology, and REQUIMTE/LAQV, Group of Pharmaceutical
Technology, Faculty of Pharmacy, University
of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui A. Carvalho
- Department of Chemistry, CQC, Department of Biochemistry, NMR Spectroscopy
Center, Faculty of Sciences and Technology, and REQUIMTE/LAQV, Group of Pharmaceutical
Technology, Faculty of Pharmacy, University
of Coimbra, 3000-548 Coimbra, Portugal
| | - Alberto C. C. Pais
- Department of Chemistry, CQC, Department of Biochemistry, NMR Spectroscopy
Center, Faculty of Sciences and Technology, and REQUIMTE/LAQV, Group of Pharmaceutical
Technology, Faculty of Pharmacy, University
of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco J. B. Veiga
- Department of Chemistry, CQC, Department of Biochemistry, NMR Spectroscopy
Center, Faculty of Sciences and Technology, and REQUIMTE/LAQV, Group of Pharmaceutical
Technology, Faculty of Pharmacy, University
of Coimbra, 3000-548 Coimbra, Portugal
| | - Lívio C.
C. Nunes
- Postgraduate
Program of Northeast Biotechnology Network, Faculty of Pharmacy, Federal University of Piauí, Teresina, 64049-550, Piauí, Brazil
| | - Ana Figueiras
- Department of Chemistry, CQC, Department of Biochemistry, NMR Spectroscopy
Center, Faculty of Sciences and Technology, and REQUIMTE/LAQV, Group of Pharmaceutical
Technology, Faculty of Pharmacy, University
of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
23
|
Zoghbi A, Geng T, Wang B. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol. AAPS PharmSciTech 2017; 18:2927-2935. [PMID: 28432614 DOI: 10.1208/s12249-017-0769-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.
Collapse
|
24
|
Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules 2017; 22:molecules22111801. [PMID: 29088059 PMCID: PMC6150350 DOI: 10.3390/molecules22111801] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
In this study, the encapsulation mechanism of oxyresveratrol and β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied. As this research shows, oxyresveratrol and two cyclodextrins (CDs) were able to form inclusion complexes in a 1:1 stoichiometry. However, the interaction with HP-β-CD was more efficient, showing up as higher encapsulation constant (KF) (35,864.72 ± 3415.89 M−1). The KF values exhibited a strong dependence on temperature and pH, which decreased as they increased. From the thermodynamic parameters (ΔH0, ΔS0, and ΔG0) of the oxyresveratrol loaded β-CD (oxyresveratrol-β-CD) and HP-β-CD (oxyresveratrol-HP-β-CD), it could be seen that the complexation process was spontaneous and exothermic, and the main driving forces between oxyrsveratrol and CDs were hydrogen bonding and van der waals force. Besides, molecular docking combined with 1H-NMR were used to explain the most possible mode of interactions between oxyresveratrol and CDs.
Collapse
|
25
|
Inclusion complex of nateglinide with sulfobutyl ether β-cyclodextrin: Preparation, characterization and water solubility. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Li J, Jiang Q, Deng P, Chen Q, Yu M, Shang J, Li W. The formation of a host-guest inclusion complex system between β-cyclodextrin and baicalin and its dissolution characteristics. J Pharm Pharmacol 2017; 69:663-674. [DOI: 10.1111/jphp.12708] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Baicalin (BCL) has potential therapeutic benefits, but its clinical outcomes are restricted mainly because of low water solubility. This study sought to improve the water solubility of BCL by the formation of inclusion complex with β-cyclodextrin (β-CD).
Methods
The inclusion complex was studied by solubility test, differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 1H Nuclear magnetic resonance (1HNMR) and scanning electron microscopy (SEM). Molecular docking was conducted to verify the experimental findings. The dissolution rate was determined by dialysis membrane method. In vivo absorption studies in rats were conducted and high-performance liquid chromatography (HPLC) was used to analyse the plasma level of BCL after oral administration.
Key findings
The DSC, FTIR, XRD, 1HNMR and SEM findings suggested the formation of inclusion complex between BCL and β-CD in 1 : 1 stoichiometry. Molecular docking demonstrated the insertion of benzene ring of BCL into β-CD cavity by hydrophobic interactions and possible H-bond formation. Moreover, β-CD markedly improved the solubility of BCL and displayed AL-type phase diagrams. The improvement in dissolution rate of the inclusion complex was reflected in the earlier Tmax, higher Cmax and larger AUC0–t than that of BCL after oral administration.
Conclusions
β-cyclodextrin complex can be used as an effective formulation strategy for development of BCL-loaded delivery system with better therapeutic outcomes.
Collapse
Affiliation(s)
- Jing Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qihua Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Deng
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mingan Yu
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingchuan Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Lou J, Teng Z, Zhang L, Yang J, Ma L, Wang F, Tian X, An R, Yang M, Zhang Q, Xu L, Dong Z. β-Caryophyllene/Hydroxypropyl-β-Cyclodextrin Inclusion Complex Improves Cognitive Deficits in Rats with Vascular Dementia through the Cannabinoid Receptor Type 2 -Mediated Pathway. Front Pharmacol 2017; 8:2. [PMID: 28154534 PMCID: PMC5243824 DOI: 10.3389/fphar.2017.00002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
This work was conducted to prepare β-caryophyllene-hydroxypropyl-β-cyclodextrin inclusion complex (HPβCD/BCP) and investigate its effects and mechanisms on cognitive deficits in vascular dementia (VD) rats. First, HPβCD/BCP was prepared, optimized, characterized, and evaluated. HPβCD/BCP and AM630 were then administered to VD rats to upregulate and downregulate the cannabinoid receptor type 2 (CB2). Results showed that HPβCD/BCP can significantly increase the bioavailability of BCP. Through the Morris water maze test, HPβCD/BCP can attenuate learning and memory deficits in rats. Cerebral blood flow (CBF) monitoring results indicated that HPβCD/BCP can promote the recovery of CBF. Moreover, molecular biology experiments showed that HPβCD/BCP can increase the expression levels of CB2 in brain tissues, particularly the hippocampus and white matter tissues, as well as the expression levels of PI3K and Akt. Overall, the findings demonstrated the protective effects of HPβCD/BCP against cognitive deficits induced by chronic cerebral ischemia and suggested the potential of HPβCD/BCP in the therapy of vascular dementia in the future.
Collapse
Affiliation(s)
- Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Zhipeng Teng
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital Chongqing, China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University Chongqing, China
| | - Lianju Ma
- The Experimental Teaching Center, Chongqing Medical University Chongqing, China
| | - Fang Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Xiaocui Tian
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Ruidi An
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Mei Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Qian Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University Chongqing, China
| |
Collapse
|
28
|
Inclusion complex of chrysin with sulfobutyl ether-β-cyclodextrin (Captisol®): Preparation, characterization, molecular modelling and in vitro anticancer activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zhang P, Liu X, Hu W, Bai Y, Zhang L. Preparation and evaluation of naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles for ocular drug delivery. Carbohydr Polym 2016; 149:224-30. [PMID: 27261746 DOI: 10.1016/j.carbpol.2016.04.115] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 11/25/2022]
Abstract
The aim of this study was to prepare and characterize the naringenin-loaded sulfobutylether-β-cyclodextrin/chitosan nanoparticles (Nag-CD/CS-NPs) and evaluate their potential for the topical ophthalmic delivery. Naringenin was first complexed with sulfobutylether-β-cyclodextrin (SBE-β-CD), which can significantly enhance the solubility of poorly soluble drugs. Then, nanoparticles were prepared by ionic gelation of chitosan with SBE-β-CD, and their in vitro and vivo properties were investigated, respectively. The resulting nanoparticles showed an average size of 446.4±112.8nm and zeta potential of +22.5±4.91mV with predominant spherical in shape. The FT-IR and DSC confirmed the formation of Nag-CD/CS-NPs. The in vitro release study indicated that Nag-CD/CS-NPs achieved moderate sustained-release effect, and the in vivo study revealed that the prepared nanoparticles was nonirritating to rabbit's eye and had better ability to prolong the residence time than the naringenin suspension, which can significantly increase naringenin bioavailability in the aqueous humor. In conclusion, the developed CD/CS nanoparticles offer a potential alternative for the ocular administration of poorly soluble drugs.
Collapse
Affiliation(s)
- Ping Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital, Chongqing 400030, PR China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
30
|
Li Z, Hao L, Yuan P, Hu W, Zhang L. Encapsulation of honokiol-loaded nanoparticles in lecithin microbubbles for targeted tumor therapy. RSC Adv 2016. [DOI: 10.1039/c6ra10047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study aimed to develop a new drug delivery system that combines honokiol-loaded albumin nanoparticles (HKNs) with perfluorocarbon-filled microbubbles (MBs) to improve the target delivery of honokiol (HK).
Collapse
Affiliation(s)
- Zhen Li
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Lan Hao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital
- Chongqing 400030
- P. R. China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- Chongqing Research Center for Pharmaceutical Engineering
- School of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
31
|
Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Carbohydr Polym 2016; 136:300-6. [DOI: 10.1016/j.carbpol.2015.08.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/16/2015] [Accepted: 08/30/2015] [Indexed: 11/22/2022]
|
32
|
Vieira ACC, Ferreira Fontes DA, Chaves LL, Alves LDS, de Freitas Neto JL, de La Roca Soares MF, Soares-Sobrinho JL, Rolim LA, Rolim-Neto PJ. Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydr Polym 2015; 130:133-40. [DOI: 10.1016/j.carbpol.2015.04.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
33
|
Zhang Y, Chen T, Yuan P, Tian R, Hu W, Tang Y, Jia Y, Zhang L. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym 2015; 133:31-8. [PMID: 26344251 DOI: 10.1016/j.carbpol.2015.06.102] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 12/28/2022]
Abstract
Self-assembled pectin nanoparticles was prepared and evaluated for delivering the hydrophobic drug, honokiol (HK), to HepG2 cells. These hydrophobic drug-loaded nanoparticles were developed without using any surfactant and organic solvent. Hydroxypropyl-β-cyclodextrin (HCD) was used to fabricate an inclusion complex with HK (HKHCD) to increase the solubility of the drug and thus facilitate its encapsulation and dispersion in the pectin nanoparticles. Investigation of the in vitro release indicated that the drug-loaded nanoparticles exhibited a higher drug release rate than free honokiol and an effective sustained-release. Cytotoxicity, cell apoptosis and cellular uptake studies further confirmed that the pectin nanoparticles with galactose residues generated higher cytotoxicity than free honokiol on HepG2 cells which highly expressed asialoglycoprotein receptors (ASGR). Nevertheless, these findings were not observed in ASGR-negative A549 cells under similar condition. Therefore, pectin nanoparticles demonstrated a specific active targeting ability to ASGR-positive HepG2 cells and could be used as a potential drug carrier for treatment of liver-related tumors.
Collapse
Affiliation(s)
- Yuxia Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Tong Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Pei Yuan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Rui Tian
- The Experimental Teaching Centre, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenjing Hu
- Chongqingshi Shapingba District People's Hospital, Chongqing 400030, PR China
| | - Yalan Tang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuntao Jia
- Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liangke Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Medicine Engineering Research Center, School of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
34
|
Carvalho CLC, Silva ATB, Macedo LJA, Luz RAS, Moita Neto JM, Rodrigues Filho UP, Cantanhêde W. New Hybrid Nanomaterial Based on Self-Assembly of Cyclodextrins and Cobalt Prussian Blue Analogue Nanocubes. Int J Mol Sci 2015; 16:14594-607. [PMID: 26132565 PMCID: PMC4519860 DOI: 10.3390/ijms160714594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022] Open
Abstract
Supramolecular self-assembly has been demonstrated to be a useful approach to developing new functional nanomaterials. In this work, we used a cobalt Prussian blue analogue (PBA, Co3[Co(CN)6]2) compound and a β-cyclodextrin (CD) macrocycle to develop a novel host-guest PBA-CD nanomaterial. The preparation of the functional magnetic material involved the self-assembly of CD molecules onto a PBA surface by a co-precipitation method. According to transmission electronic microscopy results, PBA-CD exhibited a polydisperse structure composed of 3D nanocubes with a mean edge length of 85 nm, which became shorter after CD incorporation. The supramolecular arrangement and structural, crystalline and thermal properties of the hybrid material were studied in detail by vibrational and electronic spectroscopies and X-ray diffraction. The cyclic voltammogram of the hybrid material in a 0.1 mol · L(-1) NaCl supporting electrolyte exhibited a quasi-reversible redox process, attributed to Co2+/Co3+ conversion, with an E1/2 value of 0.46 V (vs. SCE), with higher reversibility observed for the system in the presence of CD. The standard rate constants for PBA and PBA-CD were determined to be 0.07 and 0.13 s(-1), respectively, which suggests that the interaction between the nanocubes and CD at the supramolecular level improves electron transfer. We expect that the properties observed for the hybrid material make it a potential candidate for (bio)sensing designs with a desirable capability for drug delivery.
Collapse
Affiliation(s)
- Caio L C Carvalho
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550 Piauí, Brazil.
| | - Anna T B Silva
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550 Piauí, Brazil.
| | - Lucyano J A Macedo
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550 Piauí, Brazil.
| | - Roberto A S Luz
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 13563-120 São Paulo, Brazil.
| | - José M Moita Neto
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550 Piauí, Brazil.
| | | | - Welter Cantanhêde
- Departamento de Química, Centro de Ciências da Natureza, Universidade Federal do Piauí, Teresina, 64049-550 Piauí, Brazil.
| |
Collapse
|