1
|
Pei J, Yan Y, Jayaraman S, Rajagopal P, Natarajan PM, Umapathy VR, Gopathy S, Roy JR, Sadagopan JC, Thalamati D, Palanisamy CP, Mironescu M. A review on advancements in the application of starch-based nanomaterials in biomedicine: Precision drug delivery and cancer therapy. Int J Biol Macromol 2024; 265:130746. [PMID: 38467219 DOI: 10.1016/j.ijbiomac.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yuqiang Yan
- Department of anaesthesia, Xi'an Central Hospital, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 095, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai-600107, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | - Janaki Coimbatore Sadagopan
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | | | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Sibiu 550024, Romania.
| |
Collapse
|
2
|
Zeng YF, Chen YY, Deng YY, Zheng C, Hong CZ, Li QM, Yang XF, Pan LH, Luo JP, Li XY, Zha XQ. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydr Polym 2024; 323:121389. [PMID: 37940283 DOI: 10.1016/j.carbpol.2023.121389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023]
Abstract
The present work aimed to develop a novel bioactive edible film prepared by adding quercetin-encapsulated carboxymethyl lotus root starch nanoparticles (QNPs),gellan gum and lotus root starch. The physicochemical characteristics, preservation effect and mechanism on grapes of the prepared film were investigated. SEM results showed that QNPs (5 %) were dispersed uniformly within lotus root starch matrix, indicating the formation of a stable composite nanoparticle film. In addition, the incorporation of QNPs (5 %) effectively improved the mechanical strength, thermal stability, barrier property and antioxidant activity of QNPs/starch film. Moreover, compared with the control, the QNPs/starch (5 %) film showed effective preservation effect on grapes during 21 days of storage at room temperature, based on the characterization by grape appearance, weight loss, firmness, and titratable acidity. Further studies found that QNPs/starch (5 %) film could exhibit enhanced antioxidant activity and potent anti-fungal ability against Botrytis cinerea, thus extending grape shelf life. In conclusion, the obtained QNPs/starch (5 %) film presented a promising application as an edible packing material for fruit preservation by antioxidant and preventing Botrytis cinerea contamination.
Collapse
Affiliation(s)
- Ya-Fan Zeng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Yuan-Yuan Deng
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, People's Republic of China
| | - Chao Zheng
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Cheng-Zhi Hong
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Fei Yang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
3
|
Omrani Z, Pourmadadi M, Yazdian F, Rashedi H. Preparation and characterization of pH-sensitive chitosan/starch/MoS 2 nanocomposite for control release of curcumin macromolecules drug delivery; application in the breast cancer treatment. Int J Biol Macromol 2023; 250:125897. [PMID: 37481179 DOI: 10.1016/j.ijbiomac.2023.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.
Collapse
Affiliation(s)
- Zahra Omrani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Mondal A, Nayak AK, Chakraborty P, Banerjee S, Nandy BC. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. Pharmaceutics 2023; 15:2064. [PMID: 37631276 PMCID: PMC10459560 DOI: 10.3390/pharmaceutics15082064] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the most common lethal diseases and the leading cause of mortality worldwide. Effective cancer treatment is a global problem, and subsequent advancements in nanomedicine are useful as substitute management for anti-cancer agents. Nanotechnology, which is gaining popularity, enables fast-expanding delivery methods in science for curing diseases in a site-specific approach, utilizing natural bioactive substances because several studies have established that natural plant-based bioactive compounds can improve the effectiveness of chemotherapy. Bioactive, in combination with nanotechnology, is an exceptionally alluring and recent development in the fight against cancer. Along with their nutritional advantages, natural bioactive chemicals may be used as chemotherapeutic medications to manage cancer. Alginate, starch, xanthan gum, pectin, guar gum, hyaluronic acid, gelatin, albumin, collagen, cellulose, chitosan, and other biopolymers have been employed successfully in the delivery of medicinal products to particular sites. Due to their biodegradability, natural polymeric nanobiocomposites have garnered much interest in developing novel anti-cancer drug delivery methods. There are several techniques to create biopolymer-based nanoparticle systems. However, these systems must be created in an affordable and environmentally sustainable way to be more readily available, selective, and less hazardous to increase treatment effectiveness. Thus, an extensive comprehension of the various facets and recent developments in natural polymeric nanobiocomposites utilized to deliver anti-cancer drugs is imperative. The present article provides an overview of the latest research and developments in natural polymeric nanobiocomposites, particularly emphasizing their applications in the controlled and targeted delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751 003, India;
| | - Prithviraj Chakraborty
- Department of Pharmaceutics, Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781 035, India;
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India;
| | - Bankim Chandra Nandy
- Department of Pharmaceutics, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India;
| |
Collapse
|
5
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
6
|
Taha IM, Zaghlool A, Nasr A, Nagib A, El Azab IH, Mersal GAM, Ibrahim MM, Fahmy A. Impact of Starch Coating Embedded with Silver Nanoparticles on Strawberry Storage Time. Polymers (Basel) 2022; 14:1439. [PMID: 35406312 PMCID: PMC9002491 DOI: 10.3390/polym14071439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
The strawberry has a very short postharvest life due to its fast softening and decomposition. The goal of this research is to see how well a starch-silver nanoparticle (St-AgNPs) coating affects the physical, chemical, and microbiological qualities of strawberries during postharvest life. Additionally, the effect of washing with running water on silver concentration in coated strawberry fruit was studied by an inductively coupled plasma-optical emission spectrometer (ICP-OES). Furthermore, the shelf-life period was calculated in relation to the temperature of storage. Fourier transform infrared-attenuated total reflectance (FTIR-ATR), UV-Visible, and Transmission Electron Microscopic (TEM) were used to investigate the structure of starch-silver materials, the size and shape of AgNPs, respectively. The AgNPs were spherical, with an average size range of 12.7 nm. The coated samples had the lowest weight loss, decay, and microbial counts as compared to the uncoated sample. They had higher total acidity and anthocyanin contents as well. The washing process led to the almost complete removal of silver particles by rates ranging from 98.86 to 99.10%. Finally, the coating maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage.
Collapse
Affiliation(s)
- Ibrahim M Taha
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman Zaghlool
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ali Nasr
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ashraf Nagib
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Fahmy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
7
|
Nguyen TD, Nguyen HT, Nguyen NK, Phung HT, Hoang YH. Green synthesis of highly pure copper nanoparticles under microwave irradiation against pathogenic fungi on plants. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
PVP/Highly Dispersed AgNPs Nanofibers Using Ultrasonic-Assisted Electrospinning. Polymers (Basel) 2022; 14:polym14030599. [PMID: 35160588 PMCID: PMC8840217 DOI: 10.3390/polym14030599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Silver nanoparticles (AgNPs) are novel materials with antibacterial, antifungal, and antiviral activities over a wide range. This study aimed to prepare polyvinylpyrrolidone (PVP) electrospinning composites with uniformly distributed AgNPs. In this study, starch-capped ~2 nm primary AgNPs were first synthesized using Atmospheric pressure Pulsed Discharge Plasma (APDP) at AC 10 kV and 10 kHz. Then, 0.6 wt.% AgNPs were mixed into a 10 wt.% PVP ethanol-based polymer solution and coiled through an Ultrasonic-assisted Electrospinning device (US-ES) with a 50 W and 50 kHz ultrasonic generator. At 12 kV and a distance of 10 cm, this work successfully fabricated AgNPs-PVP electrospun fibers. The electrospun products were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), High-Resolution TEM (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Thermogravimetric (TG), and X-ray Photoelectron Spectroscopy (XPS) methods.
Collapse
|
9
|
Zhang Q, Du Y, Yu M, Ren L, Guo Y, Li Q, Yin M, Li X, Chen F. Controlled release of dinotefuran with temperature/pH-responsive chitosan-gelatin microspheres to reduce leaching risk during application. Carbohydr Polym 2022; 277:118880. [PMID: 34893283 DOI: 10.1016/j.carbpol.2021.118880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Neonicotinoid-based pesticides are extensively used owing to their broad insecticidal spectrum and activity. We developed neonicotinoid dinotefuran (DIN)-loaded chitosan-gelatin microspheres using a spray-drying technology, resulting in a pH- and temperature-responsive controlled-release system. Upon introducing chitosan into the triple-helix structure of gelatin, the physically modified gelatin microspheres became smooth, round, and solid, improving their thermal storage stability. The spray-drying parameters were optimized using three-dimensional surface plots. When scaled up under optimal conditions, the corresponding loading content and encapsulation efficiency were 21.5% and 98.17%, respectively. Compared with commercial dinotefuran granules, our biodegradable composite carriers achieved the immobilization of dinotefuran to reduce pesticide leaching by 5.57-19.89% in soil, improved the soil half-life of DIN, and improved its cumulative absorption by plants. Therefore, the microspheres showed better efficacy against Trialeurodes vaporariorum. Our results confirm that this simple approach can improve the utilization efficiency of neonicotinoids, decrease leaching loss, and promote ecological safety.
Collapse
Affiliation(s)
- Qizhen Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongfei Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghua Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingming Yin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fuliang Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Ihsanullah I, Bilal M, Jamal A. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents. CHEM REC 2022; 22:e202100312. [PMID: 35102677 DOI: 10.1002/tcr.202100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Indexed: 12/24/2022]
Abstract
Starch-based adsorbents have demonstrated excellent potential for the removal of various noxious dyes from wastewater. This review critically evaluates the recent progress in applications of starch-based adsorbents for the removal of dyes from water. The synthesis methods of starch-based composites and their effects on physicochemical characteristics of produced adsorbents are discussed. The removal of various dyes by starch-based adsorbents are described in detail, with emphasis on the effect of key parameters, adsorption mechanism and their reusability potential. The key challenges related to the synthesis and applications of starch-based adsorbents in water purification are highlighted. Based on the research gaps, recommendations for future research are made. The evaluation of starch-based adsorbents would contribute to the development of sustainable water treatment options in near future.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd, University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Arshad Jamal
- Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Batool JA, Rehman K, Qader A, Akash MSH. Biomedical applications of carbohydrate-based polyurethane: From biosynthesis to degradation. Curr Pharm Des 2022; 28:1669-1687. [PMID: 35040410 DOI: 10.2174/1573412918666220118113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
The foremost common natural polymers are carbohydrate-based polymers or polysaccharides, having a long chain of monosaccharide or disaccharide units linked together via a glycosidic linkage to form a complex structure. There are several uses of carbohydrate-based polymers in biomedical sector due to its attractive features including less toxicity, biocompatibility, biodegradability, high reactivity, availability, and relatively inexpensive. The aim of our study was to explore the synthetic approaches for the preparation of numerous carbohydrate-based polyurethanes (PUs) and their wide range of pharmaceutical and biomedical applications. The data summarized in this study shows that the addition of carbohydrates in the structural skeleton of PUs not only improve their suitability but also effect the applicability for employing them in biological applications. Carbohydrate-based units are incorporated into the PUs, which is the most convenient method for the synthesis of novel biocompatible and biodegradable carbohydrate-based PUs to use in various biomedical applications.
Collapse
Affiliation(s)
- Jahan Ara Batool
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
12
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Rezaei S, Kashanian S, Bahrami Y, Zhaleh H, Cruz LJ. Enhanced Intracellular Delivery of Curcumin by Chitosan-Lipoic Acid as Reduction-Responsive Nanoparticles. Curr Pharm Biotechnol 2021; 22:622-635. [PMID: 32720599 DOI: 10.2174/1389201021999200727153513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
AIMS Enhancement of anti-tumor activity of the chemotherapeutic agent CUR by redoxsensitive nanoparticle to get a deeper insight into cancer therapy. BACKGROUND Tumor targetability and stimulus are widely used to study the delivery of drugs for cancer diagnosis and treatment because poor cellular uptake and inadequate intracellular drug release lead to inefficient delivery of anticancer agents to tumor tissue. OBJECTIVE Studies distinguishing between tumor and normal tissues or redox-sensitive systems using glutathione (GSH) as a significant signal. METHODS In this study, we designed Chitosan-Lipoic acid Nanoparticles (CS-LANPs) to improve drug delivery for breast cancer treatment by efficient delivery of Curcumin (CUR). The properties of blank CS-LANPs were studied in detail. The size and the Polydispersity Index (PDI) of the CS-LANPs were optimized. RESULTS The results indicate the mean size and PDI of the blank CS-LANPs were around 249 nm and 0.125, respectively. However, the Drug Loading (DL) and Encapsulation Efficiency (EE) of the CSLANPs were estimated to be about 18.22% and 99.80%, respectively. Compared to non-reductive conditions, the size of reduction-sensitive CS-LANPs increased significantly under reductive conditions. Therefore, the drug release of CS-LANPs in the presence of glutathione was much faster than that of non-GSH conditions .Moreover, the antitumor effect of CS-LANPs on MCF-7 cells was determined in vitro by MTT assay, cell cytotoxicity, Caspase-3 Assay, detection of mitochondrial membrane potential and quantification of apoptosis incidence. CONCLUSION CS-LANPs showed a remarkably increased accumulation in tumor cells and had a better tumor inhibitory activity in vitro. CS-LANPs could successfully deliver drugs to cancer cells and revealed better efficiency than free CUR.
Collapse
Affiliation(s)
- Somayeh Rezaei
- Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Soheila Kashanian
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Hossein Zhaleh
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
14
|
Goswami B, Mahanta D. Starch and its Derivatives: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol 2020; 160:724-735. [DOI: 10.1016/j.ijbiomac.2020.05.232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022]
|
16
|
Carboxymethyl Chitosan/Starch/CuO Nanocomposite Hydrogels for Controlled Release of Amoxicillin. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00173-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Gholamali I, Hosseini SN, Alipour E. Doxorubicin-loaded oxidized starch/poly (vinyl alcohol)/CuO bio-nanocomposite hydrogels as an anticancer drug carrier agent. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Iman Gholamali
- Faculty of Chemistry, Research Laboratory of Dendrimers and Nanopolymers, University of Tabriz, Tabriz, Iran
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Eskandar Alipour
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Liu K, Huang RL, Zha XQ, Li QM, Pan LH, Luo JP. Encapsulation and sustained release of curcumin by a composite hydrogel of lotus root amylopectin and chitosan. Carbohydr Polym 2020; 232:115810. [DOI: 10.1016/j.carbpol.2019.115810] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 12/29/2019] [Indexed: 12/25/2022]
|
19
|
Liu K, Kong XL, Li QM, Zhang HL, Zha XQ, Luo JP. Stability and bioavailability of vitamin D3 encapsulated in composite gels of whey protein isolate and lotus root amylopectin. Carbohydr Polym 2020; 227:115337. [DOI: 10.1016/j.carbpol.2019.115337] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
|
20
|
Ji Y, Lin X, Yu J. Preparation and characterization of oxidized starch-chitosan complexes for adsorption of procyanidins. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108610] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Ampholytic and Polyelectrolytic Starch as Matrices for Controlled Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11060253. [PMID: 31159403 PMCID: PMC6631206 DOI: 10.3390/pharmaceutics11060253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
The potential of the polyampholytic and polyelectrolytic starch compounds as excipients for drug controlled release was investigated using various tracers differing in terms of solubility and permeability. Ampholytic trimethylaminecarboxymethylstarch (TMACMS) simultaneously carrying trimethylaminehydroxypropyl (TMA) cationic groups and carboxymethyl (CM) anionic groups was obtained in one-step synthesis in aqueous media. Trimethylaminestarch (TMAS) and carboxymethylstarch (CMS) powders were also synthesized separately and then homogenized at equal proportions in liquid phase for co-processing by spray drying (SD) to obtain polyelectrolytic complexes TMAS-CMS (SD). Similarly, equal amounts of TMAS and CMS powders were dry mixed (DM) to obtain TMAS:CMS (DM). Monolithic tablets were obtained by direct compression of excipient/API mixes with 60% or 80% drug loads. The in vitro dissolution tests showed that ampholytic (TMACMS) and co-processed TMAS-CMS (SD) with selected tracers (one from each class of Biopharmaceutical Classification System (BCS)), were able to control the release even at very high loading (80%). The presence of opposite charges located at adequate distances may impact the polymeric chain organisation, their self-assembling, and implicitly the control of drug release. In conclusion, irrespective of preparation procedure, ampholytic and polyelectrolytic starch materials exhibited similar behaviours. Electrostatic interactions generated polymeric matrices conferring good mechanical features of tablets even at high drug loading.
Collapse
|
22
|
Wu WC, Hsiao PY, Huang YC. Effects of amylose content on starch-chitosan composite film and its application as a wound dressing. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1770-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Saheb M, Fereydouni N, Nemati S, Barreto GE, Johnston TP, Sahebkar A. Chitosan-based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects. J Cell Physiol 2019; 234:12325-12340. [PMID: 30697728 DOI: 10.1002/jcp.28024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Effective drug delivery is one of the most important issues associated with the administration of therapeutic agents that have low oral bioavailability. Curcumin is an active ingredient in the turmeric plant, which has low oral bioavailability due to its poor aqueous solubility. One strategy that has been considered for enhancing the aqueous solubility, and, thus, its oral bioavailability, is the use of chitosan as a carrier for curcumin. Chitosan is a biodegradable and biocompatible polymer that is relatively water-soluble. Therefore, various studies have sought to improve the aqueous solubility of chitosan. The use of different pharmaceutical excipients and formulation strategies has the potential to improve aqueous solubility, formulation processing, and the overall delivery of hydrophobic drugs. This review focuses on various methods utilized for chitosan-based delivery of curcumin.
Collapse
Affiliation(s)
- Mahsa Saheb
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - Narges Fereydouni
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Nemati
- Department of Basic Science, Islamic Azad University of Damghan, Damghan, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Alwaan IM, Jafar MMRM, Allebban ZSM. Development of biodegradable starch nanocrystals/gum Arabic hydrogels for controlled drug delivery and cancer therapy. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafc14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Sivasami P, Hemalatha T. Augmentation of therapeutic potential of curcumin using nanotechnology: current perspectives. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1004-1015. [PMID: 29490502 DOI: 10.1080/21691401.2018.1442345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Curcumin, an active principle of Curcuma longa, is extracted from the rhizome. Its therapeutic efficiency has been proved using various in vitro and in vivo models. Inflammatory, neoplastic and preneoplastic diseases are the major targets using curcumin as therapeutic agent. Feasible clinical formulations could not be obtained because of its lack of solubility, stability and higher degradation rate. Recently, many techniques have been evolved to improve the physicochemical properties of pharmacological compounds, thereby increasing their biological activity. Curcumin has been developed using various techniques, particularly micro and nanotechnology to improve its stability and bioavailability. This review focuses on the studies pertaining to the delivery of curcumin in the form of micro and nanosize formulations for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Pulavendran Sivasami
- a Department of Physiological Sciences , Oklahoma State University , Stillwater , OK , USA
| | - Thiagarajan Hemalatha
- b Biological Materials Lab , CSIR-Central Leather Research Institute , Chennai , India
| |
Collapse
|
26
|
Praphakar RA, Shakila H, Azger Dusthackeer VN, Munusamy MA, Kumar S, Rajan M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym Chem 2018. [DOI: 10.1039/c7py02000g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To improve the performance of drug delivery systems in macrophages, targeted ligand-conjugated polymeric carriers have been realized to be vital for targeted, sustainable and controlled drug release with remarkable biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| | - Harshavardhan Shakila
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai-625021
- India
| | | | - Murugan A. Munusamy
- Department of Botany and Microbiology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology
- Universiti Putra Malaysia
- 43400 Serdang
- Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625021
| |
Collapse
|
27
|
Amarnath Praphakar R, Alarfaj AA, Munusamy MA, Dusthackeer VNA, Kumar Subbiah S, Rajan M. Phosphorylated κ-Carrageenan-Facilitated Chitosan Nanovehicle for Sustainable Anti-Tuberculosis Multi Drug Delivery. ChemistrySelect 2017. [DOI: 10.1002/slct.201701396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rajendran Amarnath Praphakar
- Biomaterials in Medicinal Chemistry Laboratory; Department of Natural Products Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai - 625021 India
| | - Abdulla A. Alarfaj
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Murugan A. Munusamy
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Vijayan N. Azger Dusthackeer
- Department of Bacteriology; National Institute for Research in Tuberculosis; No.1 Mayor Sathyamoorthy Road, Chetpet Chennai
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Malaysia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory; Department of Natural Products Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai - 625021 India
| |
Collapse
|
28
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
29
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|
30
|
In vitro tumor suppression properties of blueberry extracts in liquid and encapsulated forms. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2819-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Enhancement of bioactivity and bioavailability of curcumin with chitosan based materials. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Carbohydrates-chitosan composite carrier for Vero cell culture. Cytotechnology 2016; 68:2649-2658. [PMID: 27709375 DOI: 10.1007/s10616-016-9989-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
In this study, carbohydrate-chitosan composite including glucose-chitosan, sucrose-chitosan and starch-chitosan with varied carbohydrate concentrations were prepared as carriers for Vero cell culture. Our results show that among these composites, 30 % starch-chitosan composite (STC) were the best carriers for the growth of Vero cells. The initial number of attached cells on the surface of composite carriers did not have any significant effect on subsequent cell production. A higher glucose level in the growth medium during the exponential phase of cell growth, however, played an important factor for cell production. Vero cells on the STC carriers were able to convert starch inside the composite carriers into glucose and further utilized the glucose for their growth. Moreover, by crosslink with serum the STC carriers supported an even better cell production in the normal medium without adding fetal bovine serum, as well as a good extracellular virus production. The STC composite is therefore a promising alternative carrier for Vero cell culture.
Collapse
|
33
|
Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2016.06.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Khanlari S, Tang J, Kirkwood KM, Dubé MA. Synthesis and properties of a poly(sodium acrylate) bioadhesive nanocomposite. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Step-reduced synthesis of starch-silver nanoparticles. Int J Biol Macromol 2016; 86:126-8. [PMID: 26802247 DOI: 10.1016/j.ijbiomac.2016.01.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 01/18/2023]
Abstract
In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed.
Collapse
|
36
|
Zia F, Zia KM, Zuber M, Kamal S, Aslam N. Starch based polyurethanes: A critical review updating recent literature. Carbohydr Polym 2015; 134:784-98. [DOI: 10.1016/j.carbpol.2015.08.034] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023]
|
37
|
Liu X, Pan Z, Dong Z, Lu Y, Sun Q, Wu T, Bao N, He H, Gu H. Amperometric oxygen biosensor based on hemoglobin encapsulated in nanosized grafted starch particles. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1655-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Mock CD, Jordan BC, Selvam C. Recent Advances of Curcumin and its Analogues in Breast Cancer Prevention and Treatment. RSC Adv 2015; 5:75575-75588. [PMID: 27103993 PMCID: PMC4836288 DOI: 10.1039/c5ra14925h] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
More than 230,000 diagnosed cases of invasive breast cancer in women was estimated in 2014 and an expected 40,000 deaths attributed to the aggressive carcinoma. An effective approach to diminish the morbidity and mortality of breast cancer is the development of chemopreventive and chemotherapeutic agents. Nutraceuticals have demonstrated their ability to proficiently halt carcinogenesis. The administration of natural compounds able to effectively serve as chemoprevention and chemotherapeutics without causing harm or adverse effects is imperative. Curcumin derived from the rhizome of Curcuma longa L., is a common spice of India, used for centuries because of its medicinal properties. The main component of curcumin possesses a wide range of biological activities; anti-proliferative, anti-inflammatory, and apoptotic characteristics modulated through the inactivation of pathways such as EGK and Akt/mTOR. In addition, curcumin alters the expression of cytokines, transcription factors, and enzymes involved in cell vitality. The in vivo application of curcumin in breast cancer is hindered by its limited bioavailabiity. The synthesis of curcumin analogues and delivery via nanoparticles has demonstrated enhanced bioavailability of curcumin in the malignancy. This review focuses on recent developments in the use of curcumin, curcumin analogues, and novel delivery systems as a preventive and therapeutic method for breast cancer.
Collapse
Affiliation(s)
- Charlotta D Mock
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Brian C Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX-77004, USA
| |
Collapse
|
39
|
Chen Q, Yu H, Wang L, ul Abdin Z, Chen Y, Wang J, Zhou W, Yang X, Khan RU, Zhang H, Chen X. Recent progress in chemical modification of starch and its applications. RSC Adv 2015. [DOI: 10.1039/c5ra10849g] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Starch has received much attention as a promising natural material both in biomedical fields and waste water treatment due to its unique biological and adsorptive properties.
Collapse
|