1
|
Loskutova K, Torras M, Zhao Y, Svagan AJ, Grishenkov D. Cellulose Nanofiber-Coated Perfluoropentane Droplets: Fabrication and Biocompatibility Study. Int J Nanomedicine 2023; 18:1835-1847. [PMID: 37051314 PMCID: PMC10085006 DOI: 10.2147/ijn.s397626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Purpose To study the effect of cellulose nanofiber (CNF)-shelled perfluoropentane (PFP) droplets on the cell viability of 4T1 breast cancer cells with or without the addition of non-encapsulated paclitaxel. Methods The CNF-shelled PFP droplets were produced by mixing a CNF suspension and PFP using a homogenizer. The volume size distribution and concentration of CNF-shelled PFP droplets were estimated from images taken with an optical microscope and analyzed using Fiji software and an in-house Matlab script. The thermal stability was qualitatively assessed by comparing the size distribution and concentration of CNF-shelled PFP droplets at room temperature (~22°) and 37°C. The cell viability of 4T1 cells was measured using a 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a hemolysis assay was performed to assess blood compatibility of CNF-shelled PFP droplets. Results The droplet diameter and concentration of CNF-shelled PFP droplets decreased after 48 hours at both room temperature and 37°C. In addition, the decrease in concentration was more significant at 37°C, from 3.50 ± 0.64×106 droplets/mL to 1.94 ± 0.10×106 droplets/mL, than at room temperature, from 3.65 ± 0.29×106 droplets/mL to 2.56 ± 0.22×106 droplets/mL. The 4T1 cell viability decreased with increased exposure time and concentration of paclitaxel, but it was not affected by the presence of CNF-shelled PFP droplets. No hemolysis was observed at any concentration of CNF-shelled PFP droplets. Conclusion CNF-shelled PFP droplets have the potential to be applied as drug carriers in ultrasound-mediated therapy.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
- Correspondence: Ksenia Loskutova, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Hälsovägen 11C, Huddinge, SE-14157, Sweden, Tel +46 707 26 76 77, Email
| | - Mar Torras
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| | - Ying Zhao
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, SE-141 57, Sweden
| | - Anna J Svagan
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, SE-141 57, Sweden
| |
Collapse
|
2
|
Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking. Int J Biol Macromol 2022; 201:351-363. [PMID: 34998881 DOI: 10.1016/j.ijbiomac.2021.12.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 01/15/2023]
Abstract
Here, one-pot labor-less preparation of two different polygalacturonic acid (PGA) micro/nanogel formulations, PGA-1 and PGA-2, by respectively crosslinking the PGA chains with divinyl sulfone (DVS) and trimethylolpropane triglycidyl ether (TMPGDE) were reported. Various crosslinker ratios, 2.5, 10, 50, and 100% were used for both crosslinkers to demonstrate the tunability of their degradation properties. The PGA micro/nanogels were found spherical-shaped porous particles in 0.5-5.0 μm size range by SEM. The hydrolytic degradation and stability of PGA micro/nanogels in pH 1.0, 7.4, and 9.0 buffer solutions can be controlled by changing the degree of crosslinking. Accordingly, 32 ± 8% and 36 ± 2% weight losses were attained for PGA-1-10% and PGA-2-10% micro/nanogels at pH 1, respectively, and 46 ± 6%, and 68 ± 6% degradations were determined at pH 7.4 within 4 weeks. However, no degradation was observed for both PGA-based micro/nanogel formulations prepared at 25% and 100% crosslinker ratios at all pH conditions. All PGA-based micro/nanogels were totally degraded within 7-10 days at pH 9.0. In the presence of pectinase and amyloglucosidase enzymes, all formulations of PGA micro/nanogels showed more than 80% degradation within 12 h. Furthermore, both PGA formulations showed no significant cytotoxicity against L929 fibroblast cells with 90% and above cell viability up to 250 mg/mL concentrations.
Collapse
|
3
|
Song X, Loskutova K, Chen H, Shen G, Grishenkov D. Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:1750. [PMID: 34598597 DOI: 10.1121/10.0006046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Perfluoropentane droplets with cellulose nanofibers (CNF) shells have demonstrated better stability and easier surface modification as ultrasound contrast agents and drug delivery vehicles. This paper presents a theoretical model assuming a four-phase state "inverse antibubble," with the core filled with gas perfluoropentane surrounded by liquid perfluoropentane. A continuous, incompressible, and viscoelastic stabilizing layer separates the core from the surrounding water. A parametric study is performed to predict the frequency-dependent attenuation coefficient, the speed of sound, and the resonance frequency of the droplets which have a mean diameter of 2.47 ± 0.95 μm. Results reveal that the CNF-stabilized perfluoropentane droplets can be modeled in a Rayleigh-Plesset like equation. We conclude that the shell strongly influences the acoustic behavior of the droplets and the resonance frequency largely depends on the initial gas cavity radius. More specifically, the peak attenuation coefficient and peak-to-peak speed of sound decrease with increasing shear modulus, shear viscosity, and shell thickness, while they increase with increasing gas cavity radius and concentration. The resonance frequency increases as shear modulus and shell thickness increase, while it decreases as shear viscosity and gas cavity radius increase. It is worth mentioning that droplet concentration has no effect on the resonance frequency.
Collapse
Affiliation(s)
- Xue Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ksenia Loskutova
- Department of Biomedical Engineering and Health System, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Hongjian Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health System, KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| |
Collapse
|
4
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
5
|
Nisin induces lamellar to cubic liquid-crystalline transition in pectin and polygalacturonic acid liposomes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Lopes NA, Barreto Pinilla CM, Brandelli A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Gupta D, Jassal M, Agrawal AK. Solution properties and electrospinning of poly(galacturonic acid) nanofibers. Carbohydr Polym 2019; 212:102-111. [PMID: 30832836 DOI: 10.1016/j.carbpol.2019.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 11/27/2022]
Abstract
Poly(galacturonic acid) (PGuA) is an important natural biopolymer, however its potential has not been realized due to its anionic nature and rigid structure, which limits its processability into fine films and fibres. This study aims at modifying the solution properties of PGuA in alkaline medium (aq. sodium hydroxide) to enable their conversion into electrospun nanofibers. Addition of anionic surfactants was found to play an important role in individualizing the PGuA chains that lead to formation of small spindle shaped fibers of length ranging from 2 to 10 μm and diameter from 287 to 997 nm. However, continuous fibers were not formed even at concentrations higher than the critical concentration. Addition of small amount (10-30%) of high molecular weight PVA resulted in formation of continuous fibers. Correlation of fiber diameters of PGuA/PVA with the rheological properties suggested a strong dependence of diameter with the elasticity of the blend solutions. Such PGuA based fibers may be utilized in various biomedical applications.
Collapse
Affiliation(s)
- Deepika Gupta
- SMITA Research Lab, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
8
|
Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation. MATERIALS 2017; 10:ma10030311. [PMID: 28772670 PMCID: PMC5503389 DOI: 10.3390/ma10030311] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022]
Abstract
Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials.
Collapse
|
9
|
Yucel Falco C, Sotres J, Rascón A, Risbo J, Cárdenas M. Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated β-glucan. J Colloid Interface Sci 2017; 487:97-106. [DOI: 10.1016/j.jcis.2016.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
|
10
|
Khorasani AC, Shojaosadati SA. Pectin-non-starch nanofibers biocomposites as novel gastrointestinal-resistant prebiotics. Int J Biol Macromol 2017; 94:131-144. [DOI: 10.1016/j.ijbiomac.2016.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
|
11
|
Svagan AJ, Kusic A, De Gobba C, Larsen FH, Sassene P, Zhou Q, van de Weert M, Mullertz A, Jørgensen B, Ulvskov P. Rhamnogalacturonan-I Based Microcapsules for Targeted Drug Release. PLoS One 2016; 11:e0168050. [PMID: 27992455 PMCID: PMC5167381 DOI: 10.1371/journal.pone.0168050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023] Open
Abstract
Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 μm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.
Collapse
Affiliation(s)
- Anna J. Svagan
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Anja Kusic
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Flemming H. Larsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip Sassene
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Qi Zhou
- School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | - Anette Mullertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Ye X, Zhan Y, Li T, Shi X, Deng H, Du Y. Pectin based composite nanofabrics incorporated with layered silicate and their cytotoxicity. Int J Biol Macromol 2016; 93:123-130. [DOI: 10.1016/j.ijbiomac.2016.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023]
|
13
|
Svagan AJ, Benjamins JW, Al-Ansari Z, Shalom DB, Müllertz A, Wågberg L, Löbmann K. Solid cellulose nanofiber based foams – Towards facile design of sustained drug delivery systems. J Control Release 2016; 244:74-82. [DOI: 10.1016/j.jconrel.2016.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/18/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
|
14
|
Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydr Polym 2016; 150:107-13. [DOI: 10.1016/j.carbpol.2016.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022]
|
15
|
Benítez AJ, Lossada F, Zhu B, Rudolph T, Walther A. Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules 2016; 17:2417-26. [DOI: 10.1021/acs.biomac.6b00533] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alejandro J. Benítez
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Francisco Lossada
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Baolei Zhu
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Tobias Rudolph
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Andreas Walther
- DWI − Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| |
Collapse
|