1
|
Lin F, Xu Y, Liu B, Li H, Chen L. Research progress on extraction, separation, structure, and biological activities of polysaccharides from the genus Atractylodes: A review. Int J Biol Macromol 2024; 283:137550. [PMID: 39542321 DOI: 10.1016/j.ijbiomac.2024.137550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Plants of the genus Atractylodes are perennial herbaceous plants in the family Asteraceae, whose rhizome is often used in the production of medicines and health products. There are 6 main species in this genus, namely A. macrocephala, A. lancea, A. chinensis, A. carlinoides, A. koreana and A. japonica. Among them, A. lancea and A. macrocephala are the most extensively investigated. Polysaccharides as the main active ingredients extracted and isolated from plants in this genus, show good pharmacological activities in vivo and in vitro, such as immunomodulatory, antioxidant, antidiabetic and intestinal protective activities. The pharmacological activities of polysaccharides are closely related to their extraction methods and physicochemical properties. This article discusses the extraction and separation methods, molecular weight, monosaccharide composition, chemical structure characteristics and pharmacological activities of polysaccharides from the genus Atractylodes. Furthermore, a comparative analysis of the relationship of monosaccharide composition, relative molecular weight and structural modifications with the pharmacological activities of polysaccharides of the genus Atractylodes was carried out, which provided a reference for the development and utility of polysaccharides.
Collapse
Affiliation(s)
- Fei Lin
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Xu Y, Xu T, Huang C, Amakye WK, Liu L, Fan J, Zhu Y, Yao M, Ren J. Investigating immune-modulatory function of α-glucopyranose-rich compound polysaccharides by MC38-N4/OT-I co-culture system. Int J Biol Macromol 2024; 278:134941. [PMID: 39173810 DOI: 10.1016/j.ijbiomac.2024.134941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The potential antitumor function of polysaccharides is well accepted, it is unclear whether polysaccharides have immunoregulatory effect on CD8+ T lymphocyte cells to attack tumor cells. To evaluate the CD8+ T function enhancing role of polysaccharide compounds, the MC38-N4/OT-I co-culture system was established. The synergistic and complementary immune effect of α-glucopyranose-rich compound polysaccharides can be achieved by manipulating the antigen-specific T-cell expansion capacity and efficacy. This study was designed to investigate the antitumor-enhancement activity of a α-glucopyranose-rich compound polysaccharides by determining the activation of CD8+ T cells in a co-culture system. Compared to the control group (42.5 % ± 0.72 %), the specific α-glucopyranose-rich compound polysaccharides, comprising Agaricus blazei Murill, Grifola frondosa and Pericarpium Citri Reticulatae, demonstrated a significant decrease (20.4 % ± 1.23 %, p < 0.05) in the survival rate of MC38-N4 cells in the co-culture system. Additionally, the α-glucopyranose-rich compound polysaccharides resulted in a substantial increase (p < 0.01) in the proportion of CD8+ T cells and CD62L+ central memory T cells, which is a less differentiated T cell subset with high immune activity. Collectively, we reported that specific polysaccharide combination, which remodel the function of cytotoxic T cells and provided a basis for improving immune functions by using the specific types of polysaccharides.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - William Kwame Amakye
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Junhao Fan
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou, Guangdong 510665, PR China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China.
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, PR China.
| |
Collapse
|
3
|
Gao JN, Li Y, Liang J, Xiao L, Kuang HX, Xia YG. A Reverse Thinking Based on Partially Methylated Aldononitrile Acetates to Analyze Glycoside Linkages of Polysaccharides Using Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39036888 DOI: 10.1021/acs.jafc.4c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Glycoside linkage analyses of medicine and food homologous plant polysaccharides have always been a key point and a difficulty of structural characterization. The gas chromatography-mass spectrometry (GC-MS) method is one of the commonly used traditional techniques to determine glycoside linkages via partially methylated alditol acetates and aldononitrile acetates (PMAAs and PMANs). Due to the simplicity of derivatization and the highly structural asymmetry of PMANs, reverse thinking is proposed using liquid chromatography-electrospray ionization-multiple reaction monitoring mass spectrometry (LC-ESI-MRM-MS) for the first time to directly determine the neutral and acidic glycosyl linkages of polysaccharides. The complete characterization of glycoside linkages deduced from PMANs was achieved using a combination of tR values, characteristic MRM ion pairs, diagnostic ESI+-MS/MS fragmentation ions (DFIs), and optimal collision energy (OCE). The DFI and OCE parameters were confirmed to be effective for the auxiliary discrimination of some isomers of the PMANs. The practicality of LC-ESI+-MRM-MS was further verified by analyzing the glycoside linkages of polysaccharides in five medicine and food homologous plants. This method can serve as an alternative to GC-MS for the simultaneous determination of neutral and acidic glycosyl linkages in polysaccharides.
Collapse
Affiliation(s)
- Jia-Ning Gao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Ye Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Li Xiao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, PR China
| |
Collapse
|
4
|
Tan X, Cui J, Liu N, Wang X, Li H, Liu Y, Zhang W, Ma W, Lu D, Fan Y. Study on the immune-enhancing and inhabiting transmissible gastroenteritis virus effects of polysaccharides from Cimicifuga rhizoma. Microb Pathog 2024; 192:106719. [PMID: 38810768 DOI: 10.1016/j.micpath.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 μg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1β content compared with control group. 250 μg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.
Collapse
Affiliation(s)
- Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
5
|
Liu Y, Sun Z, Zhou X, Wang H, Yu M, Li D. Protective Effects of Polysaccharide of Atractylodes Macrocephala Koidz against Porcine Aortic Valve Endothelial Cells Damage Induced by di (2-ethylhexyl) Phthalate. Cell Biochem Biophys 2024; 82:1409-1419. [PMID: 38722472 DOI: 10.1007/s12013-024-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/25/2024]
Abstract
The activation, injury, and dysfunction of endothelial cells are considered to be the initial key events in the development of atherosclerosis. Di (2-ethylhexyl) phthalate (DEHP), a prevalent organic pollutant, can cause damage to multiple organs. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) is a bioactive compound extracted from A. macrocephala Koidz with various biological activities. This study investigates the protective effects of PAMK on porcine aortic valve endothelial cells (PAVEC) damaged by DEHP. PAVECs treated with DEHP alone or with PAMK showed reduced cell apoptosis and death in PAMK-pretreated cells. PAMK up-regulated Bcl-2 expression and down-regulated Bax protein, suppressing apoptosis. Flow cytometry analysis demonstrated that PAMK protected PAVECs from DEHP-induced damage. These findings suggest that PAMK inhibits cell apoptosis and protects against DEHP damage in endothelial cells.
Collapse
Affiliation(s)
- Yunfeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Zongyi Sun
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoling Zhou
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, Haerbin, 150069, China
| | - Haibin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Miaomiao Yu
- Journal Center of Northeast Agricultural University, Northeast Agricultural University, Harbin, 150030, China
| | - Dejun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Ni M, Zhang Y, Sun Z, Zhou Q, Xiao J, Zhang B, Lin J, Gong B, Liu F, Meng F, Zheng G, Wang Y, Gu L, Li L, Shen W, Chen Y, Liu Y, Li L, Ling T, Cheng H. Efficacy and safety of Shenbai Granules for recurrent colorectal adenoma: A multicenter randomized controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155496. [PMID: 38471368 DOI: 10.1016/j.phymed.2024.155496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Colorectal adenoma is benign glandular tumor of colon, the precursor of colorectal cancer. But no pharmaceutical medication is currently available to treat and prevent adenomas. PURPOSE To evaluate efficacy of Shenbai Granules, an herbal medicine formula, in reducing the recurrence of adenomas. STUDY DESIGN This multicenter, randomized, double-blind, placebo-controlled clinical trial was conducted by eight hospitals in China. METHODS Patients who had received complete polypectomy and were diagnosed with adenomas within the recent 6 months were randomly assigned (1:1) to receive either Shenbai granules or placebo twice a day for 6 months. An annual colonoscopy was performed during the 2-year follow-up period. The primary outcome was the proportion of patients with at least one adenoma detected in the modified intention-to-treat (mITT) population during follow-up for 2 years. The secondary outcomes were the proportion of patients with sessile serrated lesions and other specified polypoid lesions. The data were analyzed using logistic regression. RESULTS Among 400 randomized patients, 336 were included in the mITT population. We found significant differences between treatment and placebo groups in the proportion of patients with at least one recurrent adenoma (42.5 % vs. 58.6 %; OR, 0.47; 95 % CI, 0.29-0.74; p = 0.001) and sessile serrated lesion (1.8 % vs. 8.3 %; OR, 0.20; 95 % CI, 0.06-0.72; p = 0.01). There was no significant difference in the proportion of patients developing polypoid lesions (70.7 % vs. 77.5 %; OR, 1.43; 95 % CI, 0.88-2.34; p = 0.15) or high-risk adenomas (9.0 % vs. 13.6 %; OR, 0.63; 95 % CI, 0.32-1.25; p = 0.18). CONCLUSION Shenbai Granules significantly reduced the recurrence of adenomas, indicating that they could be an effective option for adenomas. Future studies should investigate its effects in larger patient populations and explore its mechanism of action to provide more comprehensive evidence for the use of Shenbai Granules in adenoma treatment.
Collapse
Affiliation(s)
- Mingxin Ni
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Ye Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhenzhen Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jun Xiao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Beiping Zhang
- Department of Spleen and Stomach Disease, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Jiang Lin
- Department of Spleen and Stomach Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Biao Gong
- Department of Digestive Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengbin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Fandong Meng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guoyin Zheng
- Department of Traditional Chinese Medicine, Affiliated Hospital of Naval Military Medical University, Shanghai 200433, China
| | - Yan Wang
- Digestive Endoscopy Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Limei Gu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Liu Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Weixing Shen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China
| | - Yugen Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yanmei Liu
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tingsheng Ling
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Haibo Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing 210023, China.
| |
Collapse
|
7
|
Hu W, Huang K, Zhang L, Ni J, Xu W, Bi S. Immunomodulatory effect of Atractylodis macrocephala Koidz. polysaccharides in vitro. Poult Sci 2024; 103:103171. [PMID: 37925772 PMCID: PMC10652128 DOI: 10.1016/j.psj.2023.103171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Vaccination is still the main method of preventing most infectious diseases, but there are inefficiencies and inaccuracies in immunization. Studies have reported that Atractylodis macrocephalae Koidz. polysaccharides (RAMP) have immunomodulatory effects, but the mechanisms involved in whether they can modulate the immune response in chickens are not yet clear. The aim of this study was to investigate the effect of RAMP on lymphocytes functions by analyzing cell proliferation, cell cycle, mRNA expression of cytokines and CD4 +/CD8 + ratio. To identify potential molecules involved in immune regulation, we performed a comprehensive transcriptome profiling of chicken lymphocytes. In addition, the adjuvant effect of RAMP was evaluated by detecting indicators of hemagglutination inhibition. When lymphocytes were cultured with RAMP in vitro, the proliferation rate of lymphocytes was increased (P < 0.01), more cells in S phase and G2/M phase (P < 0.01) and the mRNA expression of IFN-γ was upregulated (P < 0.05), while the mRNA expression of TGF-β (P < 0.01) and IL-4 (P < 0.05) was downregulated and the CD4 +/CD8 + ratio was increased (P < 0.05). Transcriptomic results showed that RAMP increased the expression of HIST1H46 (P < 0.05) and CENPP (P < 0.05). Validation of qPCR showed that RAMP may play an important role in regulating cellular immunity by downregulating the Notch pathway. The results also showed that RAMP could increase the serum Newcastle disease virus antibody levels in chickens. These data suggest that RAMP could enhance immune function of lymphocytes and was a candidate vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Kaiyue Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Jingxuan Ni
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China.
| |
Collapse
|
8
|
Xie Z, Jiang N, Lin M, He X, Li B, Dong Y, Chen S, Lv G. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review. Molecules 2023; 28:7355. [PMID: 37959774 PMCID: PMC10648855 DOI: 10.3390/molecules28217355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Tonic Chinese herbal medicine is a type of traditional Chinese medicine, and its primary function is to restore the body's lost nutrients, improve activity levels, increase disease resistance, and alleviate physical exhaustion. The body's immunity can be strengthened by its polysaccharide components, which also have a potent immune-system-protecting effect. Several studies have demonstrated that tonic Chinese herbal medicine polysaccharides can improve the body's immune response to tumor cells, viruses, bacteria, and other harmful substances. However, the regulatory mechanisms by which various polysaccharides used in tonic Chinese herbal medicine enhance immune function vary. This study examines the regulatory effects of different tonic Chinese herbal medicine polysaccharides on immune organs, immune cells, and immune-related cytokines. It explores the immune response mechanism to understand the similarities and differences in the effects of tonic Chinese herbal medicine polysaccharides on immune function and to lay the foundation for the future development of tonic Chinese herbal medicine polysaccharide products.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Ninghua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China;
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Li X, Rao Z, Xie Z, Qi H, Zeng N. Isolation, structure and bioactivity of polysaccharides from Atractylodes macrocephala: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115506. [PMID: 35760256 DOI: 10.1016/j.jep.2022.115506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polysaccharides from Atractylodes macrocephala are important components isolated and extracted from the traditional Chinese medicine named Atractylodes macrocephala Koidz. Traditionally, A. macrocephala has been used to strengthen the spleen, benefit qi, dry dampness and promote water circulation, and prevent miscarriage. As the main components, polysaccharides from A. macrocephala have a variety of related pharmacological activities, such as the ability to regulate the gastrointestinal tract, protect the liver and so on. AIM OF THE REVIEW This review aims to compile the extraction and purification methods, structural characteristics and pharmacological activities of polysaccharides from A. macrocephala and the mechanisms of actions to explore the future application potential of polysaccharides from A. macrocephala. MATERIALS AND METHODS Valid and comprehensive relevant information was collected from China National Knowledge Infrastructure, Web of Science, Pubmed and so on. RESULTS More than 20 polysaccharides have been extracted from A. macrocephala, different extraction and purification methods have been described, and the composition structures and pharmacological activities of polysaccharides from A. macrocephala have been reviewed. Polysaccharides, as important components of A. macrocephala, were mainly extracted by four methods such as water decoction, ultrasonic-assisted extraction, complex enzyme method and microwave-assisted extraction, and then were obtained through decolorization, deproteinization and separation and purification by various chromatographic columns. The chemical compositions and structures of polysaccharides from A. macrocephala show diversification, and three structural formulae have been confirmed at this stage. Polysaccharides from A. macrocephala have a variety of pharmacological activities, such as immunomodulation, antitumor, antioxidant, hepatoprotection, gastrointestinal mucosa protection, neuroprotection, hypoglycemia, growth promotion and so on. CONCLUSIONS There is a diversity in the compositional structures of polysaccharides from A. macrocephal, which have multiple biological activities and promising applications. Therefore, further understanding of the relationship between structures and functions of polysaccharides from A. macrocephaly, and potential synergistic effects with other substances is especially important for its development and utilization.
Collapse
Affiliation(s)
- Xiangyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
10
|
Ren Q, Wang X, Gao Q, Wang G, Chen X, Liu C, Gao S, Li Y. Glycerol Monolaurate to Ameliorate Efficacy of Inactivated Pseudorabies Vaccine. Front Vet Sci 2022; 9:891157. [PMID: 36187807 PMCID: PMC9521419 DOI: 10.3389/fvets.2022.891157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The present study is aimed to evaluate the effect of glycerol monolaurate (GML) on the growth performance and immune enhancement of pseudorabies virus (PRV)-inactivated vaccine in the early-weaned piglets. One hundred and twenty-five 28-day-old weaned piglets were randomly assigned to a control group (CON, no vaccine and no challenge), challenge control group (C-CON), inactivated PRV vaccine group (IPV), IPV + 500 mg/kg GML group (L-GML), and IPV + 1,000 mg/kg GML group (H-GML) during the entire 28-day experimental period. All the data analyses were performed by one-way analysis of variance (ANOVA) and multiple comparisons. Our results showed that the final weight, average daily gain (ADG), and average daily feed intake (ADFI) of H-GML were the highest in each group, and F/G of H-GML was increased but there was no significant difference with CON (p > 0.05). Levels of PRV glycoprotein B (gB) antibody and immunoglobulin in serum of L-GML and H-GML were higher than those of IPV, but only gB antibody levels and immunoglobulin G (IgG) in H-GML were significantly increased (p < 0.05). Compared with IPV, the contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in serum of L-GML (TNF-α and IL-1β: p > 0.05, IL-6: p < 0.05, respectively) and H-GML (p < 0.01, both) were all decreased, and the content of interleukin-10 (IL-10) in H-GML was increased (p > 0.05). Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) experiments proved that L-GML and H-GML were both superior to IPV in inhibiting the expression of TNF-α (p < 0.01), IL-6 (p > 0.05), and IL-1β (p < 0.01) mRNAs and promoting the expression of IL-10 mRNA (L-GML: p > 0.05, H-GML: p < 0.05, respectively) in the superficial inguinal lymph nodes. Histopathological examination found mild congestion in the lung and inguinal lymph nodes of IPV, while the tissues (brain, lung, and inguinal lymph nodes) of L-GML and H-GML were the same as CON with no obvious lesions. The above results indicate that GML may improve the growth performance of weaned piglets and enhance the immunity of PRV-inactivated vaccine by increasing the levels of PRV gB antibody and immunoglobulin and regulating cytokine levels.
Collapse
Affiliation(s)
- Qinghai Ren
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaobo Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Qingqing Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Gaiqin Wang
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | | | - Chunxue Liu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | - Song Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yubao Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- *Correspondence: Yubao Li
| |
Collapse
|
11
|
Bo R, Liu X, Wang J, Wei S, Wu X, Tao Y, Xu S, Liu M, Li J, Pang H. Polysaccharide from Atractylodes macrocephala Koidz binding with zinc oxide nanoparticles: Characterization, immunological effect and mechanism. Front Nutr 2022; 9:992502. [PMID: 36185684 PMCID: PMC9520191 DOI: 10.3389/fnut.2022.992502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
Atractylodes macrocephala Koidz (A. macrocephala) has been used both as a traditional medicine and functional food for hundreds of years in Asia. And it has a variety of biological activities, such as enhancing the ability of immunity and modulating effect on gastrointestinal motility. In this study, a water-soluble polysaccharide with molecular weight of 2.743 × 103 Da was isolated from the root of A. macrocephala. Polysaccharide from A. macrocephala (AMP) consisted of arabinose, galactose, glucose, xylose, mannose, ribose, galactose uronic acid, glucose uronic acid, with a percentage ratio of 21.86, 12.28, 34.19, 0.43, 0.92, 0.85, 28.79, and 0.67%, respectively. Zinc plays an important role in immune system. Therefore, we supposed that AMP binding with zinc oxide (ZnO) nanoparticles (AMP-ZnONPs) might be an effective immunostimulator. AMP-ZnONPs was prepared by Borch reduction, and its structural features were characterized by Scanning Electron Microscope (SEM), Transmission electron microscope (TEM), TEM-energy dispersive spectroscopy mapping (TEM-EDS mapping), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS), X-ray diffraction (XRD), particle size and zeta-potential distribution analysis. Then, its immunostimulatory activity and the underlying mechanism were evaluated using RAW264.7 cells. The results showed that AMP-ZnONPs remarkably promoted cell proliferation, enhanced phagocytosis, the release of nitric oxide (NO), cytokines (IL-6 and IL-1β) and the expression of co-stimulatory molecules (CD80, CD86 and MHCII). Moreover, AMP-ZnONPs could promote the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), TNF receptor associated factor 6 (TRAF6), phospho-IκBα (P-IκBα) and phospho-p65 (P-p65), and TLR4 inhibitor (TAK242) inhibited the expression of these proteins induced by AMP-ZnONPs. Therefore, AMP-ZnONPs activated macrophages by TLR4/MyD88/NF-κB signaling pathway, indicating that AMP-ZnONPs could act as a potential immunostimulator in medicine and functional food.
Collapse
Affiliation(s)
- Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaopan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Simin Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xinyue Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ya Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuya Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Jingui Li,
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- Huan Pang,
| |
Collapse
|
12
|
Liu C, Wang S, Xiang Z, Xu T, He M, Xue Q, Song H, Gao P, Cong Z. The chemistry and efficacy benefits of polysaccharides from Atractylodes macrocephala Koidz. Front Pharmacol 2022; 13:952061. [PMID: 36091757 PMCID: PMC9452894 DOI: 10.3389/fphar.2022.952061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.
Collapse
Affiliation(s)
- Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, China
- *Correspondence: Peng Gao, ; Zhufeng Cong,
| |
Collapse
|
13
|
Polysaccharides from Rhizoma Atractylodis Macrocephalae: A Review on Their Extraction, Purification, Structure, and Bioactivities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2338533. [PMID: 36034948 PMCID: PMC9402290 DOI: 10.1155/2022/2338533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023]
Abstract
Rhizoma Atractylodes macrocephala polysaccharide (RAMP), the main bioactive compound extracted from Rhizoma Atractylodes macrocephala (RAM), exhibits various biological activities in in vivo and in vitro methods, such as anti-inflammatory, antioxidant, antitumor, immunomodulatory, hepatoprotective effects, and other functions. This review systematically summarizes the recent research progress on the extraction, purification, structural characteristics, and biological activities of RAMP. We hope to provide a theoretical basis for further research on the application of RAMP in the fields of biomedicine and food.
Collapse
|
14
|
Network Pharmacology and Molecular Docking Study of Yupingfeng Powder in the Treatment of Allergic Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1323744. [PMID: 35855823 PMCID: PMC9288288 DOI: 10.1155/2022/1323744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the potential mechanisms of Yupingfeng Powder (YPFP) in the treatment of allergic diseases by using network pharmacology and molecular docking technology. Methods The active components and targets of YPFP were screened by the TCMSP database. The targets associated with atopic dermatitis, asthma, allergic rhinitis, and food allergy were obtained from GeneCards and OMIM databases, respectively. The intersection of the above disease-related targets was identified as allergy-related targets. Then, allergy-related targets and YPFP-related targets were crossed to obtain the potential targets of YPFP for allergy treatment. A protein-protein-interaction (PPI) network and a drug-target-disease topology network were constructed to screen hub targets and key ingredients. Next, GO and KEGG pathway enrichment analyses were performed separately on the potential targets and hub targets to identify the biological processes and signaling pathways involved. Finally, molecular docking was conducted to verify the binding affinity between key ingredients and hub targets. Results In this study, 45 active ingredients were identified from YPFP, and 48 allergy-related targets were predicted by network pharmacology. IL6, TNF, IL1B, PTGS2, CXCL8, JUN, CCL2, IL10, IFNG, and IL4 were screened as hub targets by the PPI network. However, quercetin, kaempferol, wogonin, formononetin, and 7-O-methylisomucronulatol were identified as key ingredients by the drug-target-disease topological network. GO and KEGG pathway enrichment analysis indicated that the therapeutic effect of YPFP on allergy involved multiple biological processes and signaling pathways, including positive regulation of fever generation, positive regulation of neuroinflammatory response, vascular endothelial growth factor production, negative regulation of cytokine production involved in immune response, positive regulation of mononuclear cell migration, type 2 immune response, and negative regulation of lipid storage. Molecular docking verified that all the key ingredients had good binding affinity with hub targets. Conclusion This study revealed the key ingredients, hub targets, and potential mechanisms of YPFP antiallergy, and these data can provide some theoretical basis for subsequent allergy treatment and drug development.
Collapse
|
15
|
Yun L, Li W, Wu T, Zhang M. Effect of sea cucumber peptides on the immune response and gut microbiota composition in ovalbumin-induced allergic mice. Food Funct 2022; 13:6338-6349. [PMID: 35612003 DOI: 10.1039/d2fo00536k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of food allergies has increased in Asian countries. The aim of this study was to determine the potential value of sea cucumber peptide (SCP) for anti-allergic therapeutics in terms of their effect on immune response and gut microbiota composition. Results exhibited that SCP could significantly improve the allergy symptoms caused by ovalbumin and could reduce the risk of IgE mediated allergic disorders, as well as repair the morphological damage in the colon. Flow cytometry analysis indicated that SCP could improve the ratio of CD4+/CD8+ T lymphocytes. 16S rRNA results indicated that SCP could differently impact the composition of microbiota. The relative abundances of Bacteroidetes and Firmicutes and the Bacteroidetes/Firmicutes ratio were altered in normal mice. When compared with the OVA treated group, the SCP treated groups showed an increase in the relative abundance of Lachnospiraceae, Muribaculaceae and Ruminococcaceae, and a decrease in Bacteroidaceae, Prevotellaceae, and Lactobacillaceae. These results demonstrate that SCP exhibits potential antiallergic activities in a mouse model of ovalbumin allergy by regulating intestinal microbiota diversity and upregulating the immune response of T lymphocyte subpopulations, which might provide important evidence that SCP can be developed into a novel functional food for inhibiting ovalbumin allergy.
Collapse
Affiliation(s)
- Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China.
| | - Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
16
|
Qu D, Hu H, Lian S, Sun W, Si H. The Protective Effects of Three Polysaccharides From Abrus cantoniensis Against Cyclophosphamide-Induced Immunosuppression and Oxidative Damage. Front Vet Sci 2022; 9:870042. [PMID: 35585861 PMCID: PMC9108546 DOI: 10.3389/fvets.2022.870042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed to systematically elucidate the immunomodulatory and antioxidant effects of three polysaccharide fractions (ACP60, ACP80, and ACPt2) from Abrus cantoniensis on cyclophosphamide (CTX)-induced immunosuppressive mice. The experimental mice were divided into 12 groups, then modeled and administrated with different doses of three polysaccharides (50, 150, 300 mg/kg/day) by gavage. The results showed that ACP could markedly recover the CTX-induced decline in immune organ and hemocytes indexes and promote proliferation of splenocytes, earlap swelling rate, secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6), and immunoglobulin (Ig-M and Ig-G). Additionally, ACP improved the enzymatic activities of T-SOD and GSH-PX greatly, while the level of MDA was significantly decreased in the liver. In particular, ACPt2 had higher immunomodulatory and antioxidant activities than ACP60 and ACP80. Based on the present findings, ACP could be utilized as an efficacious candidate for immunomodulators and antioxidants, which provide a new application prospect in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongshuai Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongjie Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuaitao Lian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, Yulin, China
- Wenjing Sun
| | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si
| |
Collapse
|
17
|
Zhang S, Fan H, Yi C, Li Y, Yang K, Liu S, Cheng Z, Sun J. Assembly encapsulation of BSA and CCCH-ZAP in the sodium alginate/atractylodis macrocephalae system. RSC Adv 2022; 12:12600-12606. [PMID: 35480363 PMCID: PMC9040642 DOI: 10.1039/d2ra01767a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Zinc finger antiviral proteins (ZAP) can significantly inhibit the replication of avian leukosis virus subgroup J (ALV-J), but the traditional method of ZAP administration is by injection, which can easily cause stress effects in chickens. In this work, we established a sodium alginate/atractylodis macrocephalae system for the encapsulation of CCCH-type zinc finger antiviral protein (CCCH-ZAP). Because of the high cost of ZAP, we first chose bovine serum albumin (BSA) as a model protein to investigate the encapsulation performance. The SEM images clearly confirmed that BSA and the sodium alginate/atractylodis macrocephalae system can assemble easily to form relatively stable nanostructures, and the encapsulation amount of BSA can reach 68%. Subsequently, the encapsulation of ZAP was studied. The SEM and the encapsulation experiments confirmed that ZAP can also be assembly encapsulated in the sodium alginate/atractylodis macrocephalae system with the encapsulation amount of 80%. Release studies showed that the SA/AM-ZAP nanocomposite was able to achieve a release rate of 32% of ZAP. This work successfully confirms the assembly encapsulation of ZAP, which will be beneficial for the usage of ZAP-based animal drugs. ZAP and BSA can be encapsulated in the sodium alginate/atractylodis macrocephalae system using an assembly method.![]()
Collapse
Affiliation(s)
- Shuxin Zhang
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Hai Fan
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Chunrong Yi
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Ying Li
- College of Chemistry and Material Science, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Kunmei Yang
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Shenglong Liu
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University Tai'an 271018 Shandong PR China
| | - Jianchao Sun
- School of Environment and Materials Engineering, Yantai University Yantai 264005 Shandong PR China
| |
Collapse
|
18
|
Wang L, Du Z, Guan Y, Wang B, Pei Y, Zhang L, Fang M. Identifying absorbable bioactive constituents of yupingfeng powder acting on COVID-19 through integration of UPLC-Q/TOF-MS and network pharmacology analysis. CHINESE HERBAL MEDICINES 2022; 14:283-293. [PMID: 35165529 PMCID: PMC8828289 DOI: 10.1016/j.chmed.2022.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Yupingfeng Powder (YPF), a kind of preventative patent medicine, is chosen for treatment of coronavirus disease 2019 (COVID-19) due to its high frequency application in respiratory tract diseases, such as chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia, with the advantage of reducing the relapse rate and the severity. However, the active components of YPF and the mechanisms of components affecting COVID-19 are unclear. This study aimed to determine active constituents and elucidate its potential mechanisms. Methods Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q/TOF-MS) and liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) were used to determine the components and absorbable constituents of YPF. Secondly, TCMSP, Drugbank, Swiss and PharmMapper were used to search the targets of absorbable bioactive constituents of YPF, and the targets of COVID-19 were identified based on GeneCards and OMIM databases. STRING database was used to filter the possible inter-protein interactions. Thirdly, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to identify molecular function and systemic involvement of target genes. Results A total of 61 components of YPF and 36 absorbable constituents were identified through UPLC-Q/TOF-MS. Wogonin, prim-O-glucosylcimifugin, 5-O-methylvisamminol, astragaloside IV and 5-O-methylvisamminol (hydroxylation) were vital constituents for the treatment of COVID-19, and RELA, TNF, IL-6, MAPK14 and MAPK8ere recognized as key targets of YPF. The major metabolic reactions of the absorbed constituents of YPF were demethylation, hydroxylation, sulfation and glucuronidation. GO and KEGG pathway analysis further showed that the most important functions of YPF were T cell activation, response to molecule of bacterial origin, cytokine receptor binding, receptor ligand activity, cytokine activity, IL-17 signaling pathway, Chagas disease, lipid and atherosclerosis, etc. Conclusion The approach of combining UPLC-Q/TOF-MS with network pharmacology is an effective tool to identify potentially bioactive constituents of YPF and its key targets on treatment of COVID-19.
Collapse
Affiliation(s)
- Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Corresponding author.
| | - Zhongyan Du
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanling Pei
- Xinminhe Pharmaceutical Research & Development (HeBei) Co., Ltd., Baoding 071200, China
| | - Lizong Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingsun Fang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
19
|
Hypobaric hypoxia triggers pyroptosis in the retina via NLRP3 inflammasome activation. Apoptosis 2022; 27:222-232. [PMID: 35088163 DOI: 10.1007/s10495-022-01710-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 11/02/2022]
Abstract
Hypobaric hypoxia initiates multiple impairment to the retina and is the major cause contributing to retinal function deficits such as high altitude retinopathy. However, the underlying molecular mechanism has not been clearly defined so far and remains to be clarified. In the present study, we have undertaken an approach to mimic 5000 m altitude with a low-pressure oxygen cabin and evaluated if pyroptosis is involved in the mechanisms by which hypobaric hypoxia triggers retinal impairment. We also used Radix Astragali seu Hedysari Compound (RAHC) to determine whether RAHC is capable of exerting protective effects on the hypobaric hypoxia-induced retinal dysfunction. We found that hypobaric hypoxia stress activated inflammasome complex through increasing NOD-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) protein levels. The protein expression of gasdermin-D, a master executor of pyroptosis, and NADPH oxidase 4, which is regarded as a main generator of reactive oxygen species (ROS), also elevated upon hypobaric hypoxia exposure. In addition, hypobaric hypoxia induced a significant increase in pro-inflammatory cytokines expression including interleukin-1β and interleukin-18 in the rat retina. Our results indicate that hypobaric hypoxia initiates pyroptosis in the rat retina. RAHC attenuates hypobaric hypoxia-triggered retinal pyroptosis via inhibiting NLRP3 inflammasome activation and release of pro-inflammatory cytokines. The involvement of pyroptosis pathway in the retina in response to hypobaric hypoxia supports a novel insight to clarify the pathogenesis of hypobaric hypoxia-induced retinal impairment and provides a feasibility of inflammasome modulation for preserving retinal function.
Collapse
|
20
|
Structure characterization of an arabinogalactan from Cynanchum atratum and its immune stimulatory activity on RAW264.7 cells. Int J Biol Macromol 2022; 194:163-171. [PMID: 34861274 DOI: 10.1016/j.ijbiomac.2021.11.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
In the present study, a water-soluble neutral polysaccharide (CAPW-1) with an average molecular weight of 64 kDa was purified from the root of Cynanchum atratum Bunge (Apocynaceae). The monosaccharide residue analysis revealed that CAPW-1 was composed of arabinose and galactose with a relative molar ratio of 7: 3. The backbone of CAPW-1 was consisted of 1,3-Galp and 1,3,6-Galp, the branches were attached to the O-6 of 1,3-Galp, and the side chains contained 1,6-Galp, 1,3,6-Galp, 1,5-linked, 1,3-linked, 1,3,5-linked, and terminal-Araf, which was attached to the O-3 of side 1,6-Galp. The bioactivity study indicated CAPW-1 could stimulate the proliferation of RAW264.7 cells and promote the secretion of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) with no cytotoxicity. The results suggested a potential application of CAPW-1 as an immunostimulant for the treatment of diseases such as infection and tumor.
Collapse
|
21
|
Ko CY, Chao J, Chen PY, Su SY, Maeda T, Lin CY, Chiang HC, Huang SS. Ethnobotanical Survey on Skin Whitening Prescriptions of Traditional Chinese Medicine in Taiwan. Front Pharmacol 2021; 12:736370. [PMID: 34916932 PMCID: PMC8670535 DOI: 10.3389/fphar.2021.736370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
The increasing interest and demand for skin whitening products globally, particularly in Asia, have necessitated rapid advances in research on skin whitening products used in traditional Chinese medicine (TCM). Herein, we investigated 74 skin whitening prescriptions sold in TCM pharmacies in Taiwan. Commonly used medicinal materials were defined as those with a relative frequency of citation (RFC) > 0.2 and their characteristics were evaluated. Correlation analysis of commonly used medicinal materials was carried out to identify the core component of the medicinal materials. Of the purchased 74 skin whitening prescriptions, 36 were oral prescriptions, 37 were external prescriptions, and one prescription could be used as an oral or external prescription. After analysis, 90 traditional Chinese medicinal materials were obtained. The Apiaceae (10%; 13%) and Leguminosae (9%; 11%) were the main sources of oral and external medicinal materials, respectively. Oral skin whitening prescriptions were found to be mostly warm (46%) and sweet (53%), while external skin whitening prescriptions included cold (43%) and bitter (29%) medicinal materials. Additionally, mainly tonifying and replenishing effects of the materials were noted. Pharmacological analysis indicated that these medicinal materials may promote wound healing, treat inflammatory skin diseases, or anti-hyperpigmentation. According to the Spearman correlation analysis on interactions among medicinal materials with an RFC > 0.2 in the oral skin whitening prescriptions, Paeonia lactiflora Pall. (white) and Atractylodes macrocephala Koidz. showed the highest correlation (confidence score = 0.93), followed by Ziziphus jujuba Mill. (red) and Astragalus propinquus Schischkin (confidence score = 0.91). Seven medicinal materials in external skin whitening prescriptions with an RFC > 0.2, were classified as Taiwan qī bái sàn (an herbal preparation), including Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav., Wolfiporia extensa (Peck) Ginns, Bletilla striata (Thunb.) Rchb. f., Atractylodes macrocephala Koidz., Ampelopsis japonica (Thunb.) Makino, Paeonia lactiflora Pall. (white), and Bombyx mori Linnaeus. Skin whitening prescriptions included multiple traditional Chinese medicinal materials. Despite the long history of use, there is a lack of studies concerning skin whitening products, possibly due to the complex composition of traditional Chinese medicine. Further studies are required to assess the efficacy and safety of these traditional Chinese medicinal materials for inclusion in effective, safe, and functional pharmacological products.
Collapse
Affiliation(s)
- Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, Master Program for Food and Drug Safety, China Medical University, Taichung, Taiwan
| | - Pei-Yu Chen
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tomoji Maeda
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Yu Lin
- Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Hung-Che Chiang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan.,Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Qi C, Li L, Cheng G, Xiao B, Xing Y, Zhao X, Liu J. Platycodon grandiflorus Polysaccharide with Anti-Apoptosis, Anti-Oxidant and Anti-Inflammatory Activity Against LPS/D-GalN Induced Acute Liver Injury in Mice. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 29:4088-4097. [DOI: 10.1007/s10924-021-02179-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 09/27/2024]
|
23
|
Guan QY, Lin YR, Li LY, Tang ZM, Zhao XH, Shi J. In Vitro Immunomodulation of the Polysaccharides from Yam ( Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021; 10:foods10112788. [PMID: 34829068 PMCID: PMC8624157 DOI: 10.3390/foods10112788] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
The immunomodulation of chemically selenylated polysaccharides has been attracting more attention recently, but the corresponding performance of the yam polysaccharides (YPS) with lower selenylation extent remains, thus far, unsolved. In this study, the YPS was selenylated with Na2SeO3 under acidic conditions generated by HNO3 to reach two lower selenylation extents, yielding two selenylated YPSs, namely SeYPS-1 and SeYPS-2 with selenium contents of 715 and 1545 mg/kg, respectively. The results indicated that YPS, SeYPS-1, and SeYPS-2 all had in vitro immuno-modulation when using RAW 264.7 macrophages and murine splenocytes as cell models. In detail, the three polysaccharide samples at dose levels of 5–160 μg/mL showed insignificant cytotoxicity to the macrophages and splenocytes with cell exposure times of 12–24 h, because of the measured values of cell viability larger than 100%. However, Na2SeO3 at dose levels of 1.3–3.25 μg/mL mostly caused obvious cytotoxic effects on the cells, resulting in reduced cell viability values or cell death, efficiently. The results demonstrated that, compared with YPS, both SeYPS-1 and SeYPS-2 at a lower dose level (5 μg/mL) were more active at promoting phagocytosis activity, increasing the CD4+/CD8+ ratio of the T-lymphocyte sub-population in the murine splenocyte, improving cytokine secretion, including interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in the macrophages, or increasing interferon-γ secretion, but suppressing IL-4 production in the splenocytes. Consistently, SeYPS-2 has more potential than SeYPS-1 at exerting these assessed bioactivities in the cells. Thus, we conclude that a chemical modification of YPS using trace element Se at a lower selenylation extent could bring about higher immunomodulatory activity towards macrophages and splenocytes, while selenylation extent of YPS is a critical factor used to govern the assessed activity changes of YPS.
Collapse
Affiliation(s)
- Qing-Yun Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ya-Ru Lin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ling-Yu Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (X.-H.Z.); (J.S.)
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
- Correspondence: (X.-H.Z.); (J.S.)
| |
Collapse
|
24
|
Fu X, Liu Q, Sun X, Chang H, Liu Y, Han J. Research Advances in the Treatment of Alzheimer's Disease with Polysaccharides of Danggui-Shaoyao-San. J Alzheimers Dis 2021; 85:7-19. [PMID: 34776439 DOI: 10.3233/jad-210656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disease. In recent years, the research on the treatment of AD with Chinese medicine is increasing and the results are optimistic, which may provide some new options for the treatment of AD. Existing animal and clinical studies have found that Danggui Shaoyao San (DSS), which has been used in gynecological diseases, is effective in the treatment of AD. As the main component of DSS, macromolecular polysaccharide plays an indispensable role in the treatment of AD. In addition to anti-inflammatory, anti-neuronal injury, and immune regulation, polysaccharides extracted from Danggui Shaoyao San (p-DSS) also have good activities in hypoglycemia, and participate in the physiological regulation of ubiquitination, iron metabolism, intestinal flora, estrogen, and autophagy. Given that there is little systematic analysis of p-DSS, this paper reviews the possible mechanism of p-DSS in the treatment of AD, so as to provide reference for further research.
Collapse
Affiliation(s)
- Xin Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiantong Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Chang
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiatong Han
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
25
|
Zhou Y, Lu X, Chen L, Zhang P, Zhou J, Xiong Q, Shen Y, Tian W. Polysaccharides from Chrysanthemun indicum L. enhance the accumulation of polysaccharide and atractylenolide in Atractylodes macrocephala Koidz. Int J Biol Macromol 2021; 190:649-659. [PMID: 34517026 DOI: 10.1016/j.ijbiomac.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Atractylodes macrocephala Koidz. (AM), an herb of traditional Chinese medicine, is well-known for anti-oxidant, anti-tumor and immune regulation potential. However, it is low bioactive compound content that restricts the application of this species. Elicitation is considered as an effective method to enhance biomass and bioactive compound in plants. Our precious study found that polysaccharide of Chrysanthemun indicum L. could promote plant growth by triggering plant defense. In the present study, polysaccharide of Chrysanthemun indicum L. is used to stimulate the accumulation of biomass and bioactive compound with different concentration in Atractylodes macrocephala Koidz. during pot, plot and field experiments. The results suggested that polysaccharide of Chrysanthemun indicum L. could significantly enhance the accumulation of biomass, atractylenolides and polysacchrides. Moreover, 2 mg/mL is determined and verified to be the appropriate concentration during field experiments. In addition, RT-qPCR revealed that CIP-induced terpenoid synthesis in AM mainly depended on mevalonate (MVA) pathway. This is the first report on the discovery of polysaccharide of Chrysanthemun indicum L. for the enhanced accumulation of biaomass and bioactive compound and the use of its for agricultural production.
Collapse
Affiliation(s)
- Yulei Zhou
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiaofang Lu
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Lei Chen
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Peifeng Zhang
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jingqi Zhou
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Qianwen Xiong
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yirui Shen
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Wei Tian
- Department of Forestry and Biotechnology, State Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
26
|
Ling X, Sun X, Kong H, Peng S, Yu Z, Wen J, Yuan B. Chinese Herbal Medicine for the Treatment of Children and Adolescents With Refractory Mycoplasma Pneumoniae Pneumonia: A Systematic Review and a Meta-Analysis. Front Pharmacol 2021; 12:678631. [PMID: 34177587 PMCID: PMC8222696 DOI: 10.3389/fphar.2021.678631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Chinese herb medicine (CHM) is one of the most popular complementary and alternative therapies, which has been widely used to treat Refractory Mycoplasma Pneumoniae Pneumonia (RMPP). However, the effect and safety of CHM remain controversial. Hence, we conducted this meta-analysis to evaluate whether CHM combination therapy could bring benefits to children and adolescents with RMPP. Methods: Seven databases were used for data searching through November 11, 2020 following the PRISMA checklist generally. Review Manager 5.3, Trial sequential analysis 0.9.5.10 Beta software and Stata16.0 were applied to perform data analyses. Mean difference or risk ratio was adopted to express the results, where a 95% confidence interval (CI) was applied. Results: In general, this research enrolled 17 trials with 1,451 participants. The overall pooled results indicated that CHM was beneficial for children and adolescents with RMPP by improving the clinical efficacy rate [RR = 1.20, 95% CI (1.15, 1.25), p < 0.00001], shortening antipyretic time [MD = -2.60, 95% CI (-3.06, -2.13), p < 0.00001], cough disappearance time [MD = -2.77, 95% CI (-3.12, -2.42), p < 0.00001], lung rale disappearance time [MD = -2.65, 95% CI (-3.15, -2.15), p < 0.00001], lung X-ray infiltrates disappearance time [MD = -2.75, 95% CI (-3.33, -2.17), p < 0.00001], reducing TNF-α level [MD = -5.49, 95% CI (-7.21, -3.77), p < 0.00001]. Moreover, subgroup results suggested that removing heat-phlegm and toxicity therapy had more advantages in shortening antipyretic time, cough disappearance time, lung X-ray infiltrates disappearance time and reducing TNF-α level. Meanwhile promoting blood circulation therapy seemed to be better at relieving lung rale. However, regarding adverse events, the two groups displayed no statistical difference [RR = 0.97, 95% CI (0.60, 1.57), p = 0.91]. Conclusion: Despite of the apparently positive results in relieving clinical symptoms, physical signs and reducing inflammation, it is premature to confirm the efficacy of CHM in treating RMPP because of the limitation of quality and the number of the included studies. More large-scale, double-blind, well-designed, randomized controlled trials are needed in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Yuan
- Department of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
27
|
Guo S, Li W, Chen F, Yang S, Huang Y, Tian Y, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway. Int Immunopharmacol 2021; 98:107692. [PMID: 34116287 DOI: 10.1016/j.intimp.2021.107692] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Feed corruption and poor breeding environment could cause widespread bacterial infection which could cause severe liver inflammation and lead to liver damage, even death. It has been proved that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could improve the immunity of animal, but the mechanism of its protective effect on hepatitis has been rarely reported. This study investigated the protective effect of PAMK on mouse liver through LPS-induced liver inflammatory. The results showed that LPS caused swelling of hepatocytes, disappearance of hepatic cord structure and infiltration of a large number of inflammatory cells, and LPS could up-regulated mRNA and protein expression levels of TLR4, MyD88, IKBα and NFκB, increased cytokines IL-1β, IL-4, IL-6 and TNF-α levels, enhance the levels of antioxidant enzymes CAT, GSH-PX, SOD, iNOs and MDA. PAMK pretreatment could relieved histopathological damage caused by LPS, and could activate the TLR4-MyD88-NFκB signalling pathway, reduce the levels of IL-1β, IL-6 and TNF-α, increase IL-4 levels, inhibit the levels of GSH-PX and MDA. These results indicate that PAMK could reduce inflammatory damage and oxidative stress in mice and play a protective role in the early stages of LPS invasion of the liver.
Collapse
Affiliation(s)
- Sixuan Guo
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Wanyan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Feiyue Chen
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Shuzhan Yang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China; Guangzhou Customs Technology Center, Guangzhou, Guangdong 510623, China.
| | - Yunmao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Yunbo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Danning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Nan Cao
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
28
|
Mao Y, Hu G, Meng Q, Li X, Sun X, Zhou J, Zhang T, Liu H, Wang C, Du X. Efficacy of Shenling Baizhu San on stable chronic obstructive pulmonary disease patients: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113927. [PMID: 33607201 DOI: 10.1016/j.jep.2021.113927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenling Baizhu San (SBS) as a classic Chinese medicine prescription, has been extensively used in gastrointestinal diseases, such as ulcerative colitis and chronic diarrhea. In recent years, SBS has shown a beneficial effect on chronic obstructive pulmonary disease (COPD) patients. However, clinical trials had shown conflicting results of SBS on improving pulmonary function and other related indicators of patients with stable COPD. The efficacy of SBS on stable COPD patients has not been fully assessed. AIM OF THE STUDY To determine whether the SBS used in the treatment of gastrointestinal disease was effective to treat COPD, we assessed the clinical evidence and efficacy of SBS supplemental treatment on stable COPD patients by a systematic review and meta-analysis of clinical trials. MATERIALS AND METHODS Nine electronic databases were searched to include clinical trials (published until August 31, 2020) with SBS as a supplementation treatment on stable COPD. Mean difference (MD) was used to evaluate continuous variables, odds ratio (OR) was calculated to evaluate dichotomous. The Egger's test was applied for publication bias. RESULTS A total of 770 COPD participants from 11 trials that met the inclusion criteria were included. The meta-analysis showed that modified SBS could improve the exercise endurance, life quality scores of stable COPD patients, and also showed the potential benefits to pulmonary function of COPD patients than original SBS. CONCLUSION The methodological quality of included trials may limit the conclusions that indicate that modified SBS may have a promising treatment for improving FEV1/FVC and MVV, increasing exercise endurance and life quality scores on stable COPD patients.
Collapse
Affiliation(s)
- Yuquan Mao
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Guojie Hu
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingyan Meng
- College of Basic TCM, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaoyuan Li
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiaowei Sun
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jie Zhou
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tingting Zhang
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hui Liu
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chunhong Wang
- Department of TCM, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xin Du
- Reproductive Health Center, Women and Children's Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res 2021; 35:4943-4956. [PMID: 33860974 DOI: 10.1002/ptr.7123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Bacterial vaginosis (BV) is a common disease among women of reproductive age, with a serious impact on their daily life and health. At present, the most common treatment for BV is to take antibiotics, which results in good short-term treatment effects, but poor long-term effects. Traditional Chinese medicine (TCM) has been used to treat BV for over a millennium, with little risk of triggering drug resistance and adverse effects. Based on syndrome differentiation, there are three oral TCM treatment strategies for BV, including invigorating spleen, clearing dampness and heat, and nourishing kidney. The oral TCM prescriptions, such as Yi Huang decoction, Longdan Xiegan decoction, Zhibai Dihaung decoction, and so on are commonly used. Topical TCM treatment is also popular in China. According to the research results of pharmacological effects of active TCM ingredients, the most potential mechanisms of TCM for BV treatment are immune-enhancement effects, antibacterial activity, and estrogen-liked effects. Nonetheless, the multi-constituent of herbs may result in possible disadvantages to BV treatment, and the pharmacological mechanisms of TCM need further study. Here, we provide an overview of TCM compounds and their preparations used for BV, based on the pathogenesis and the potential therapeutic mechanisms, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Li W, Xiang X, Cao N, Chen W, Tian Y, Zhang X, Shen X, Jiang D, Xu D, Xu S. Polysaccharide of atractylodes macrocephala koidz activated T lymphocytes to alleviate cyclophosphamide-induced immunosuppression of geese through novel_mir2/CD28/AP-1 signal pathway. Poult Sci 2021; 100:101129. [PMID: 34058564 PMCID: PMC8170423 DOI: 10.1016/j.psj.2021.101129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Abstract
Polysaccharide Of Atractylodes Macrocephala Koidz (PAMK) has been proved to have anti-cancer, antitumor, anti-inflammation function and improve the immune level of the organism. The miRNA plays a very important role in regulating the immune function by negatively regulate the expression of target genes. To explore the molecular mechanism of PAMK active the lymphocytes, thirty 61-d-old geese were randomly divided into 4 groups (C, CTX, PAMK, PAMK+CTX). The thymus morphology, the level of serum granulocyte-macrophage colony-stimulating factor (GMC-SF), IL-1β, IL-3, IL-5, the relative mRNA expression of CD25, novel_mir2, CTLA4 and CD28 signal pathway were measured. Further more, the lymphocytes was extracted from thymus to measure the relative mRNA expression of CD28 signal pathway. The results showed that PAMK could significantly maintain normal cell morphology of thymus, alleviate the decrease level of GMC-SF, IL-1β, IL-5, IL-6, TGF-β, the increase level of IL-4, IL-10, and the decrease relative mRNA expression of novel_mir2, CD25 and CD28 signal pathway in thymus and lymphocytes induced by cyclophosphamide (CTX). In conclusion, PAMK alleviated the decreased T lymphocytes activation levels induced by CTX through novel_mir2/CTLA4/CD28/AP-1 signal pathway.
Collapse
Affiliation(s)
- Wanyan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xuelian Xiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Nan Cao
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Wenbin Chen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Yunbo Tian
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xumeng Zhang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Xu Shen
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danli Jiang
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Danning Xu
- College of Animal Science & Technology, Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
31
|
Miao YF, Gao XN, Xu DN, Li MC, Gao ZS, Tang ZH, Mhlambi NH, Wang WJ, Fan WT, Shi XZ, Liu GL, Song SQ. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2021; 100:938-948. [PMID: 33518147 PMCID: PMC7858188 DOI: 10.1016/j.psj.2020.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common noninfectious cause of death in backyard chickens worldwide, which can cause a sudden drop in egg production in the affected flocks and cause huge losses to the laying hens breeding industry. In this study, we prepared polysaccharide from Atractylodes macrocephala Koidz (PAMK) by one-step alcohol precipitation. The structural analysis found that PAMK with a molecular weight of 2.816 × 103 Da was composed of glucose and mannose, in a molar ratio of 0.582 to 0.418. Furthermore, we investigated the hepatoprotective effects of PAMK on high-energy and low-protein (HELP) diet-induced FLHS in laying hens. The results showed that the hens' livers of the HELP diet showed yellowish-brown, greasy, and soft, whereas the supplement of PAMK (200 mg/kg or 400 mg/kg) could alleviate such pathological changes. The liver index, the abdominal fat percentage, and liver injury induced by the HELP diet were reduced in PAMK (200 mg/kg or 400 mg/kg). Supplementing 200 mg/kg or 400 mg/kg PAMK showed improvements of the antioxidant capacity in laying hens. Furthermore, we found that the HELP diet increased the expression of hepatic lipogenesis genes and decreased the expression of fatty acid β-oxidation genes, which could be reversed by 200 mg/kg or 400 mg/kg PAMK supplementation. Nevertheless, there is no difference between the addition of 40 mg/kg PAMK and the HELP group. Collectively, these results showed that PAMK supplements could ameliorate HELP diet-induced liver injury through regulating activities of antioxidant enzymes and hepatic lipid metabolism. Therefore, PAMK could be a potential feedstuff additive to alleviate FLHS in laying hens.
Collapse
Affiliation(s)
- Y F Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X N Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - D N Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - M C Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z S Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z H Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - N H Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W J Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W T Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X Z Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - G L Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - S Q Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
32
|
Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens. Res Vet Sci 2021; 135:96-105. [PMID: 33461120 DOI: 10.1016/j.rvsc.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 11/22/2022]
Abstract
The purpose of the study was to evaluate the protective effects of polygonatum sibiricum polysaccharide (PP), an important component of rhizome polygonatum, on cyclophosphamide (CY) induced immunosuppressed chickens. Four hundred and eighty one-day-old Erlang mountainous chickens were randomly allocated into four treatments. The main factors consisted of dietary supplement (PP at 0 or 800 mg/kg of diet) and immunosuppressive challenge (birds challenged with CY or treated with sterile saline). The results showed that PP enhanced chickens' growth performance via elevating daily weight gain (DWG), serum protein production, and decreasing feed conversion ratio (FCR). Moreover, physical measurements revealed that PP accelerated recovery of relative weights of immune organs and maintained their structure and function. Biochemical analysis indicated that PP significantly stimulated immunoglobulin and antioxidant indexes in serum, and improved the proliferation of peripheral blood T lymphocytes. In addition, PP promoted immune organs cells to enter into S and G2/M phases as well as inhibited the apoptosis in the spleen, thymus, and bursa of Fabricius. PP up regulated the expression of IL-2, IL-6 and IFN-γ genes. Therefore, PP performs a profile in antagonizing Cy-induced immunosuppression in chickens, and it seems that PP can be used as a potential immunostimulant agent.
Collapse
|
33
|
Xue W, Gao Y, Li Q, Lu Q, Bian Z, Tang L, Zeng Y, Chen C, Guo W. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide from Atractylodis macrocephalae Koidz. Int J Biol Macromol 2020; 161:514-524. [DOI: 10.1016/j.ijbiomac.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
|
34
|
Mok SWF, Wong VKW, Lo HH, de Seabra Rodrigues Dias IR, Leung ELH, Law BYK, Liu L. Natural products-based polypharmacological modulation of the peripheral immune system for the treatment of neuropsychiatric disorders. Pharmacol Ther 2020; 208:107480. [DOI: 10.1016/j.pharmthera.2020.107480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
|
35
|
Feng Z, Yang R, Wu L, Tang S, Wei B, Guo L, He L, Feng Y. Atractylodes macrocephala polysaccharides regulate the innate immunity of colorectal cancer cells by modulating the TLR4 signaling pathway. Onco Targets Ther 2019; 12:7111-7121. [PMID: 31564895 PMCID: PMC6733773 DOI: 10.2147/ott.s219623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background It has been well-recognized that the polysaccharides from Atractylodes macrocephala (PAM) are immune system enhancers, which can facilitate the proliferation of lymphocytes and stimulate immune cells. Nevertheless, the antitumor effects of PAM and their molecular mechanisms remain unclear. Aim Our research aimed to evaluate the anti-cancer effects of PAM on colorectal cancer (CRC). Methods We tested the effects of PAM on the growth and proliferation of CRC cells and macrophages by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The pro-inflammatory cytokines expression and secretion was analyzed by real-time RT-PCR and ELISA assay. We also used MC38 cells xenograft model to test the anti-cancer effects of PAM in vivo. Results We found that although PAM treatment did not significantly affect the growth of CRC cells or enhance the proliferation of bone marrow-derived macrophages (BMDMs), it could enhance the phagocytosis of BMDMs by CRC cells. Biochemical tests and immunoblotting assays revealed that exposing BMDMs to PAM promoted the production of interleukin-6 (IL-6), interferon λ (IFN λ), tumor necrosis factor α (TNF-α), and nitric oxide (NO) through the MyD88/TLR4-dependent signaling pathway. One noteworthy observation is that PAM treatment could significantly prevent tumorigenesis of MC38 cells in C57BL/6J mice and increase the survival duration of mice with tumors, without influence on the weight of those mice. However, the anti-cancer effects of PAM were compromised in TLR4 KO mice, further suggesting that TLR4 signaling plays a vital role in the anti-cancer effects of PAM. Conclusion Therefore, PAM may prove to be a potential candidate in cancer immunotherapy.
Collapse
Affiliation(s)
- Zifang Feng
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ruibin Yang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Liusong Wu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Shihua Tang
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Bin Wei
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Lijia Guo
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Ling He
- Department of Laboratory, Xingyi City People's Hospital, Xingyi, People's Republic of China
| | - Yonghuai Feng
- Department of Haematology, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
36
|
Feng YY, Ji HY, Dong XD, Liu AJ. An alcohol-soluble polysaccharide from Atractylodes macrocephala Koidz induces apoptosis of Eca-109 cells. Carbohydr Polym 2019; 226:115136. [PMID: 31582084 DOI: 10.1016/j.carbpol.2019.115136] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/24/2023]
Abstract
In this study, polysaccharides from Atractylodes macrocephala Koidz (APA) which were soluble in alcohol were prepared, purified, analyzed the structure and investigated the antitumor activity in vitro cell experiment. Results of high-performance gel permeation chromatography (HPGPC), fourier-transform infrared spectroscopy (FT-IR), and gas chromatography (GC) showed that APA was a 2.1KDa neutral hetero polysaccharide composed of arabinose and glucose (molar ratio, 1.00:4.57) with pyranose rings and α-type and β-type glycosidic linkages. Results by MTT experiments showed that the proliferation inhibition was 74.63% in Eca109 cells treated with 2 mg/mL dose of APA. Annexin V/PI assay, Hoechst 33,258 staining, cell cycle distribution, rhodamine 123 dye assay and western blot assay clarified that APA could accelerate the apoptosis of Eca109 cells by mitochondrial pathway and stocked cells at S phase. These data indicated that APA is a promising potential candidate for therapeutic treatment of esophageal cancer.
Collapse
Affiliation(s)
- Ying-Ying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - Xiao-Dan Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; QingYunTang Biotech(Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing 100176, People's Republic of China
| | - An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
37
|
Wu Y, Zhu CP, Zhang Y, Li Y, Sun JR. Immunomodulatory and antioxidant effects of pomegranate peel polysaccharides on immunosuppressed mice. Int J Biol Macromol 2019; 137:504-511. [PMID: 31229542 DOI: 10.1016/j.ijbiomac.2019.06.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023]
Abstract
This work aims to analyze the immunomodulatory effect of pomegranate peel polysaccharides (PPP) on the immunosuppressed mice induced by cyclophosphamide (CTX). All the mice were divided into 6 groups randomly and the immunoprophylaxis mice were administrated with PPP [100, 200, 400 mg/(kg·d)] by gavage for consecutive 28 days. The results showed that PPP can slow down the decline of body weight and increase the immune organ index of the immunosuppressed mice. Compared to the model mice, the enzymatic activity of LDH (lactate dehydrogenase) and ACP (acid phosphatase) of the mice spleen administrated with PPP by gavage was enhanced significantly. PPP stimulated proliferation and secretion of splenic lymphocytes and markedly increased the immunoglobulin (Ig-A, Ig-G and Ig-M) expression and the release of cytokines (TNF-α, IL-2 and INF-γ) in cyclophosphamide-induced immunosuppressed mice. Hepatic antioxidant enzymatic activities of T-AOC (total antioxidant capacity), T-SOD (total superoxide dismutase), GSH-PX (glutathione peroxidase) and CAT (catalase) were markedly increased when the mice were administrated with high dosage of PPP. So it can be concluded that PPP could be used as an efficacious adjacent immunopotentiating therapy or an alternative means in lessening chemotherapy-induced immunosuppression, and also can be utilized as immunostimulants for food and pharmaceutical industries.
Collapse
Affiliation(s)
- Yuan Wu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Cai-Ping Zhu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Center of Shaanxi Province for Food and Health Sciences, Xi'an 710119, China.
| | - Yang Zhang
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Li
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing-Ru Sun
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
38
|
A polysaccharide found in Paulownia fortunei flowers can enhance cellular and humoral immunity in chickens. Int J Biol Macromol 2019; 130:213-219. [DOI: 10.1016/j.ijbiomac.2019.01.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
39
|
Shen Y, Cui X, Jiang S, Qian DW, Duan JA. Comparative pharmacokinetics of nine major bioactive components in normal and ulcerative colitis rats after oral administration of Lizhong decoction extracts by UPLC-TQ-MS/MS. Biomed Chromatogr 2019; 33:e4521. [PMID: 30818413 DOI: 10.1002/bmc.4521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
Abstract
Lizhong decoction (LZD), a classic formula, has been used to treat ulcerative colitis (UC) for thousands of years in clinical practice. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological states are not clear. Thus, in this study, a rapid and sensitive analytical method, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS) method, was developed and applied to simultaneously determine glycyrrhizic acid, liquiritin, isoliquiritin, glycyrrhizin, isoliquiritigenin, 6-gingerol, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Re in normal and UC rats after oral administration of LZD extract. A Waters BEH C18 UPLC column was used for chromatographic separation, while acetonitrile and 0.1% formic acid were selected as mobile phase. The linearity of nine analytes was >0.9920. Inter- and intra-day accuracy was ≤ 11.4% and precision was from 1.1 to 12.7%. Additionally, stable and suitable extraction recoveries were also obtained. The established method was validated and found to be specific, accurate and precise for nine analytes. Furthermore, it was successfully applied to the pharmacokinetic investigation of nine major components after oral administration of LZD extracts to normal and model rats, respectively. The results showed that the pharmacokinetic parameters (Cmax , Tmax , AUC0-t , AUC0-∞ ) in the plasma of UC rats were significantly different from those of normal rats, which could provide a reference for the clinical application of LZD.
Collapse
Affiliation(s)
- Yumeng Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Wang H, Xu L, Yu M, Wang Y, Jiang T, Yang S, Lv Z. Glycosaminoglycan from Apostichopus japonicus induces immunomodulatory activity in cyclophosphamide-treated mice and in macrophages. Int J Biol Macromol 2019; 130:229-237. [PMID: 30797007 DOI: 10.1016/j.ijbiomac.2019.02.093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
Abstract
This study was designed to systematically elucidate the immunomodulation effect of glycosaminoglycan from Apostichopus japonicus (AHG) in cyclophosphamide (CY)-induced immunosuppression model and potential mechanism responsible for the activation of macrophages. The results showed that the treatment with AHG could increase natural killer (NK) cell cytotoxicity, carbon clearance and marker enzymes activities in CY-induced immunosuppression mice, indicating that the innate immunity experienced recovery to some extent. Moreover, CY-induced reductions in thymus and spleen indices, serum levels of cytokines, immunoglobulins and hemolysin, as well as the ratio of spleen lymphocyte subsets were recovered by AHG, suggesting that AHG could improve the adaptive immunity through cellular immunity and humoral immunity. Delightedly, it was found that AHG at 10 mg/kg body weight could restore the CY-induced immunosuppression in mice to normal level on both innate and adaptive immunity. Furthermore, AHG also promoted both the expression of NO, TNF-α, IL-6, IL-1β, IL-18 and MCP-1 protein and related mRNA in macrophages. It was revealed that AHG activated macrophages through the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor-B (NF-κB). In conclusion, AHG exerts remarkable immunomodulatory activities in both innate and adaptive immune system. These findings should have great value for further study on the immunopotentiating mechanisms of this biomacromolecule.
Collapse
Affiliation(s)
- Han Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Lei Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Yuanhong Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China.
| | - Tingfu Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, PR China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, PR China.
| |
Collapse
|
41
|
Hot water extraction and artificial simulated gastrointestinal digestion of wheat germ polysaccharide. Int J Biol Macromol 2019; 123:174-181. [DOI: 10.1016/j.ijbiomac.2018.11.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 11/22/2022]
|
42
|
Chen X, Sheng Z, Qiu S, Yang H, Jia J, Wang J, Jiang C. Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves. PLoS One 2019; 14:e0208611. [PMID: 30601811 PMCID: PMC6314569 DOI: 10.1371/journal.pone.0208611] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/20/2018] [Indexed: 11/18/2022] Open
Abstract
Mulberry leaf polysaccharide (MLP) was extracted and purified by DEAE-52 cellulose and Sephadex G-100 column chromatography to afford two major purified polysaccharides (MLP-1 and MLP-2). The purified polysaccharides were characterized, and their immune-enhancing properties were investigated. MLP-1 had a molecular weight of 9.31×104 Da and was composed of mannose, rhamnose, glucose, galactose, xylose, and arabinose in a molar ratio of 0.71:1.00:2.76:1.13:3.70:2.81. The molecular weight of MLP-2 was 2.22×106 Da, and its monosaccharide constituents were mannose, rhamnose, glucose, galactose, and arabinose in a molar ratio of 1.31:8.45:6.94:1.00:11.96. Infrared spectroscopy showed that each MLP had a typical absorption peak characteristic of sugars, and ultraviolet (UV) spectroscopy showed that neither MLP contained nucleic acid or protein components. Then, the abilities of these polysaccharides to stimulate spleen lymphocyte proliferation in mice in vitro were compared by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. MLP-2 was more effective than MLP-1; therefore, MLP-2 was chosen for the study of its immune-enhancing effects in vivo. For the in vivo experiments, 14-day-old chickens immunized with Newcastle disease (ND) vaccine were orally administered MLP-2, and Astragalus polysaccharide (APS) was used as the control. Each chicken was orally administered 4 mg or 8 mg of MLP-2 for seven consecutive days starting three days before ND vaccine immunization. MLP-2 significantly improved the ND serum antibody titer and interleukin-2 (IL-2), interferon-γ (IFN-γ) and immunoglobulin A (sIgA) concentrations in tracheal and jejunal wash fluids, and increasing numbers of immune globulin A-positive (IgA+) cells in cecal tonsils and increased body weight. These results indicated that MLP-2 could significantly enhance immune activity and could therefore be utilized as an immunopotentiator drug candidate.
Collapse
Affiliation(s)
- Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Zhicun Sheng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Shulei Qiu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Jiping Jia
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
43
|
Tang C, Ding R, Sun J, Liu J, Kan J, Jin C. The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food Funct 2019; 10:2290-2312. [DOI: 10.1039/c8fo01946k] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper presents a comprehensive review of the impacts of natural polysaccharides on gut microbiota and immune responses as well as their interactions.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Ruoxi Ding
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|
44
|
Yao Y, Yao J, Du Z, Wang P, Ding K. Structural elucidation and immune-enhancing activity of an arabinogalactan from flowers of Carthamus tinctorius L. Carbohydr Polym 2018; 202:134-142. [DOI: 10.1016/j.carbpol.2018.08.098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023]
|
45
|
Zheng F, Chen L, Gao J, Niu F, Duan X, Yin L, Tian W. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:33-39. [PMID: 30144693 DOI: 10.1016/j.jplph.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Atractylodes macrocephala Koidz (A. macrocephala) is a traditional Chinese medicine that has been widely used in China, Japan, and Korea due to its health benefits. Autotoxicity, as one of the major problems hindering continuous cultivation of A. macrocephala, has been reported to inhibit plant growth by various means. However, the impact of autotoxicity on the plant immune system is rarely reported. In this study, 2, 4-Ditertbutyl phenol (2,4-DP), an autotoxic compound, isolated from root exudates and rhizosphere soil of A. macrocephala was identified by gas chromatography-mass spectrometry (GC-MS). The results of germination trials showed that 2,4-DP had a significant inhibitory effect on seed germination. In addition, in non-inoculated seedlings, three concentrations of 2,4-DP (0.1, 1 and 10 mmol/L) affected indicators of systemic acquired resistance (SAR): accumulation of salicylic acid (SA), activities of protective enzymes, atractylenolides contents, and increased the disease index (DI). In inoculated seedlings, 2,4-DP decreased indicators of SAR and increased the DIs at low and high concentrations but increased indicators of SAR and decreased the DI at a moderate concentration. These results suggest that 2,4-DP has an inhibitory effect on the plant immune system, but it can induce the SAR at a certain concentration by controlling the pathogenic fungi.
Collapse
Affiliation(s)
- Fang Zheng
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China.
| | - Lei Chen
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China
| | - Junming Gao
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China
| | - Fang Niu
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China
| | - Xuewei Duan
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China
| | - Lianghong Yin
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China.
| | - Wei Tian
- School of Forestry and Bio-Technology, Zhejiang Agriculture and Forestry University, Lin'an 311300, Zhejiang, China.
| |
Collapse
|
46
|
Wang F, Wang W, Niu X, Huang Y, Zhang J. Isolation and Structural Characterization of a Second Polysaccharide from Bulbs of Lanzhou Lily. Appl Biochem Biotechnol 2018; 186:535-546. [PMID: 29663128 DOI: 10.1007/s12010-018-2750-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022]
Abstract
In this study, a second water-soluble polysaccharide (designated as LDP-2) was isolated from the bulbs of Lanzhou Lily (Lilium davidii var. unicolor). Based on monosaccharide composition and methylation analysis, its structural features were investigated using a variety of characterizations, such as size-exclusion chromatography combined with laser light scattering (SEC-LLS), gas chromatography-mass spectroscopy (GC-MS), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. The results demonstrate that LDP-2 is a homogeneous heteropolysaccharide (molecular weight 6.2 × 104 Da), which includes four kinds of monosaccharides (Lyx, Man, Glc, and Gal in an approximate weight ratio of 6.74: 6.28: 76.50: 10.48). Furthermore, its morphology, thermal behavior, and preliminary hypoglycemic activities were also investigated.
Collapse
Affiliation(s)
- Fengxia Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, China.
| | - Wei Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaobo Niu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, China
| | - Yulong Huang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China. .,Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou, 730070, China.
| |
Collapse
|
47
|
Li W, Guo S, Xu D, Li B, Cao N, Tian Y, Jiang Q. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) Relieves Immunosuppression in Cyclophosphamide-Treated Geese by Maintaining a Humoral and Cellular Immune Balance. Molecules 2018; 23:molecules23040932. [PMID: 29673208 PMCID: PMC6017956 DOI: 10.3390/molecules23040932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide of Atractylodes macrocephala Koidz (PAMK) has been well recognized as an immune enhancer that can promote lymphocyte proliferation and activate immune cells. The purpose of this study was to evaluate the effects of PAMK on humoral and cellular immune functions in immunosuppressed geese. Geese of the Control group were provided with normal feed, the PAMK group was provided with 400 mg·(kg body weight)−1 PAMK, the cyclophosphamide (CTX) group was injected with 40 mg·(kg body weight)−1 cyclophosphamide, while the CTX+PAMK group received the combination of PAMK and CTX. Spleen development and percentages of leukocytes in peripheral blood were examined. Principal component analysis was conducted to analyze correlations among humoral and cellular immune indicators. The results showed that PAMK alleviated the damage to the spleen, the decrease in T- and B-cell proliferation, the imbalance of leukocytes, and the disturbances of humoral and cellular immunity caused by CTX. Principal component analysis revealed that the relevance of humoral-immunity-related indicators was greater, and the CTX+PAMK group manifested the largest difference from the CTX group but was close to the Control group. In conclusion, PAMK alleviates the immunosuppression caused by CTX in geese, and the protective effect on humoral immunity is more obvious and stable.
Collapse
Affiliation(s)
- Wanyan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
| | - Sixuan Guo
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Nan Cao
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yunbo Tian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China.
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
48
|
Li W, Xu D, Li B, Cao N, Guo S, Jiang Q, Tian Y. The polysaccharide of Atractylodes macrocephala koidz(PAMK) alleviates cyclophosphamide-mediated immunosuppression in geese, possibly through novel_mir2 targeting of CTLA4 to upregulate the TCR-NFAT pathway. RSC Adv 2018; 8:26837-26848. [PMID: 35541089 PMCID: PMC9083368 DOI: 10.1039/c8ra00368h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
The polysaccharide of Atractylodes macrocephala koidz (PAMK) has been proved to have antioxidant, anti-inflammatory, antiviral, and immunity promoting effects. MicroRNAs (miRNAs) have also been shown to participate in the regulation of immune function by negatively regulating the expression of target genes. However, little is known about how PAMK alleviates the immunosuppression via the miRNA pathway in geese. The aim of this study is to evaluate the influence of PAMK on immunosuppression. Magang geese (1 day old, n = 200) were randomly divided into groups, namely, the control group (normal feeding), PAMK (fed 400 mg kg−1 PAMK), CTX (injected 40 mg kg−1 BW cyclophosphamide), and CTX + PAMK (40 mg kg−1 BW cyclophosphamide + 400 mg kg−1 PAMK) groups. Thymus development was examined by the thymus index, transmission electron microscopy and scanning electron microscopy. The T cell proliferation rate was stimulated by phytoagglutinin (PHA), and T cell activation related genes (CD28, CD96, MHC-II), and IL-2 levels in serum were detected. Differentially expressed miRNAs of geese to regulate T cell activation were found by miRNA sequencing technologies. The results showed that PAMK could alleviate thymus damage and the decrease in the T lymphocyte proliferation rate, T cell activation, and IL-2 levels that were induced by CTX. MiRNA sequencing found that the combination of PAMK and CTX significantly promoted T cell activation via upregulation of novel_mir2 (P < 0.05), which inhibited cytotoxic T lymphocyte antigen 4 (CTLA4) expressions, thereby promoting the TCR-NFAT signaling pathway. It can be concluded that PAMK, through novel_mir2 targeting of CTLA4 to upregulate TCR pathway, finally alleviated immunosuppression induced by CTX in geese. The polysaccharide of Atractylodes macrocephala koidz (PAMK) has been proved to have antioxidant, anti-inflammatory, antiviral, and immunity promoting effects.![]()
Collapse
Affiliation(s)
- Wanyan Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control
- College of Animal Science
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
| | - Nan Cao
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
| | - Sixuan Guo
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control
- College of Animal Science
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yunbo Tian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding
- Guangzhou 510225
- P. R. China
| |
Collapse
|
49
|
Liu AJ, Yu J, Ji HY, Zhang HC, Zhang Y, Liu HP. Extraction of a Novel Cold-Water-Soluble Polysaccharide from Astragalus membranaceus and Its Antitumor and Immunological Activities. Molecules 2017; 23:E62. [PMID: 29283407 PMCID: PMC6017583 DOI: 10.3390/molecules23010062] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 02/03/2023] Open
Abstract
The polysaccharides of Astragalus membranaceus have received extensive study and attention, but there have been few reports on the extraction of these polysaccharides using cold water (4 °C). In this study, we fractionated a novel cold-water-soluble polysaccharide (cAMPs-1A) from Astragalus membranaceus with a 92.00% carbohydrate content using a DEAE-cellulose 52 anion exchange column and a Sephadex G-100 column. Our UV, Fourier-transform infrared spectroscopy (FTIR), high-performance gel permeation chromatography, and ion chromatography analysis results indicated the monosaccharide composition of cAMPs-1A with 1.23 × 10⁴ Da molecular weight to be fucose, arabinose, galactose, glucose, and xylose, with molar ratios of 0.01:0.06:0.20:1.00:0.06, respectively. The UV spectroscopy detected no protein and nucleic acid in cAMPs-1A. We used FTIR analysis to characterize the α-d-pyranoid configuration in cAMPs-1A. In addition, we performed animal experiments in vivo to evaluate the antitumor and immunomodulatory effects of cAMPs-1A. The results suggested that cAMPs-1A oral administration could significantly inhibit tumor growth with the inhibitory rate of 20.53%, 36.50% and 44.49%, respectively, at the dosage of 75,150, and 300 mg/kg. Moreover, cAMPs-1A treatment could also effectively protect the immune organs, promote macrophage pinocytosis, and improve the percentages of lymphocyte subsets in the peripheral blood of tumor-bearing mice. These findings demonstrate that the polysaccharide cAMPs-1A has an underlying application as natural antitumor agents.
Collapse
Affiliation(s)
- An-Jun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hong-Cui Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hui-Ping Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
50
|
Woo SM, Lee KM, Lee GR, Park JY, Lee HJ, Bahn HJ, Yoon HS, Kim JY, Shin YC, Cho SG, Ko SG. Novel herbal medicine LA16001 ameliorates cisplatin-induced anorexia. Mol Med Rep 2017; 17:2665-2672. [PMID: 29207134 DOI: 10.3892/mmr.2017.8176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/14/2017] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy frequently causes anorexia in cancer patients, which has been associated with poor disease prognosis. Several therapeutic strategies for the treatment of chemotherapy‑induced anorexia are available; however, their adverse effects limit their clinical use. Herbal medicines have a long history of use for the treatment of various diseases, including cancer, and recent research has demonstrated their safety and efficacy. In the present study, combinations of herbal medicines were designed based on traditional Korean medicine, and their effects were investigated on chemotherapy‑induced anorexia. Herbal mixtures were extracted, composed of Atractylodes japonica, Angelica gigas, Astragalus membranaceus, Lonicera japonica Thunb., Taraxacum platycarpum H. Dahlstedt and Prunella vulgaris var. asiatica (Nakai) Hara. The mixtures were termed LCBP‑Anocure‑16001‑3 (LA16001, LA16002, LA16003). A cisplatin‑induced anorexic mouse model was used to evaluate the putative effects of the extracts on chemotherapy‑induced anorexia. Treatment with LA16001 was revealed to prevent body weight loss, and all three extracts were demonstrated to improve food intake. When the molecular mechanisms underlying the orexigenic effects of LA16001 were investigated, altered expression levels of ghrelin, leptin and interleukin‑6 were revealed. Furthermore, LA16001 was reported to induce phosphorylation of Janus kinase 1 and signal transducer and activator of transcription 3. In addition, LA16001 administration increased the number of white blood cells and neutrophils. These results suggested that the herbal formula LA16001 may be able to prevent chemotherapy‑induced anorexia and may have potential as a novel therapeutic strategy for the adjuvant treatment of patients with cancer.
Collapse
Affiliation(s)
- Sang-Mi Woo
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kang Min Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gyu Ri Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Youn Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jae Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo-Jung Bahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Seok Yoon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jem Yung Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Chungbuk 368‑701, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|