1
|
Hu L, Xu W, Gustafsson J, Koppolu R, Wang Q, Rosqvist E, Sundberg A, Peltonen J, Willför S, Toivakka M, Xu C. Water-soluble polysaccharides promoting production of redispersible nanocellulose. Carbohydr Polym 2022; 297:119976. [DOI: 10.1016/j.carbpol.2022.119976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022]
|
2
|
Rudolph-Schöpping G, Schagerlöf H, Jönsson AS, Lipnizki F. Comparison of membrane fouling during ultrafiltration with adsorption studied by Quartz crystal microbalance with dissipation monitoring (QCM-D). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
4
|
Steinmetz V, Villain-Gambier M, Klem A, Ziegler I, Dumarcay S, Trebouet D. Lignin Carbohydrate Complexes structure preserved throughout downstream processes for their valorization after recovery from industrial process water. Int J Biol Macromol 2020; 157:726-733. [DOI: 10.1016/j.ijbiomac.2019.11.238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/04/2023]
|
5
|
Mnich E, Bjarnholt N, Eudes A, Harholt J, Holland C, Jørgensen B, Larsen FH, Liu M, Manat R, Meyer AS, Mikkelsen JD, Motawia MS, Muschiol J, Møller BL, Møller SR, Perzon A, Petersen BL, Ravn JL, Ulvskov P. Phenolic cross-links: building and de-constructing the plant cell wall. Nat Prod Rep 2020; 37:919-961. [PMID: 31971193 DOI: 10.1039/c9np00028c] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: Up to 2019Phenolic cross-links and phenolic inter-unit linkages result from the oxidative coupling of two hydroxycinnamates or two molecules of tyrosine. Free dimers of hydroxycinnamates, lignans, play important roles in plant defence. Cross-linking of bound phenolics in the plant cell wall affects cell expansion, wall strength, digestibility, degradability, and pathogen resistance. Cross-links mediated by phenolic substituents are particularly important as they confer strength to the wall via the formation of new covalent bonds, and by excluding water from it. Four biopolymer classes are known to be involved in the formation of phenolic cross-links: lignins, extensins, glucuronoarabinoxylans, and side-chains of rhamnogalacturonan-I. Lignins and extensins are ubiquitous in streptophytes whereas aromatic substituents on xylan and pectic side-chains are commonly assumed to be particular features of Poales sensu lato and core Caryophyllales, respectively. Cross-linking of phenolic moieties proceeds via radical formation, is catalyzed by peroxidases and laccases, and involves monolignols, tyrosine in extensins, and ferulate esters on xylan and pectin. Ferulate substituents, on xylan in particular, are thought to be nucleation points for lignin polymerization and are, therefore, of paramount importance to wall architecture in grasses and for the development of technology for wall disassembly, e.g. for the use of grass biomass for production of 2nd generation biofuels. This review summarizes current knowledge on the intra- and extracellular acylation of polysaccharides, and inter- and intra-molecular cross-linking of different constituents. Enzyme mediated lignan in vitro synthesis for pharmaceutical uses are covered as are industrial exploitation of mutant and transgenic approaches to control cell wall cross-linking.
Collapse
Affiliation(s)
- Ewelina Mnich
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Capezza A, Wu Q, Newson WR, Olsson RT, Espuche E, Johansson E, Hedenqvist MS. Superabsorbent and Fully Biobased Protein Foams with a Natural Cross-Linker and Cellulose Nanofibers. ACS OMEGA 2019; 4:18257-18267. [PMID: 31720526 PMCID: PMC6844118 DOI: 10.1021/acsomega.9b02271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
The development of fully natural wheat gluten foams showing rapid and high uptake of water, sheep blood, and saline solution, while maintaining high mechanical stability in the swollen state, is presented. Genipin was added as a natural and polar cross-linker to increase the polarity of the protein chains, whereas cellulose nanofibers (CNFs) were added as a reinforcement/stiffener of the foams, alone or in combination with the genipin. The presence of only genipin resulted in a foam that absorbed up to 25 g of water per gram of foam and a more than 15 g uptake in only 8 min. In contrast, with CNF alone, it was not possible to maintain the mechanical stability of the foam during the water uptake and the protein foam disintegrated. The combination of CNF and genipin yielded a material with the best mechanical stability of the tested samples. In the latter case, the foam could be compressed repeatedly more than 80% without displaying any structural damage. The results revealed that a strong network had formed between the wheat gluten matrix, genipin, and cellulose in the foam structure. A unique feature of the absorbent/foam, in contrast to commercial superabsorbents, was that it was able to rapidly absorb nonpolar liquids (here, n-heptane) due to the open-cell structure. The capillary-driven absorption due to the open-cell structure, the high liquid absorption in the cell walls, and the mechanical properties (both in dry and swollen states) of these natural foams make them interesting as a sustainable replacement for a range of petroleum-based foam materials, including absorbent hygiene products such as sanitary pads.
Collapse
Affiliation(s)
- Antonio
J. Capezza
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre
and Polymer Technology, KTH Royal Institute
of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Department
of Plant Breeding, SLU Swedish University
of Agricultural Sciences, Sundsvägen 10, P.O. Box
101, SE-230 53 Alnarp, Sweden
| | - Qiong Wu
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre
and Polymer Technology, KTH Royal Institute
of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - William R. Newson
- Department
of Plant Breeding, SLU Swedish University
of Agricultural Sciences, Sundsvägen 10, P.O. Box
101, SE-230 53 Alnarp, Sweden
| | - Richard T. Olsson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre
and Polymer Technology, KTH Royal Institute
of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Eliane Espuche
- Ingénierie
des Matériaux Polymères, Univ
Lyon, Université Lyon1, UMR CNRS 5223, Bâtiment Polytech, 15, Bd. André Latarjet, 69622 Villeurbanne Cedex, France
| | - Eva Johansson
- Department
of Plant Breeding, SLU Swedish University
of Agricultural Sciences, Sundsvägen 10, P.O. Box
101, SE-230 53 Alnarp, Sweden
| | - Mikael S. Hedenqvist
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Fibre
and Polymer Technology, KTH Royal Institute
of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
7
|
Arola S, Ansari M, Oksanen A, Retulainen E, Hatzikiriakos SG, Brumer H. The sol-gel transition of ultra-low solid content TEMPO-cellulose nanofibril/mixed-linkage β-glucan bionanocomposite gels. SOFT MATTER 2018; 14:9393-9401. [PMID: 30420978 DOI: 10.1039/c8sm01878b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the preparation, morphological analysis, and rheological characterization of ultra-low solid content gels prepared by physically cross-linking TEMPO-oxidized cellulose nanofibrils (TEMPO-CNF) with the soluble plant-cell-wall polysaccharide, mixed-linkage β-glucan (MLG). Of particular note, gel formation was rapidly induced by very small amounts of MLG (e.g. 0.125% w/v) at extremely low TEMPO-CNF concentration (0.05% w/v), which independently were otherwise fluid and thus easily handled. Rheology of these bionanocomposite gel systems as a function of MLG and TEMPO-CNF concentrations revealed that the critical gel concentration of MLG and TEMPO-CNF followed a power-law relation of the concentration of the other component. Surprisingly, these systems also exhibited an additional transition to thick gels at high TEMPO-CNF and MLG concentrations that was visible only at low frequencies. Cryogenic scanning electron microscopy (cryo-SEM) imaging of admixture solutions and gels revealed increased network crowding with increasing MLG amounts. The data are consistent with the hypothesis that non-covalent cellulose-MLG interactions, analogous to those occurring within plant cell walls, drive gel formation. The ability to tune gel physical properties simply by controlling CNF (a promising forest bioproduct) and MLG (a readily available agricultural polysaccharide) fractions at very low solid and polymer content opens new possibilities for material applications in diverse industries.
Collapse
Affiliation(s)
- Suvi Arola
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Donev E, Gandla ML, Jönsson LJ, Mellerowicz EJ. Engineering Non-cellulosic Polysaccharides of Wood for the Biorefinery. FRONTIERS IN PLANT SCIENCE 2018; 9:1537. [PMID: 30405672 PMCID: PMC6206411 DOI: 10.3389/fpls.2018.01537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/28/2018] [Indexed: 05/10/2023]
Abstract
Non-cellulosic polysaccharides constitute approximately one third of usable woody biomass for human exploitation. In contrast to cellulose, these substances are composed of several different types of unit monosaccharides and their backbones are substituted by various groups. Their structural diversity and recent examples of their modification in transgenic plants and mutants suggest they can be targeted for improving wood-processing properties, thereby facilitating conversion of wood in a biorefinery setting. Critical knowledge on their structure-function relationship is slowly emerging, although our understanding of molecular interactions responsible for observed phenomena is still incomplete. This review: (1) provides an overview of structural features of major non-cellulosic polysaccharides of wood, (2) describes the fate of non-cellulosic polysaccharides during biorefinery processing, (3) shows how the non-cellulosic polysaccharides impact lignocellulose processing focused on yields of either sugars or polymers, and (4) discusses outlooks for the improvement of tree species for biorefinery by modifying the structure of non-cellulosic polysaccharides.
Collapse
Affiliation(s)
- Evgeniy Donev
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
9
|
Xu W, Wang X, Sandler N, Willför S, Xu C. Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:5663-5680. [PMID: 30271688 PMCID: PMC6156113 DOI: 10.1021/acssuschemeng.7b03924] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/20/2018] [Indexed: 05/05/2023]
Abstract
Wood-derived biopolymers have attracted great attention over the past few decades due to their abundant and versatile properties. The well-separated three main components, i.e., cellulose, hemicelluloses, and lignin, are considered significant candidates for replacing and improving on oil-based chemicals and materials. The production of nanocellulose from wood pulp opens an opportunity for novel material development and applications in nanotechnology. Currently, increased research efforts are focused on developing 3D printing techniques for wood-derived biopolymers for use in emerging application areas, including as biomaterials for various biomedical applications and as novel composite materials for electronics and energy devices. This Review highlights recent work on emerging applications of wood-derived biopolymers and their advanced composites with a specific focus on customized pharmaceutical products and advanced functional biomedical devices prepared via three-dimensional printing. Specifically, various biofabrication strategies in which woody biopolymers are used to fabricate customized drug delivery devices, cartilage implants, tissue engineering scaffolds and items for other biomedical applications are discussed.
Collapse
Affiliation(s)
- Wenyang Xu
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper
Chemistry, Åbo Akademi University, Turku FI-20500, Finland
| | - Xiaoju Wang
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper
Chemistry, Åbo Akademi University, Turku FI-20500, Finland
| | - Niklas Sandler
- Laboratory
of Pharmaceutical Sciences, Åbo Akademi
University, Turku FI-20500, Finland
| | - Stefan Willför
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper
Chemistry, Åbo Akademi University, Turku FI-20500, Finland
| | - Chunlin Xu
- Johan
Gadolin Process Chemistry Centre, c/o Laboratory of Wood and Paper
Chemistry, Åbo Akademi University, Turku FI-20500, Finland
- Kemira
Oyj, Espoo FI-02270, Finland
| |
Collapse
|
10
|
Nguyen HL, Hanif Z, Park SA, Choi BG, Tran TH, Hwang DS, Park J, Hwang SY, Oh DX. Sustainable Boron Nitride Nanosheet-Reinforced Cellulose Nanofiber Composite Film with Oxygen Barrier without the Cost of Color and Cytotoxicity. Polymers (Basel) 2018; 10:E501. [PMID: 30966535 PMCID: PMC6415411 DOI: 10.3390/polym10050501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/15/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
This paper introduces a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber (CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. Most commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmission rate (OTR) of <1 cc/m²/day in highly controlled conditions. A CNF film typically fabricated by the air drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m²/day. The addition of 0⁻5 wt % BNNS to the CNF dispersion before drying results in a composite film with highly improved OTR of 4.7 cc/m²/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases the pathway of oxygen gas and reduces the chances of pinhole formation during film fabrication involving water drying. In addition, BNNS improves the mechanical properties of the CNF films (Young's modulus and tensile strength) without significant elongation reductions, probably due to the good miscibility of CNF and BNNS in the aqueous solution. Addition of BNNS also produces negligible color change, which is important for film aesthetics. An in vitro cell experiment was performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great potential as a sustainable high-performance food-packaging material.
Collapse
Affiliation(s)
- Hoang-Linh Nguyen
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Zahid Hanif
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
| | - Seul-A Park
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Ganwan-do, Samcheok 25913, Korea.
| | - Thang Hong Tran
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Dong Soo Hwang
- Division of Environmental Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Jeyoung Park
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Sung Yeon Hwang
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea.
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
11
|
Markstedt K, Escalante A, Toriz G, Gatenholm P. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40878-40886. [PMID: 29068193 DOI: 10.1021/acsami.7b13400] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This paper presents a sustainable all-wood-based ink which can be used for 3D printing of constructs for a large variety of applications such as clothes, furniture, electronics, and health care products with a customized design and versatile gel properties. The 3D printing technologies where the material is dispensed in the form of liquids, so called inks, have proven suitable for 3D printing dispersions of cellulose nanofibrils (CNFs) because of their unique shear thinning properties. In this study, novel inks were developed with a biomimetic approach where the structural properties of cellulose and the cross-linking function of hemicelluloses that are found in the plant cell wall were utilized. The CNF was mixed with xylan, a hemicellulose extracted from spruce, to introduce cross-linking properties which are essential for the final stability of the printed ink. For xylan to be cross-linkable, it was functionalized with tyramine at different degrees. Evaluation of different ink compositions by rheology measurements and 3D printing tests showed that the degree of tyramine substitution and the ratio of CNFs to xylan-tyramine in the prepared inks influenced the printability and cross-linking density. Both two-layered gridded structures and more complex 3D constructs were printed. Similarly to conventional composites, the interactions between the components and their miscibility are important for the stability of the printed and cross-linked ink. Thus, the influence of tyramine on the adsorption of xylan to cellulose was studied with a quartz crystal microbalance to verify that the functionalization had little influence on xylan's adsorption to cellulose. Utilizing xylan-tyramine in the CNF dispersions resulted in all-wood-based inks which after 3D printing can be cross-linked to form freestanding gels while at the same time, the excellent printing properties of CNFs remain intact.
Collapse
Affiliation(s)
- Kajsa Markstedt
- Wallenberg Wood Science Center , Kemigården 4, 41296 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , Kemigården 4, 41296 Gothenburg, Sweden
| | - Alfredo Escalante
- Department of Wood, Cellulose and Paper Research, University of Guadalajara , Guadalajara 44100, Mexico
| | - Guillermo Toriz
- Wallenberg Wood Science Center , Kemigården 4, 41296 Gothenburg, Sweden
- Department of Wood, Cellulose and Paper Research, University of Guadalajara , Guadalajara 44100, Mexico
| | - Paul Gatenholm
- Wallenberg Wood Science Center , Kemigården 4, 41296 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology , Kemigården 4, 41296 Gothenburg, Sweden
| |
Collapse
|
12
|
Markstedt K, Xu W, Liu J, Xu C, Gatenholm P. Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce. Carbohydr Polym 2017; 157:1349-1357. [DOI: 10.1016/j.carbpol.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 12/23/2022]
|
13
|
Moriana R, Vilaplana F, Ek M. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydr Polym 2016; 139:139-49. [DOI: 10.1016/j.carbpol.2015.12.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|