1
|
Akhtar N, Wani AK, Sharma NR, Sanami S, Kaleem S, Machfud M, Purbiati T, Sugiono S, Djumali D, Retnaning Prahardini PE, Purwati RD, Supriadi K, Rahayu F. Microbial exopolysaccharides: Unveiling the pharmacological aspects for therapeutic advancements. Carbohydr Res 2024; 539:109118. [PMID: 38643705 DOI: 10.1016/j.carres.2024.109118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Microbial exopolysaccharides (EPSs) have emerged as a fascinating area of research in the field of pharmacology due to their diverse and potent biological activities. This review paper aims to provide a comprehensive overview of the pharmacological properties exhibited by EPSs, shedding light on their potential applications in various therapeutic areas. The review begins by introducing EPSs, exploring their various sources, significance in microbial growth and survival, and their applications across different industries. Subsequently, a thorough examination of the pharmaceutical properties of microbial EPSs unveils their antioxidant, immunomodulatory, antimicrobial, antidepressant, antidiabetic, antiviral, antihyperlipidemic, hepatoprotective, anti-inflammatory, and anticancer activities. Mechanistic insights into how different EPSs exert these therapeutic effects have also been discussed in this review. The review also provides comprehensive information about the monosaccharide composition, backbone, branches, glycosidic bonds, and molecular weight of pharmacologically active EPSs from various microbial sources. Furthermore, the factors that can affect the pharmacological activities of EPSs and approaches to improve the EPSs' pharmacological activity have also been discussed. In conclusion, this review illuminates the immense pharmaceutical promise of microbial EPS as versatile bioactive compounds with wide-ranging therapeutic applications. By elucidating their structural features, biological activities, and potential applications, this review aims to catalyze further research and development efforts in leveraging the pharmaceutical potential of microbial EPS for the advancement of human health and well-being, while also contributing to sustainable and environmentally friendly practices in the pharmaceutical industry.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Samira Sanami
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shaikh Kaleem
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, (144411), Punjab, India
| | - Moch Machfud
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Titiek Purbiati
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Sugiono Sugiono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Djumali Djumali
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | | | - Rully Dyah Purwati
- Research Center for Estate Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Khojin Supriadi
- Research Center for Food Crops, National Research and Innovation Agency, Bogor, (16911), Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, (16911), Indonesia
| |
Collapse
|
2
|
Naveen KV, Sathiyaseelan A, Mandal S, Han K, Wang MH. Unveiling the Structural Characteristics and Bioactivities of the Polysaccharides Extracted from Endophytic Penicillium sp. Molecules 2023; 28:5788. [PMID: 37570759 PMCID: PMC10421393 DOI: 10.3390/molecules28155788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Polysaccharides are abundantly present in fungi and are gaining recognition for their exceptional bioactivities. Hence, the present study aimed to extract intracellular polysaccharides (IPS-1 and IPS-2) from the endophytic Penicillium radiatolobatum and compare their physicochemical and bioactive attributes. The monosaccharide composition analysis revealed the existence of galactose, glucose, and mannose in both the IPS, while a trace amount of xylose was found in IPS-1. Further, FT-IR, 1H NMR, and 13C NMR analysis suggested that the IPS-2 was mainly composed of the β-(1→4)-D-Galactose and β-(1→4)-D-Glucose as the main chain, with the β-(1→6)-D-mannose as branched chains. Compared to IPS-1, the IPS-2 showed higher antioxidant activities with an IC50 value of 108 ± 2.5 μg/mL, 272 ± 4.0 μg/mL, and 760 ± 5.0 μg/mL for ABTS+ scavenging, DPPH radical scavenging, and ferric reducing power, respectively. In addition, the IPS-2 inhibited the viability of prostate cancer (PC-3) cells (IC50; 435 ± 3.0 μg/mL) via apoptosis associated with mitochondrial membrane potential collapse and altered morphological features, which was revealed by cellular staining and flow cytometric analysis. Moreover, no apparent cytotoxic effects were seen in IPS-2-treated (1000 μg/mL) non-cancerous cells (HEK-293 and NIH3T3). Overall, the findings of this study suggest that P. radiatolobatum could be a potent source of polysaccharides with promising antioxidant and anticancer activity.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Sumana Mandal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Kiseok Han
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.V.N.); (A.S.); (K.H.)
| |
Collapse
|
3
|
Preparation and Characterization of Intracellular and Exopolysaccharides during Cycle Cultivation of Spirulina platensis. Foods 2023; 12:foods12051067. [PMID: 36900580 PMCID: PMC10000700 DOI: 10.3390/foods12051067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
The dried cell weight (DCW) of Spirulina platensis gradually decreased from 1.52 g/L to 1.18 g/L after five cultivation cycles. Intracellular polysaccharide (IPS) and exopolysaccharide (EPS) content both increased with increased cycle number and duration. IPS content was higher than EPS content. Maximum IPS yield (60.61 mg/g) using thermal high-pressure homogenization was achieved after three homogenization cycles at 60 MPa and an S/I ratio of 1:30. IPS showed a more fibrous, porous, and looser structure, and had a higher glucose content and Mw (272.85 kDa) compared with EPS, which may be indicative of IPS's higher viscosity and water holding capacity. Although both carbohydrates were acidic, EPS had stronger acidity and thermal stability than IPS; this was accompanied by differences in monosaccharide. IPS exhibited the highest DPPH (EC50 = 1.77 mg/mL) and ABTS (EC50 = 0.12 mg/mL) radical scavenging capacity, in line with IPS's higher total phenol content, while simultaneously showing the lowest HO• scavenging and ferrous ion chelating capacities; thus characterizing IPS as a superior antioxidant and EPS as a stronger metal ion chelator.
Collapse
|
4
|
Galf-containing polysaccharides from medicinal molds: Sources, structures and bioactive properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Wang H, Li J, Jin J, Hu J, Yang C. Enhanced efficiency of melatonin by stepwise-targeting strategy for acute lung injury. Front Bioeng Biotechnol 2022; 10:970743. [PMID: 36159679 PMCID: PMC9490046 DOI: 10.3389/fbioe.2022.970743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress plays a key role in the progress of acute lung injury (ALI), which is an acute, progressive respiratory failure characterized by alveolar capillary injury caused by various external and internal factors other than cardiogenic factors. Pulmonary vascular endothelial cells are the main target cells during ALI, and therefore the mitochondrial targeting antioxidant derivative triphenylphosphine-melatonin (TPP-MLT) was encapsulated in VCAM-1 antibodies-conjugated nanostructured lipid carriers (VCAM@TPP-MLT NLCs) for lung targeting delivery. VCAM@TPP-MLT NLCs could be preferentially internalized by inflammatory endothelial cells in lung tissues, and then the released TPP-MLT from NLCs effectively eliminated the excessive reactive oxide species (ROS) and ameliorated cell apoptosis. Overall, the results suggested that VCAM@TPP-MLT NLCs exhibited remarkable in vitro and in vivo therapeutic effect on ALI, and could be a promising and efficient strategy for the treatment of ALI.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jianbo Jin
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
| | - Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jingbo Hu, ; Chunlin Yang,
| | - Chunlin Yang
- Department of Pharmacy, Ningbo University Affiliated Yangming Hospital, Yuyao, China
- *Correspondence: Jingbo Hu, ; Chunlin Yang,
| |
Collapse
|
6
|
Xiao M, Ren X, Yu Y, Gao W, Zhu C, Sun H, Kong Q, Fu X, Mou H. Fucose-containing bacterial exopolysaccharides: Sources, biological activities, and food applications. Food Chem X 2022; 13:100233. [PMID: 35498987 PMCID: PMC9039932 DOI: 10.1016/j.fochx.2022.100233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Bacterial exopolysaccharides are high molecular weight polysaccharides that are secreted by a wide range of bacteria, with diverse structures and easy preparation. Fucose, fucose-containing oligosaccharides (FCOs), and fucose-containing polysaccharides (FCPs) have important applications in the food and medicine fields, including applications in products for removing Helicobacter pylori and infant formula powder. Fucose-containing bacterial exopolysaccharide (FcEPS) is a prospective source of fucose, FCOs, and FCPs. This review systematically summarizes the common sources and applications of FCPs and FCOs and the bacterial strains capable of producing FcEPS reported in recent years. The repeated-unit structures, synthesis pathways, and factors affecting the production of FcEPS are reviewed, as well as the degradation methods of FcEPS for preparing FCOs. Finally, the bioactivities of FcEPS, including anti-oxidant, prebiotic, anti-cancer, anti-inflammatory, anti-viral, and anti-microbial activities, are discussed and may serve as a reference strategy for further applications of FcEPS in the functional food and medicine industries.
Collapse
Key Words
- 2′-FL, 2′-fucosyllactose
- 3-FL, 3-fucosyllactose
- ABTS, 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonate
- Bacterial exopolysaccharides
- Bioactivity
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- EPS, exopolysaccharides
- FCOs, fucose-containing oligosaccharides
- FCPs, fucose-containing polysaccharides
- FcEPS, fucose-containing EPS
- Food application
- Fucose
- HMOs, human milk oligosaccharides
- MAPK, mitogen-activated protein kinase
- PBMCs, peripheral blood mononuclear cells
- ROS, reactive oxygen species
- SCFAs, short-chain fatty acids
- Structure
Collapse
Affiliation(s)
- Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Wei Gao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Han Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, Jiangxi Province, People's Republic of China
- Corresponding authors.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong Province, People's Republic of China
- Corresponding authors.
| |
Collapse
|
7
|
Kheyrandish S, Rastgar A, Hamidi M, Sajjadi SM, Sarab GA. Evaluation of anti-tumor effect of the exopolysaccharide from new cold-adapted yeast, Rhodotorula mucilaginosa sp. GUMS16 on chronic myeloid leukemia K562 cell line. Int J Biol Macromol 2022; 206:21-28. [PMID: 35217074 DOI: 10.1016/j.ijbiomac.2022.02.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
Abstract
Recently, the development and application of fungal exopolysaccharides (EPS) as natural biopolymers are on the rise. The present study is based on the investigation of possible antiproliferative and antioxidant activities of EPS from the Rhodotorula mucilaginosa sp. GUMS16 on BCR-ABL positive cells (K562). The cytotoxicity, colony formation assays lactate and dehydrogenase (LDH) activity were performed to assess the possible cancer cell death. To elucidate the underlying antiproliferative mechanism of the EPS, cell cycle analysis following real-time PCR (gene expression assessment) were evaluated. The results indicated that, the EPS with an IC50 dose of 1500 μg/ml, reduced the viability of K562 cells without having toxic effects on normal cells as well as decrease in size and number of colonies in EPS-treated group (p < 0.0001). The increase of LDH was 2.75 times more than the control (p < 0.0001). Gene expression revealed up- and down-regulation of apoptotic and anti-apoptotic genes in EPS group compared with the control. Moreover, the DPPH scavenging activity of the EPS in treated cells was significantly higher than the control group (p < 0.0001). Taken together, we concluded that the EPS from GUMS16 strain is able to inhibit the growth of K562 cells besides having antioxidant activities.
Collapse
Affiliation(s)
- Setare Kheyrandish
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhossein Rastgar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran; BioMatter-Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium.
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
8
|
Saravanakumar K, Park S, Sathiyaseelan A, Mariadoss AVA, Park S, Kim SJ, Wang MH. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants (Basel) 2021; 10:1372. [PMID: 34573005 PMCID: PMC8471597 DOI: 10.3390/antiox10091372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
In this work, a total of six polysaccharides were isolated from culture filtrate (EPS1, EPS2) and mycelia (IPS1-IPS4) of Trichoderma harzianum. The HPLC analysis results showed that EPS1, EPS2, IPS1, and IPS2 were composed of mannose, ribose, glucose, galactose, and arabinose. The FT-IR, 1H, and 13C NMR chemical shifts confirmed that the signals in EPS1 mainly consist of (1→4)-linked α-d-glucopyranose. EPS1 and IPS1 showed a smooth and clean surface, while EPS2, IPS2, and IPS3 exhibited a microporous structure. Among polysaccharides, EPS1 displayed higher ABTS+ (47.09 ± 2.25% and DPPH (26.44 ± 0.12%) scavenging activities, as well as higher α-amylase (69.30 ± 1.28%) and α-glucosidase (68.22 ± 0.64%) inhibition activity than the other polysaccharides. EPS1 exhibited high cytotoxicity to MDA-MB293 cells, with an IC50 of 0.437 mg/mL, and this was also confirmed by cell staining and FACS assays. These results report the physicochemical and bioactive properties of polysaccharides from T. harzianum.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea;
| | - Anbazhagan Sathiyaseelan
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Arokia Vijaya Anand Mariadoss
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Soyoung Park
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| | - Seong-Jung Kim
- Department of Physical Therapy, College of Health and Science, Kangwon National University, Samcheok-si 24949, Korea
| | - Myeong-Hyeon Wang
- Department of Bio Health Convergence, Kangwon National University, Chuncheon 200-701, Korea; (K.S.); (A.S.); (A.V.A.M.); (S.P.)
| |
Collapse
|
9
|
Corso CR, Mulinari Turin de Oliveira N, Moura Cordeiro L, Sauruk da Silva K, da Silva Soczek SH, Frota Rossato V, Fernandes ES, Maria-Ferreira D. Polysaccharides with Antitumor Effect in Breast Cancer: A Systematic Review of Non-Clinical Studies. Nutrients 2021; 13:2008. [PMID: 34200897 PMCID: PMC8230509 DOI: 10.3390/nu13062008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose: To review the effects of polysaccharides and their proposed mechanisms of action in breast cancer experimental models. Data sources, selection, and extraction: Articles were selected by using PubMed, ScienceDirect, Scopus, and Medline, assessed from 1 May 2019 to 1 July 2020. The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42020169103. Results: Most of the studies explore algae polysaccharides (43.2%), followed by mushrooms (13.5%), plants (13.5%), fruits (10.8%), fungus (2.7%), bacteria, (2.7%), and sea animals (2.7%). A total of 8.1% investigated only in vitro models, 62.1% evaluated only in vivo models, and 29.7% evaluated in vitro and in vivo models. The mechanism of action involves apoptosis, inhibition of cellular proliferation, angiogenesis, and antimetastatic effects through multiple pathways. Conclusions: Findings included here support further investigations on the anti-tumor effect of polysaccharides. Some polysaccharides, such as fucoidan and β-glucans, deserve detailed and structured studies aiming at translational research on breast tumors, since they are already used in the clinical practice of other proposals of human health.
Collapse
Affiliation(s)
- Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Leonardo Moura Cordeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Suzany Hellen da Silva Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Virgilio Frota Rossato
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (C.R.C.); (N.M.T.d.O.); (L.M.C.); (K.S.d.S.); (S.H.d.S.S.); (V.F.R.); (E.S.F.)
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
10
|
李 萍, 袁 平, 阙 月, 刘 筱, 王 国. [Synergistic effect of polysaccharide from Trichoderma pseudokoningii and oxaliplatin on colorectal cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:504-513. [PMID: 33963708 PMCID: PMC8110445 DOI: 10.12122/j.issn.1673-4254.2021.04.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the synergistic inhibitory effect of polysaccharide from Trichoderma pseudokoningii (EPS) and oxaliplatin (Oxa) on colorectal cancer (CRC) HCT116 cells. OBJECTIVE HCT116 cells were treated with 8 μg/mL Oxa and 100 μg/mL EPS alone or in combination, and the changes in cell viability was assessed with CCK-8 assay. CompuSyn software was used for fitting the Fa-CI curve to evaluate the combined effect of the two agents. Flow cytometry was performed to analyze cell apoptosis and cell cycle changes, and wound healing assay and Transwell assay were used to examine the migration ability of the treated cells. Oxa- and EPS-related genes and CRC-related genes were intersected for protein-protein interaction (PPI) analysis and GO and KEGG enrichment analyses. OBJECTIVE Treatment with Oxa alone or in combination with EPS significantly inhibited the viability of HCT116 cells in a dose- and time-dependent manner, and the two agents exhibited a significant synergistic effect (CI < 1). The combined treatment with Oxa and EPS resulted in a significantly higher total cell apoptosis rate and a higher percentage of cells in S phase than Oxa alone and the control treatment (P < 0.05). EPS and Oxa alone both inhibited the migration of HCT116 cells, and their combination produced a stronger inhibitory effect. GO enrichment analysis of the key genes related with Oxa, EPS and CRC suggested that these genes were involved mainly in such biological processes as exogenous apoptosis signaling, cell response to chemical stress, and reactive oxygen metabolism; KEGG analysis showed that these genes were involved in the pathways of drug resistance, apoptosis and angiogenesis. OBJECTIVE EPS and Oxa can synergistically inhibit the proliferation of HCT116 cells possibly through the PI3K-Akt, MAPK, VEGF, and p53 signaling pathways.
Collapse
Affiliation(s)
- 萍 李
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 平川 袁
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 月月 阙
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 筱琴 刘
- 重庆化工职业学院//制药领域关键共性工艺重庆市高等职业技术院校应用技术推广中心,重庆 401220Chongqing Chemical Industry Vocational College, Chongqing Municipal Vocational and Technical College Application Technology Promotion Center for Key Common Technology in Pharmaceuticals, Chongqing 401220, China
| | - 国栋 王
- 皖南医学院药物研发中心//药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
- 安徽省多糖药物工程技术研究中心//活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| |
Collapse
|
11
|
Emam AA, Abo-Elkhair SM, Sobh M, El-Sokkary AMA. Role of exopolysaccharides (EPSs) as anti-Mir-155 in cancer cells. Heliyon 2021; 7:e06698. [PMID: 33869874 PMCID: PMC8045046 DOI: 10.1016/j.heliyon.2021.e06698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
Micro-RNAs (MiRNAs) are a class of small non-coding RNAs that regulate cellular gene expression. MiR-155 overexpression has been implicated in many types of cancer. Besides, miR-155 appears to help tumor invasion and migration and works as a moderator of epithelial-to-mesenchymal transition (EMT). Exopolysaccharides (EPSs) are a large group of natural heterogeneous polymers of sugars with a biologically antitumor effect. Herein, we test a hypothesis that EPS might promote its anti-tumorigenic effect via regulating miR-155 expression and its target pathways. Expression of miR-155 and a panel of targeted genes were investigated by real-time PCR. In our study, we have succeeded in the extraction, purification of exopolysaccharide with great cytotoxicity to different cancer cell lines, HepG II, Caco-2, and MCF-7. We reported that EPSs have a suppression effect on the oncogenic miR-155. In conclusion, this work clarifies a new possible mechanism for the anti-tumorigenic effect of EPSs in cancer cells and provides insights into the biological pathways through which EPSs act. Moreover, it paves the way for new prospective cancer therapeutics as anti-miRNA.
Collapse
Affiliation(s)
- Ahmed A Emam
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Mohamed Sobh
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Egypt.,Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Egypt
| | - Ahmed M A El-Sokkary
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Egypt
| |
Collapse
|
12
|
Characterization and antitumor activity of novel exopolysaccharide APS of Lactobacillus plantarum WLPL09 from human breast milk. Int J Biol Macromol 2020; 163:985-995. [PMID: 32629060 DOI: 10.1016/j.ijbiomac.2020.06.277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Two exopolysaccharides, NPS and APS, were isolated from L. plantarum WLPL09 and purified by ion-exchange chromatography. The structural analyses showed that molecular weight of NPS and APS were 72.60 kDa and 33.22 kDa, respectively. NPS was mainly composed of mannose and glucose, in molar ratio of 85.35:14.65, while APS was composed of mannose, glucose and galactose, in molar ratio of 89.69:8.65:1.66. In in vitro antitumor assays, APS displayed strong anti-proliferative effect against HepG2 hepatocellular carcinoma cells and HCT-8 colon adenocarcinoma cells in a dose-dependent manner. Morphological and flow cytometry analyses revealed that APS strongly induced apoptosis of HepG2 and HCT-8, especially for HCT-8. Furthermore, APS significantly up-regulated the mRNA level of apoptosis-related genes in cancer cells, and remarkably improved the activities of caspase-3, -8 and -9 in HepG2, caspase-3 and -8 in HCT-8. These results suggest APS might be explored as a potential, natural antitumor agent for functional food.
Collapse
|
13
|
Sun M, Liu W, Song Y, Tuo Y, Mu G, Ma F. The Effects of Lactobacillus plantarum-12 Crude Exopolysaccharides on the Cell Proliferation and Apoptosis of Human Colon Cancer (HT-29) Cells. Probiotics Antimicrob Proteins 2020; 13:413-421. [PMID: 32844363 DOI: 10.1007/s12602-020-09699-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exopolysaccharide (EPS) of some Lactobacillus strains has been reported to exert anti-cancer activities. In this study, the effects of crude EPSs produced by four Lactobacillus plantarum strains (Lactobacillus plantarum-12, L. plantarum-14, L. plantarum-32, and L. plantarum-37) on HT-29 cell proliferation and apoptosis were studied. The results showed that the inhibition rate of the crude EPS produced by L. plantarum-12 on HT-29 cell proliferation was significantly higher than that of the EPS produced by the other three strains. L. plantarum-12 crude EPS (50, 100, 250, 500 μg/ml) exerted inhibitory effects on the expression of proliferating cell nuclear antigen (PCNA) in HT-29 cells in a positive dose-dependent manner. The reactive oxygen species (ROS) level and apoptosis rate were also increased in HT-29 cells treated with different concentrations of L. plantarum-12 crude EPS compared with control cells. Further studies found that the expression of the pro-apoptotic proteins Bax, Cyt C, caspase-3, caspase-8 and caspase-9 was upregulated and that the expression of the anti-apoptosis protein Bcl-2 was decreased in HT-29 cells treated with L. plantarum-12 crude EPS compared with control cells. The results suggested that the EPS produced by L. plantarum-12 could inhibit the proliferation of the human colon cancer cell line HT-29 through the mitochondrial pathway.
Collapse
Affiliation(s)
- Mengying Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Wenwen Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Yinglong Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.,Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian, 116034, People's Republic of China
| | - Fenglian Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
14
|
Zhang J, Liu L, Ren Y, Chen F. Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol 2019; 128:761-767. [DOI: 10.1016/j.ijbiomac.2019.02.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 02/08/2023]
|
15
|
Yuan P, Fang F, Shao T, Li P, Hu W, Zhou Y, Wang G, Han J, Chen K. Structure and Anti-Tumor Activities of Exopolysaccharides from Alternaria mali Roberts. Molecules 2019; 24:molecules24071345. [PMID: 30959773 PMCID: PMC6480686 DOI: 10.3390/molecules24071345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, an extracellular polysaccharide from Alternaria mali Roberts (AMEP) was extracted, and its structure was characterized, in addition to its antitumor activity in vitro. Neutral polysaccharide AMEP-1 and anionic polysaccharide AMEP-2 were isolated from AMEP, and their monosaccharide compositions consisted of mannose (Man), glucose (Glc), and galactose (Gal) but at different ratios. The linking mode of both AMEP-1 and AMEP-2 is Manp-(1→4) and Glcp-(1→6), and the branched chains are connected to the main chain through O-6. AMEP-2 inhibited the proliferation of BGC-823 cells in a time- and concentration-dependent manner. AMEP-2 also induced the apoptosis of BGC-823 cells, and showed anti-tumor effects by inducing cell cycle arrest in the S phase, reactive oxygen species production, and mitochondrial membrane potential reduction in BGC-823 cells. Therefore, AMEP-2 shows potential for further development as a novel anti-tumor agent.
Collapse
Affiliation(s)
- Pingchuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Fang Fang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Taili Shao
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Ping Li
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Wei Hu
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China.
| | - Yuyan Zhou
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Guodong Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Jun Han
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-Molecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu 241000, China.
- School of Life Science, National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
16
|
Xu L, Lu Y, Cong Y, Zhang P, Han J, Song G, Wang G, Chen K. Polysaccharide produced by Bacillus subtilis using burdock oligofructose as carbon source. Carbohydr Polym 2019; 206:811-819. [DOI: 10.1016/j.carbpol.2018.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/10/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022]
|
17
|
Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydr Polym 2019; 205:63-71. [DOI: 10.1016/j.carbpol.2018.09.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/20/2022]
|
18
|
Zheng GQ, Ji HY, Zhang SJ, Yu J, Liu AJ. Selenious-β-lactoglobulin induces the apoptosis of human lung cancer A549 cells via an intrinsic mitochondrial pathway. Cytotechnology 2018; 70:1551-1563. [PMID: 30097856 PMCID: PMC6269361 DOI: 10.1007/s10616-018-0248-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
In this study, the cytotoxic activity of selenious-β-lactoglobulin (Se-β-Lg) and the anticancer mechanism were investigated in human lung cancer A549 cells in vitro. MTT assay showed that Se-β-Lg at 200 μg/mL exhibited a significant suppression effect on A549 cells and the maximum inhibition rate reached 90% after 72 h treatment. Flow cytometry analysis revealed that 200 μg/mL of Se-β-Lg induced cell cycle arrest at G0/G1 phase. Cell apoptosis was induced via the generation of reactive oxygen species (ROS) and the decrease of mitochondrial membrane potential (ΔΨm) in a time-dependent manner. Furthermore, Se-β-Lg suppressed the expression of Bcl-2 and improved the level of Bax, leading to the release of cytochrome c and a higher expression of caspase-3 in A549 cells. In summary, Se-β-Lg could induce apoptosis in A549 cells via an intrinsic mitochondrial pathway and it might serve as a potential therapeutic agent for human lung cancer.
Collapse
Affiliation(s)
- Guo-Qiang Zheng
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China
| | - Hai-Yu Ji
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China
- QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Shao-Jing Zhang
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China
| | - Juan Yu
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China
- QingYunTang Biotech (Beijing) Co., Ltd., No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - An-Jun Liu
- Tianjin Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China.
| |
Collapse
|
19
|
Isobavachalcone Induces ROS-Mediated Apoptosis via Targeting Thioredoxin Reductase 1 in Human Prostate Cancer PC-3 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1915828. [PMID: 30410640 PMCID: PMC6206523 DOI: 10.1155/2018/1915828] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Prostate carcinoma causes a great number of deaths every year; therefore, there is an urgent need to find new drug candidates to treat advanced prostate cancer. Isobavachalcone (IBC) is the chalcone composition of Psoralea corylifolia Linn used in traditional Chinese medicine. Although IBC demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of IBC have not been fully defined. In our study, we found that IBC may induce reactive oxygen species- (ROS-) mediated apoptosis via interaction with a selenocysteine (Sec) containing the antioxidant enzyme thioredoxin reductase 1 (TrxR1), and induce lethal endoplasmic reticulum (ER) stress by inhibiting TrxR1 activity and increasing ROS levels in human prostate cancer PC-3 cells. Furthermore, we also observed that knocking down TrxR1 would sensitized cancer cells to IBC treatment. Our study provides evidence for the anticancer mechanism of IBC with TrxR1 as a potential target.
Collapse
|
20
|
Cardioprotection activity and mechanism of Astragalus polysaccharide in vivo and in vitro. Int J Biol Macromol 2018; 111:947-952. [DOI: 10.1016/j.ijbiomac.2018.01.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
|
21
|
Saravanakumar K, Chelliah R, Ramakrishnan SR, Kathiresan K, Oh DH, Wang MH. Antibacterial, and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microb Pathog 2018; 115:338-342. [DOI: 10.1016/j.micpath.2017.12.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/20/2023]
|
22
|
Li L, Huang T, Lan C, Jia A, Mao Y. The growth inhibitory effects of garlic polysaccharide combined with cis-dichlorodiamine platinum on human HepG2 cells. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Zha XQ, Deng YY, Li XL, Wang JF, Pan LH, Luo JP. The core structure of a Dendrobium huoshanense polysaccharide required for the inhibition of human lens epithelial cell apoptosis. Carbohydr Polym 2017; 155:252-260. [DOI: 10.1016/j.carbpol.2016.08.087] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
|
24
|
Yoon JY, Park JH, Kim EJ, Park BS, Yoon JU, Shin SW, Kim DW. Dexmedetomidine attenuates H 2O 2-induced cell death in human osteoblasts. J Dent Anesth Pain Med 2016; 16:295-302. [PMID: 28879318 PMCID: PMC5564195 DOI: 10.17245/jdapm.2016.16.4.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α2-adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H2O2-induced oxidative stress and the mechanism of H2O2-induced cell death in normal human fetal osteoblast (hFOB) cells. Methods Cells were divided into three groups: control group—cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H2O2) group—cells were exposed to H2O2 (200 µM) for 2 h, and Dex/H2O2 group—cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H2O2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Results Cell viability was significantly decreased in the H2O2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H2O2-induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H2O2 group. In western blot analysis, bone-related protein was increased in the Dex/H2O2 group. Conclusions We demonstrated the potential therapeutic value of dexmedetomidine in H2O2-induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Jeong-Hoon Park
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Uk Yoon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sang-Wook Shin
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Do-Wan Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Republic of Korea
| |
Collapse
|
25
|
Jiang S, Zhu R, He X, Wang J, Wang M, Qian Y, Wang S. Enhanced photocytotoxicity of curcumin delivered by solid lipid nanoparticles. Int J Nanomedicine 2016; 12:167-178. [PMID: 28053531 PMCID: PMC5191853 DOI: 10.2147/ijn.s123107] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Curcumin (Cur) is a promising photosensitizer that could be used in photodynamic therapy. However, its poor solubility and hydrolytic instability limit its clinical use. The aim of the present study was to encapsulate Cur into solid lipid nanoparticles (SLNs) in order to improve its therapeutic activity. The Cur-loaded SLNs (Cur-SLNs) were prepared using an emulsification and low-temperature solidification method. The functions of Cur and Cur-SLNs were studied on the non-small cell lung cancer A549 cells for photodynamic therapy. The results revealed that Cur-SLNs induced ~2.27-fold toxicity higher than free Cur at a low concentration of 15 μM under light excitation, stocking more cell cycle at G2/M phase. Cur-SLNs could act as an efficient drug delivery system to increase the intracellular concentration of Cur and its accumulation in mitochondria; meanwhile, the hydrolytic stability of free Cur could be improved. Furthermore, Cur-SLNs exposed to 430 nm light could produce more reactive oxygen species to induce the disruption of mitochondrial membrane potential. Western blot analysis revealed that Cur-SLNs increased the expression of caspase-3, caspase-9 proteins and promoted the ratio of Bax/Bcl-2. Overall, the results from these studies demonstrated that the SLNs could enhance the phototoxic effects of Cur.
Collapse
Affiliation(s)
- Shan Jiang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Rongrong Zhu
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Xiaolie He
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Jiao Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Mei Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| | - Yechang Qian
- Department of Respiratory Disease, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People's Republic of China
| | - Shilong Wang
- Tenth People's Hospital, School of Life Science and Technology, Tongji University
| |
Collapse
|
26
|
Structural characterization of a novel neutral polysaccharide from Lentinus giganteus and its antitumor activity through inducing apoptosis. Carbohydr Polym 2016; 154:231-40. [DOI: 10.1016/j.carbpol.2016.08.059] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
|
27
|
Structure Studies of the Extracellular Polysaccharide from Trichoderma sp. KK19L1 and Its Antitumor Effect via Cell Cycle Arrest and Apoptosis. Appl Biochem Biotechnol 2016; 182:128-141. [DOI: 10.1007/s12010-016-2315-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 02/02/2023]
|
28
|
Exopolysaccharide from Trichoderma pseudokoningii promotes maturation of murine dendritic cells. Int J Biol Macromol 2016; 92:1155-1161. [PMID: 27341784 DOI: 10.1016/j.ijbiomac.2016.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are the key regulators of immune responses. In this study, the effect of an exopolysaccharide (EPS) from the culture broth of Trichoderma pseudokoningii on the phenotypic and functional maturation of murine DCs and its underlying molecular mechanisms were investigated. It showed that EPS induced the morphological changes of DCs and the enhanced expression of DCs featured surface molecules CD11c, CD86, CD80 and major histocompatibility complex II (MHC-II). Flow cytometry analysis showed that the treatment with EPS could reduce FITC-dextran uptake by DCs. Sequentially, the results of ELISA indicated that EPS could increase the production of interleukin-12p70 (IL-12p70) in culture supernatant of DCs. Immunofluorescence staining and western blot analysis further revealed that EPS significantly prompted nuclear factor (NF)-κB subunit p65 translocation, IκB-α protein degradation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation. And the production of IL-12p70 was significantly decreased in condition of the inhibition of p38 or NF-κB signaling pathway. These findings suggested that EPS could induce DCs maturation through both p38 MAPK and NF-κB signaling pathways.
Collapse
|
29
|
Wang X, Miao J, Yan C, Ge R, Liang T, Liu E, Li Q. Chitosan attenuates dibutyltin-induced apoptosis in PC12 cells through inhibition of the mitochondria-dependent pathway. Carbohydr Polym 2016; 151:996-1005. [PMID: 27474647 DOI: 10.1016/j.carbpol.2016.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Dibutyltin (DBT) which was widely used as biocide and plastic stabilizer has been described as a potent neurotoxicant. Chitosan (CS), a natural nontoxic biopolymer, possesses a variety of biological activities including antibacterial, antifungal, free radical scavenging and neuroprotective activities. The present study was undertaken to investigate the protective effects of CS against DBT-induced apoptosis in rat pheochromocytoma (PC12) cells and the underlying mechanisms in vitro. Our results demonstrated that pretreatment with CS significantly increased the cell viability and decreased lactate dehydrogenase (LDH) release induced by DBT in a dose-dependent manner. Meanwhile, DBT-induced cell apoptosis, mitochondrial membrane potential (MMP) disruption, and generation of intracellular reactive oxygen species (ROS) were attenuated by CS. Real-time PCR assay showed that DBT markedly enhanced the mRNA levels of Bax, Bad, cytochrome-c and Apaf-1, reduced the Bcl-2 and Bcl-xL mRNA levels, while these genes expression alteration could be partially reversed by CS treatment. Furthermore, CS also inhibited the DBT-inducted activation of caspase-9, and -3 at mRNA and protein expression levels. Taken together, these results suggested that CS could protect the PC12 cells from apoptosis induced by DBT through inhibition of the mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Xiaorui Wang
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Junqiu Miao
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Chaoqun Yan
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Rui Ge
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Taigang Liang
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China.
| | - Enli Liu
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, No. 56, Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China.
| |
Collapse
|
30
|
Wang G, Zhu L, Yu B, Chen K, Liu B, Liu J, Qin G, Liu C, Liu H, Chen K. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation. Carbohydr Polym 2016; 149:112-20. [PMID: 27261736 DOI: 10.1016/j.carbpol.2016.04.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
Abstract
In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1.
Collapse
Affiliation(s)
- Guodong Wang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Bo Yu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Chen
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bo Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guozheng Qin
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Chunyan Liu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Kaoshan Chen
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu 241002, China; School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|