1
|
Menchinskaya ES, Gorbach VI, Pislyagin EA, Gorpenchenko TY, Pimenova EA, Guzhova IV, Aminin DL, Yermak IM. Interaction of Liposomes Containing the Carrageenan/Echinochrome Complex with Human HaCaT Keratinocytes In Vitro. Mar Drugs 2024; 22:561. [PMID: 39728136 DOI: 10.3390/md22120561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Liposomal drug delivery systems are successfully used in various fields of medicine for external and systemic applications. Marine organisms contain biologically active substances that have a unique structure and exhibit a wide range of biological activities. Polysaccharide of red seaweed (carrageenan (CRG)), and water-insoluble sea urchin pigment (echinochrome (Ech)) interact with each other and form a stable complex. We included the CRG/Ech complex in liposomes for better permeability into cells. In our research, tetramethylrhodamine isothiocyanate TRITC-labeled CRG was synthesized to study the interaction of the complex encapsulated in liposomes with human epidermal keratinocytes (HaCaTs) widely used to expose the skin to a variety of substances. Using confocal microscopy, we found that liposomes were able to penetrate HaCaT cells with maximum efficiency within 24 h, and pre-incubation of keratinocytes with liposomes resulted in the delivery of the CRG/Ech complex into the cytoplasm. We investigated the anti-inflammatory effects of liposomes, including the lysosomal regulation, increased intracellular ROS levels, and increased NO synthesis in lipopolysaccharide (LPS)- or Escherichia coli (E. coli)-induced inflamed skin cells. Liposomes containing the CRG/Ech complex significantly reduced lysosomal activity by 26% in LPS-treated keratinocytes and decreased ROS levels in cells by 23% after LPS exposure. It was found that liposomes with the complex improved the migration of HaCaT keratinocytes incubated with high-dose LPS by 47%. The results of the work, taking into account the good permeability of liposomes into keratinocytes, as well as the anti-inflammatory effect on cells treated with LPS or E. coli, show the prospects of using liposomes containing the CRG/Ech complex as an anti-inflammatory agent in the fight against skin infections.
Collapse
Affiliation(s)
- Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Vladimir I Gorbach
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Evgeniya A Pimenova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Irina V Guzhova
- Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
2
|
The Anti-Inflammatory Effect of Carrageenan/Echinochrom Complex at Experimental Endotoxemia. Int J Mol Sci 2022; 23:ijms231911702. [PMID: 36233004 PMCID: PMC9570226 DOI: 10.3390/ijms231911702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The anti-inflammatory effects of the CRG/Ech complex in LPS-induced endotoxemia were investigated in vivo in mice and in vitro in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The results indicated that the CRG/Ech complex suppressed the LPS-induced inflammatory response by reducing the production of ROS and NO in the macrophages. Furthermore, the in vivo experiment indicated that the CRG/Ech complex minimized disorders of the physiological and metabolic processes in mice subjected to LPS intoxication and reduced the levels of proinflammatory cytokines in the mouse serum. The preventive administration of the CRG/Ech complex to mice prevented endotoxin-induced damage in the mouse model of endotoxemia, increased the mice’s resistance to LPS, and prevented increases in the levels of proinflammatory cytokines (TNFα). In this work, we showed by the molecular docking that Ech interacted with carrageenan, and that H-donor and H-acceptor bonds are involved in the formation of the complex.
Collapse
|
3
|
Yermak IM, Volod’ko AV, Khasina EI, Davydova VN, Chusovitin EA, Goroshko DL, Kravchenko AO, Solov’eva TF, Maleev VV. Inhibitory Effects of Carrageenans on Endotoxin-Induced Inflammation. Mar Drugs 2020; 18:E248. [PMID: 32397584 PMCID: PMC7281451 DOI: 10.3390/md18050248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
The inhibitory effects of carrageenans (CRGs) on lipopolysaccharide (LPS) induced inflammation in a mouse model of endotoxemia and in complex therapy of patients with enteric infections of Salmonella etiology were studied. The atomic force microscopy (AFM) examination of LPS and its mixture with CRGs showed that the LPS morphology is significantly changed under the action of κ- and κ/β-CRGs. CRGs were able to increase the synthesis of anti-inflammatory interleukin 10 (IL-10) in vitro, and, at low concentrations, their activity in the mixture with LPS was higher. The protective effect of CRGs against Escherichia coli LPS was studied in vivo by monitoring the biochemical and pathomorphological parameters. The κ- and κ/β-CRGs and food supplement "Carrageenan-FE" increased the nonspecific resistance of mice to E. coli LPS at the expense of the inhibition of processes of thymus involution, adrenals hypertrophy, thyroid atrophy, hypercorticoidism, glycogenolysis, and lactate acidosis. The estimation of the therapeutic action of food supplement Carrageenan-FE in complex therapy of patients with enteric infections of Salmonella etiology is given. Carrageenan-FE restores the system of hemostasis and corrects some biochemical indicators and parameters in the immune systems of patients. These results allow us to hope for the practical application of CRGs for lowering the endotoxemia level in patients under the development of the infectious process caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Irina M. Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (A.V.V.); (V.N.D.); (A.O.K.); (T.F.S.)
| | - Aleksandra V. Volod’ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (A.V.V.); (V.N.D.); (A.O.K.); (T.F.S.)
| | - Eleonora I. Khasina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia;
| | - Viktoriya N. Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (A.V.V.); (V.N.D.); (A.O.K.); (T.F.S.)
| | - Evgeniy A. Chusovitin
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 5 Radio St., Vladivostok 690041, Russia; (E.A.C.); (D.L.G.)
| | - Dmitry L. Goroshko
- Institute for Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 5 Radio St., Vladivostok 690041, Russia; (E.A.C.); (D.L.G.)
- Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690950, Russia
| | - Anna O. Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (A.V.V.); (V.N.D.); (A.O.K.); (T.F.S.)
| | - Tamara F. Solov’eva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russia; (A.V.V.); (V.N.D.); (A.O.K.); (T.F.S.)
| | - Victor V. Maleev
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 3a, Novogireyevskaya St., Moscow 111123, Russia;
| |
Collapse
|