1
|
Wu R, Ying R, Deng Z, Huang M, Zeng S. Hydration and mechanical properties of arabinoxylan, (1,3;1,4)-β-glucan, and cellulose multilayer films simulating the cell wall of wheat endosperm. Int J Biol Macromol 2024; 260:129271. [PMID: 38199557 DOI: 10.1016/j.ijbiomac.2024.129271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The cell walls of wheat endosperm, which play a pivotal role in seed germination, exhibit a laminated structure primarily composed of polysaccharides. In this study, composite multilayer films were prepared using arabinoxylan (AX), (1,3;1,4)-β-D-glucan (MLG), and cellulose nanofibers (CNFs), and the effect of polymer blend structure on cell wall hydration and mechanical properties was investigated. Atomic force microscopy and X-ray diffraction indicated that the network structure of MLG/CNF exhibits a higher degree of continuity and uniformity compared to that of AX/CNF. Mechanically, the extensive linkages between MLG and CNFs chains enhance the mechanical properties of the films. Moreover, water diffusion experiments and TD-NMR analysis revealed that water molecules diffuse faster in the network structure formed by AX. We propose a structural model of the endosperm cell wall, in which the CNFs polymer blend coated with MLG serves as the framework, and the AX network fills the gaps between them, providing diffusion channels for water molecules.
Collapse
Affiliation(s)
- Ruochen Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiwen Deng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, PR China
| | - Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Zhang W, Jia Y, Guo C, Devahastin S, Hu X, Yi J. Effect of compositions and physical properties on 3D printability of gels from selected commercial edible insects: Role of protein and chitin. Food Chem 2024; 433:137349. [PMID: 37683480 DOI: 10.1016/j.foodchem.2023.137349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Compositions and rheological properties of alternative protein sources, including honey bee pupa, grasshopper, cricket, earthworm, and scorpion, and their relationships with 3D printing behaviors were investigated. Protein was found to be the major composition in all insects, while chitin exhibited the most variation. At optimal moisture contents, honey bee pupa and earthworm gels displayed sufficient fluidity but resulted in unstable printed structures, as observed visually and microstructurally. Grasshopper and scorpion gels possessed weak fluidity but produced more stable printed structures. Cricket gel exhibited the most balanced flow behavior and self-supportability. Protein-to-chitin mass ratio proved to be a main factor affecting the 3D printing behavior of the gels. Possible mechanisms on how compositions and properties affected the printing behavior of the gels were proposed. Suggestions for improving the 3D printability of insect and invertebrate resembling insect gels were provided based on these proposed mechanisms.
Collapse
Affiliation(s)
- Weiwei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yisen Jia
- Shaanxi Product Quality Supervision and Inspection Research Institute, Xi'an 710054, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Sakamon Devahastin
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
3
|
Meng Y, Meng Q, Li C, Wang M, Li S, Ying J, Zheng H, Bai S, Xue Y, Shen Q. A comparison between partially peeled hulless barley and whole grain hulless barley: beneficial effects on the regulation of serum glucose and the gut microbiota in high-fat diet-induced obese mice. Food Funct 2023; 14:886-898. [PMID: 36537611 DOI: 10.1039/d2fo02098j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Though the hypoglycemic effect of whole grain hulless barley (Hordeum vulgare L.) has been documented, whether glucose metabolism would be improved by hulless barley with moderate peeling is still unclear. The purpose of this study was to compare the differences in glucose metabolism and gut microbiota between partially (10%) peeled hulless barley (PHB) and whole grain hulless barley (WHB) intervention in obese mice induced by a high-fat diet. The results showed that both PHB and WHB interventions significantly improved the impaired glucose tolerance, fat accumulation in fat and liver tissues, and the impaired intestinal barrier in mice. The dysbiosis of gut microbiota was improved and the relative abundance of some beneficial bacteria such as genera Lactobacillus, Bifidobacterium, Ileibacterium, and norank_f__Mutibaculaceae was increased by both, PHB and WHB, interventions. Spearman correlation analysis revealed that the abundance of Bifidobacterium was negatively correlated with the area under the blood glucose curve. In conclusion, our results provide evidence that hulless barley improved the gut microbiota and impaired glucose tolerance in mice, and also showed that there was little loss of hypoglycemic effect even when hulless barley was moderately peeled.
Collapse
Affiliation(s)
- Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.
| | - Qingjia Meng
- COFCO Nutrition and Health Research Institute Co., Ltd, Beijing, 100020, P.R. China.
| | - Chang Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.
| | - Mengqian Wang
- COFCO Nutrition and Health Research Institute Co., Ltd, Beijing, 100020, P.R. China.
| | - Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.
| | - Jian Ying
- COFCO Nutrition and Health Research Institute Co., Ltd, Beijing, 100020, P.R. China.
| | - Hao Zheng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China.
| | - Shuqun Bai
- COFCO Nutrition and Health Research Institute Co., Ltd, Beijing, 100020, P.R. China.
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China. .,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, P.R. China.,Key Laboratory of Plant Protein and Grain Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P.R. China. .,National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, P.R. China.,Key Laboratory of Plant Protein and Grain Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|
5
|
Obadi M, Sun J, Xu B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res Int 2021; 140:110065. [DOI: 10.1016/j.foodres.2020.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
|
6
|
Ribeiro AM, Magalhães M, Veiga F, Figueiras A. Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Feng G, Flanagan BM, Williams BA, Mikkelsen D, Yu W, Gidley MJ. Extracellular depolymerisation triggers fermentation of tamarind xyloglucan and wheat arabinoxylan by a porcine faecal inoculum. Carbohydr Polym 2018; 201:575-582. [DOI: 10.1016/j.carbpol.2018.08.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023]
|
8
|
Zhao Y, Chen Z, Wu T. Cryogelation of alginate improved the freeze-thaw stability of oil-in-water emulsions. Carbohydr Polym 2018; 198:26-33. [DOI: 10.1016/j.carbpol.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Accepted: 06/02/2018] [Indexed: 11/26/2022]
|
9
|
Gartaula G, Dhital S, Netzel G, Flanagan BM, Yakubov GE, Beahan CT, Collins HM, Burton RA, Bacic A, Gidley MJ. Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydr Polym 2018; 196:199-208. [DOI: 10.1016/j.carbpol.2018.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/01/2022]
|
10
|
Zhu K, Chen X, Yu D, He Y, Song G. Preparation and characterisation of a novel hydrogel based on Auricularia polytricha β-glucan and its bio-release property for vitamin B 12 delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2617-2623. [PMID: 29064580 DOI: 10.1002/jsfa.8754] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/25/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND This study investigates a novel hydrogel synthesis method and its bio-release property. This hydrogel, with a three-dimensional network structure based on Auricularia polytricha β-glucan, was characterised by means of Fourier transform infrared spectroscopy, 1 H NMR and scanning electron microscopy. Vitamin B12 (VB12 , cobalamin) as a hydrophilic functional food component was entrapped into these hydrogels. The in vitro release profile of VB12 was established in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). RESULTS The results showed that the hydrogel had medium pore size from 30 to 300 µm, and the swelling ratio increased with the degree of substitution. The hydrogel demonstrated good stability in SGF and bio-release capability in SIF for VB12 . The accumulated release rate is about 80% in SIF and below 20% in SGF, which indicated the significant different release property in stomach and intestine. CONCLUSION The Auricularia polytricha β-glucan-based hydrogel has a good swelling ratio, pepsin stability and pancrelipase-catalysed biodegradation property. The bio-release rate is significantly different in SIF and SGF, which indicated that this hydrogel could be a good intestinal target carrier of VB12 . © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiaoyuan Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Da Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yue He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Guanglei Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Feng G, Flanagan BM, Mikkelsen D, Williams BA, Yu W, Gilbert RG, Gidley MJ. Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation. Sci Rep 2018. [PMID: 29540852 PMCID: PMC5852058 DOI: 10.1038/s41598-018-22818-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent studies show that a single or small number of intestinal microbes can completely degrade complex carbohydrates. This suggests a drive towards competitive utilisation of dietary complex carbohydrates resulting in limited microbial diversity, at odds with the health benefits associated with a diverse microbiome. This study investigates the enzymatic metabolism of wheat and rye arabinoxylans (AX) using in vitro fermentation, with a porcine faecal inoculum. Through studying the activity of AX-degrading enzymes and the structural changes of residual AX during fermentation, we show that the AX-degrading enzymes are mainly cell-associated, which enables the microbes to utilise the AX competitively. However, potential for cross-feeding is also demonstrated to occur by two distinct mechanisms: (1) release of AX after partial degradation by cell-associated enzymes, and (2) release of enzymes during biomass turnover, indicative of co-operative AX degradation. This study provides a model for the combined competitive-co-operative utilisation of complex dietary carbohydrates by gut microorganisms.
Collapse
Affiliation(s)
- Guangli Feng
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bernadine M Flanagan
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Deirdre Mikkelsen
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Barbara A Williams
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wenwen Yu
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
12
|
Amsbury S, Kirk P, Benitez-Alfonso Y. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:105-115. [PMID: 29040641 DOI: 10.1093/jxb/erx337] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The intercellular transport of molecules through membranous channels that traverse the cell walls-so-called plasmodesmata-is of fundamental importance for plant development. Regulation of plasmodesmata aperture (and transport capacity) is mediated by changes in the flanking cell walls, mainly via the synthesis/degradation (turnover) of the (1,3)-β-glucan polymer callose. The role of callose in organ development and in plant environmental responses is well recognized, but detailed understanding of the mechanisms regulating its accumulation and its effects on the structure and permeability of the channels is still missing. We compiled information on the molecular components and signalling pathways involved in callose turnover at plasmodesmata and, more generally, on the structural and mechanical properties of (1,3)-β-glucan polymers in cell walls. Based on this revision, we propose models integrating callose, cell walls, and the regulation of plasmodesmata structure and intercellular communication. We also highlight new tools and interdisciplinary approaches that can be applied to gain further insight into the effects of modifying callose in cell walls and its consequences for intercellular signalling.
Collapse
Affiliation(s)
- Sam Amsbury
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | - Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | | |
Collapse
|
13
|
Rong Y, Xu N, Xie B, Hao J, Yi L, Cheng R, Li D, Linhardt RJ, Zhang Z. Sequencing analysis of β-glucan from highland barley with high performance anion exchange chromatography coupled to quadrupole time – Of – Flight mass spectrometry. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Xiong Z, Ma M, Jin G, Xu Q. Effects of site-specific phosphorylation on the mechanical properties of ovalbumin-based hydrogels. Int J Biol Macromol 2017; 102:1286-1296. [DOI: 10.1016/j.ijbiomac.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|