1
|
Sapuła P, Zając P, Pielichowski K, Raftopoulos KN, Bialik-Wąs K. Impact of a Bio-Cross-Linking Agent Obtained from Spent Coffee Grounds on the Physicochemical and Thermal Properties of Gelatin/Κ-Carrageenan Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4724. [PMID: 39410295 PMCID: PMC11477623 DOI: 10.3390/ma17194724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Gelatine hydrogels can be prepared using different cross-linking methods, such as enzymatic, physical or chemical. Unfortunately, in the case of chemical cross-linking, the typically utilized synthetic cross-linkers are harmful to human health and the environment. Therefore, in accordance with the principles of green chemistry and sustainable development, we have obtained compounds for the chemical cross-linking of hydrogel polymers from the processing of spent coffee grounds. In this study, gelatin/κ-carrageenan hydrogels are cross-linked using a bio-cross-linking agent from spent coffee grounds. Their physicochemical and thermal properties are compared with those of standard physical gels. The chemical cross-linking was confirmed based on FT-IR spectra, which demonstrated the formation of new covalent bonds between the oxidized polyphenols included in the extract from the spent coffee grounds and the amide groups present in the gelatine structure. Significant differences were also observed in morphology (SEM images) and other physico-chemical characteristics (gel fraction, swelling ability, hardness). The chemically cross-linked hydrogels in comparison to physically ones are characterized by a better developed porous network, a slightly higher gel fraction (64.03 ± 4.52% as compared to 68.15 ± 0.77%), and a lower swelling ratio (3820 ± 45% as compared to 1773 ± 35%), while TGA results show that they have better thermal stability. The research confirmed the possibility of using the developed natural cross-linking agent in the process of obtaining hydrogel materials based on bio-polymers.
Collapse
Affiliation(s)
- Paulina Sapuła
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Paulina Zając
- Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (P.Z.); (K.P.)
| | - Krzysztof Pielichowski
- Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (P.Z.); (K.P.)
| | - Konstantinos N. Raftopoulos
- Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland; (P.Z.); (K.P.)
| | - Katarzyna Bialik-Wąs
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
2
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
3
|
Shatabayeva E, Kaldybekov DB, Ulmanova L, Zhaisanbayeva BA, Mun EA, Kenessova ZA, Kudaibergenov SE, Khutoryanskiy VV. Enhancing Mucoadhesive Properties of Gelatin through Chemical Modification with Unsaturated Anhydrides. Biomacromolecules 2024; 25:1612-1628. [PMID: 38319691 PMCID: PMC10934270 DOI: 10.1021/acs.biomac.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Gelatin is a water-soluble natural polyampholyte with poor mucoadhesive properties. It has traditionally been used as a major ingredient in many pharmaceuticals, including soft and hard capsules, suppositories, tissue engineering, and regenerative medicine. The mucoadhesive properties of gelatin can be improved by modifying it through conjugation with specific adhesive unsaturated groups. In this study, gelatin was modified by reacting with crotonic, itaconic, and methacrylic anhydrides in varying molar ratios to yield crotonoylated-, itaconoylated-, and methacryloylated gelatins (abbreviated as Gel-CA, Gel-IA, and Gel-MA, respectively). The successful synthesis was confirmed using 1H NMR, FTIR spectroscopies, and colorimetric TNBSA assay. The effect of chemical modification on the isoelectric point was studied through viscosity and electrophoretic mobility measurements. The evolution of the storage (G') and loss (G'') moduli was employed to determine thermoreversible gelation points of modified and unmodified gelatins. The safety of modified gelatin derivatives was assessed with an in vivo slug mucosal irritation test (SMIT) and an in vitro MTT assay utilizing human pulmonary fibroblasts cell line. Two different model dosage forms, such as physical gels and spray-dried microparticles, were prepared and their mucoadhesive properties were evaluated using a flow-through technique with fluorescent detection and a tensile test with ex vivo porcine vaginal tissues and sheep nasal mucosa. Gelatins modified with unsaturated groups exhibited superior mucoadhesive properties compared to native gelatin. The enhanced ability of gelatin modified with these unsaturated functional groups is due to the formation of covalent bonds with cysteine-rich subdomains present in the mucin via thiol-ene click Michael-type addition reactions occurring under physiologically relevant conditions.
Collapse
Affiliation(s)
- Elvira
O. Shatabayeva
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | - Daulet B. Kaldybekov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
- Institute
of Polymer Materials and Technology, 050019 Almaty, Kazakhstan
| | - Leila Ulmanova
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Balnur A. Zhaisanbayeva
- School
of Engineering and Digital Sciences, Nazarbayev
University, 010000 Astana, Kazakhstan
| | - Ellina A. Mun
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zarina A. Kenessova
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - Vitaliy V. Khutoryanskiy
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
| |
Collapse
|
4
|
Zuev YF, Derkach SR, Bogdanova LR, Voron’ko NG, Kuchina YA, Gubaidullin AT, Lunev IV, Gnezdilov OI, Sedov IA, Larionov RA, Latypova L, Zueva OS. Underused Marine Resources: Sudden Properties of Cod Skin Gelatin Gel. Gels 2023; 9:990. [PMID: 38131976 PMCID: PMC10742947 DOI: 10.3390/gels9120990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The main object of this work was to characterize the structure and properties of laboratory-made fish gelatin from cod skin in comparison with known commercial gelatins of fish and mammalian origin. This is one way we can contribute to the World Food Program and characterize foodstuff resources from alternative natural sources. Our research was based on the combination of an expanded set of complementary physical-chemical methods to study the similarities and distinctions of hydrogels from traditional and novel gelatin sources from underused marine resources. In this work, we have compared the morphology, supramolecular structure and colloid properties of two commercial (mammalian and fish) gelatins with gelatin we extracted from cold-water cod skin in laboratory conditions. The obtained results are novel, showing that our laboratory-produced fish gelatin is much closer to the mammalian one in terms of such parameters as thermal stability and strength of structural network under temperature alterations. Especially interesting are our experimental observations comparing both fish gelatins: it was shown that the laboratory-extracted cod gelatin is essentially more thermally stable compared to its commercial analogue, being even closer in its rheological properties to the mammalian one.
Collapse
Affiliation(s)
- Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Svetlana R. Derkach
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Liliya R. Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
| | - Nikolai G. Voron’ko
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Yulia A. Kuchina
- Laboratory of Chemistry and Technology of Marine Bioresources, Institute of Natural Science and Technology, Murmansk State Technical University, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.); (Y.A.K.)
| | - Aidar T. Gubaidullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Ivan V. Lunev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Oleg I. Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Igor A. Sedov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia (A.T.G.); (I.V.L.); (I.A.S.)
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Radik A. Larionov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (O.I.G.); (R.A.L.)
| | - Larisa Latypova
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China;
| | - Olga S. Zueva
- Institute of Electric Power Engineering and Electronics, Kazan State Power Engineering University, 51 Krasnoselskaya Street, 420066 Kazan, Russia;
| |
Collapse
|
5
|
Kravchenko A, Anastyuk S, Glazunov V, Sokolova E, Isakov V, Yermak I. Structural peculiarities of carrageenans from Far Eastern red seaweed Mazzaella parksii (Gigartinaceae). Int J Biol Macromol 2023; 228:346-357. [PMID: 36549622 DOI: 10.1016/j.ijbiomac.2022.12.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The sulfated polysaccharides from cystocarpic plants of Mazzaella parksii were studied. Fractionation at a given KCl concentration allowed us to assume, and stepwise fractionation to prove, that these polysaccharides consisted of several carrageenans that differed in structure and molecular weight. As a result of stepwise fractionation with KCl, nine gelling (1-9) and one non-gelling (10) fractions were obtained. Using IR spectroscopy, it was shown that fractions 3, 4 and 5 were kappa/iota-, kappa- and kappa/beta-carrageenans, respectively. The structures of the main fractions 1, 2, 9 and 10 were investigated in more detail by methylation, NMR spectroscopy and mass spectrometry. Fractions 1 and 2 were hybrid kappa/iota-carrageenans with kappa:iota ratio 79:21 and 63:37, respectively. At the same time, fraction 9 contained kappa-, iota- and small amounts of nu-carrageenans. The fraction 10 had complex structure and was built from kappa-, iota-, beta-, mu- and nu-carrageenans and included agar-like structure, which explained the inability of this fraction to gel at 15 % KCl. It was shown that isolated polysaccharides activated the classical pathway of complement system, increasing the concentration of C1 inhibitor of serine protease by 50 % compared with the negative control.
Collapse
Affiliation(s)
- Anna Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation.
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Valery Glazunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Ekaterina Sokolova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Vladimir Isakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| | - Irina Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 100 Let Vladivostoku Prosp., 159, 690022 Vladivostok, Russian Federation
| |
Collapse
|
6
|
Makarova AO, Derkach SR, Kadyirov AI, Ziganshina SA, Kazantseva MA, Zueva OS, Gubaidullin AT, Zuev YF. Supramolecular Structure and Mechanical Performance of κ-Carrageenan-Gelatin Gel. Polymers (Basel) 2022; 14:polym14204347. [PMID: 36297925 PMCID: PMC9612265 DOI: 10.3390/polym14204347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
In this work, by means of complex physicochemical methods the structural features of a composite κ-carrageenan–gelatin system were studied in comparison with initial protein gel. The correlation between the morphology of hydrogels and their mechanical properties was demonstrated through the example of changes in their rheological characteristics. The experiments carried out with PXRD, SAXS, AFM and rheology approaches gave new information on the structure and mechanical performance of κ-carrageenan–gelatin hydrogel. The combination of PXRD, SAXS and AFM results showed that the morphological structures of individual components were not observed in the composite protein–polysaccharide hydrogels. The results of the mechanical testing of initial gelatin and engineered κ-carrageenan–gelatin gel showed the substantially denser parking of polymer chains in the composite system due to a significant increase in intermolecular protein–polysaccharide contacts. Close results were indirectly followed from the SAXS estimations—the driving force for the formation of the common supramolecular structural arrangement of proteins and polysaccharides was the increase in the density of network of macromolecular chains entanglements; therefore, an increase in the energy costs was necessary to change the conformational rearrangements of the studied system. This increase in the macromolecular arrangement led to the growth of the supramolecular associate size and the growth of interchain physical bonds. This led to an increase in the composite gel plasticity, whereas the enlargement of scattering particles made the novel gel system not only more rigid, but also more fragile.
Collapse
Affiliation(s)
- Anastasiya O. Makarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St. 2/31, 420111 Kazan, Russia
| | - Svetlana R. Derkach
- Department of Chemistry, Murmansk State Technical University, Sportivnaya Str. 13, 183010 Murmansk, Russia
| | - Aidar I. Kadyirov
- Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center of RAS, Lobachevsky St. 2/31, 420111 Kazan, Russia
| | - Sufia A. Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, 420029 Kazan, Russia
| | - Mariia A. Kazantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St. 2/31, 420111 Kazan, Russia
- HSE Tikhonov Moscow Institute of Electronics and Mathematics, Tallinskaya St. 34, 123458 Moscow, Russia
| | - Olga S. Zueva
- Department of Physics, Kazan State Power Engineering University, Krasnoselskaya St. 51, 420066 Kazan, Russia
| | - Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St. 8, 420088 Kazan, Russia
- A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky St. 2/31, 420111 Kazan, Russia
- A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
7
|
Mucoadhesive Marine Polysaccharides. Mar Drugs 2022; 20:md20080522. [PMID: 36005525 PMCID: PMC9409912 DOI: 10.3390/md20080522] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body’s mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.
Collapse
|
8
|
Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022; 213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022]
Abstract
Hydrogels are ideal for various food applications because of their softness, elasticity, absorbent nature, flexibility, and hygroscopic nature. Polysaccharide hydrogels are particularly suitable because of the hydrophilic nature, their food compatibility, and their non-immunogenic character. Such hydrogels offer a wide range of successful applications such as food preservation, pharmaceuticals, agriculture, and food packaging. Additionally, polysaccharide hydrogels have proven to play a significant role in the formulation of food flavor carrier systems, thus diversifying the horizons of newer developments in food processing sector. Polysaccharide hydrogels are comprised of natural polymers such as alginate, chitosan, starch, pectin and hyaluronic acid when crosslinked physically or chemically. Hydrogels with interchangeable, antimicrobial and barrier properties are referred to as smart hydrogels. This review brings together the recent and relevant polysaccharide research in these polysaccharide hydrogel applications areas and seeks to point the way forward for future research and interventions. Applications in carrying out the process of flavor carrier system directly through their incorporation in food matrices, broadening the domain for food application innovations. The classification and important features of polysaccharide-based hydrogels in food processing are the topics of the current review study.
Collapse
Affiliation(s)
- Arshied Manzoor
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, A.M.U., Aligarh, 202002, UP, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India.
| | - Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Rafeeya Shams
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, 180009, India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology Longowal, 148106, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire WR15 8SG, United Kingdom
| | - Ufaq Fayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir 190025, India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir 1921222, India
| |
Collapse
|
9
|
Gubaidullin AT, Makarova AO, Derkach SR, Voron’ko NG, Kadyirov AI, Ziganshina SA, Salnikov VV, Zueva OS, Zuev YF. Modulation of Molecular Structure and Mechanical Properties of κ-Carrageenan-Gelatin Hydrogel with Multi-Walled Carbon Nanotubes. Polymers (Basel) 2022; 14:2346. [PMID: 35745922 PMCID: PMC9229921 DOI: 10.3390/polym14122346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hydrogels, three-dimensional hydrophilic water-insoluble polymer networks having mechanical properties inherent for solids, have attracted continuous research attention over a long time period. Here, we studied the structure and properties of hydrogel based on gelatin, κ-carrageenan and CNTs using the combination of SAXS, PXRD, AFM microscopy, SEM and rheology methods. We have shown that the integration of polysaccharide and protein in the composite hydrogel leads to suppression of their individual structural features and homogenization of two macromolecular components into a single structural formation. According to obtained SAXS results, we observed the supramolecular complex, which includes both polysaccharide and protein components associated with each other. It was determined that hydrogel structure formed in the initial solution state (dispersion) retains hydrogel supramolecular structure under its cooling up to gel state. The sizes of dense cores of these polyelectrolyte complexes (PEC) slightly decrease in the gel state in comparison with PEC water dispersion. The introduction of CNTs to hydrogel does not principally change the type of supramolecular structure and common structural tendencies observed for dispersion and gel states of the system. It was shown that carbon nanotubes embedded in hydrogel act as the supplementary template for formation of the three-dimensional net, giving additional mechanical strengthening to the studied system.
Collapse
Affiliation(s)
- Aidar T. Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia
| | - Anastasiya O. Makarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Street 2/31, 420111 Kazan, Russia; (A.O.M.); (V.V.S.)
- Alexander Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia
| | - Svetlana R. Derkach
- Department of Chemistry, Murmansk State Technical University, Sportivnaya Street 13, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.)
| | - Nicolai G. Voron’ko
- Department of Chemistry, Murmansk State Technical University, Sportivnaya Street 13, 183010 Murmansk, Russia; (S.R.D.); (N.G.V.)
| | - Aidar I. Kadyirov
- Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center of RAS, Lobachevsky Street 2/31, 420111 Kazan, Russia;
| | - Sufia A. Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, 420029 Kazan, Russia;
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Street 2/31, 420111 Kazan, Russia; (A.O.M.); (V.V.S.)
| | - Olga S. Zueva
- Department of Physics, Kazan State Power Engineering University, Krasnoselskaya Street 51, 420066 Kazan, Russia;
| | - Yuri F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Street 2/31, 420111 Kazan, Russia; (A.O.M.); (V.V.S.)
- Alexander Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Street 18, 420008 Kazan, Russia
| |
Collapse
|
10
|
Bianchi A, Sanz V, Domínguez H, Torres M. Valorisation of the industrial hybrid carrageenan extraction wastes using eco-friendly treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Development and Characterization of Semi-Refined Iota Carrageenan/SiO 2-ZnO Bionanocomposite Film with the Addition of Cassava Starch for Application on Minced Chicken Meat Packaging. Foods 2021; 10:foods10112776. [PMID: 34829058 PMCID: PMC8619299 DOI: 10.3390/foods10112776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
In the current study, film based on semi-refined ι-carrageenan/cassava starch (SRiC/CS) incorporated with SiO2-ZnO nanoparticles was fabricated and characterized to deal with serious environmental problems resulting from plastic packaging materials. This study aimed to evaluate film properties with the variation of SRiC/CS proportions of bionanocomposite films for application to minced chicken meat packaging. Increasing CS portion contributed to increased transparency, reduced surface roughness, and decreased mechanical properties of films. The variable significantly (p < 0.05) increased the water vapor permeability (WVP) and reduced the water solubility of films. The incorporation of the nanoparticles significantly (p < 0.05) increased UV screening, decreased WVP, and enhanced the antimicrobial activity of films. Furthermore, the substitution of 0.5 wt% (weight percentage) CS provided the best film characteristics. Based on the color and the total volatile base nitrogen (TVBN) results, SRiC film incorporated with the nanoparticles preserved minced chicken quality up to six days. Thus, the developed films are desirable for biodegradable food packaging.
Collapse
|
12
|
Ahmady A, Abu Samah NH. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 2021; 608:121037. [PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
Collapse
Affiliation(s)
- Amina Ahmady
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia
| | - Nor Hayati Abu Samah
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia.
| |
Collapse
|
13
|
Zouheir M, Le T, Torop J, Nikiforow K, Khatib M, Zohar O, Haick H, Huynh T. CuS‐Carrageenan Composite Grown from the Gel/Liquid Interface. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Morad Zouheir
- Laboratory of Molecular Sciences and Engineering Åbo Akademi University 20500 Turku Finland
| | - Trung‐Anh Le
- Laboratory of Molecular Sciences and Engineering Åbo Akademi University 20500 Turku Finland
| | - Janno Torop
- Institute of Technology University of Tartu Nooruse 1 50411 Tartu Estonia
| | - Kostiantyn Nikiforow
- Institute of Physical Chemistry Polish Academy of Sciences 44/52 Kasprzaka 01-224 Warsaw Poland
| | - Muhammad Khatib
- The Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 3200003 Israel
| | - Orr Zohar
- The Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 3200003 Israel
| | - Hossam Haick
- The Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 3200003 Israel
| | - Tan‐Phat Huynh
- Laboratory of Molecular Sciences and Engineering Åbo Akademi University 20500 Turku Finland
| |
Collapse
|
14
|
Yuan C, Zhan W, Cui B, Yu B, Liu P, Wu Z. Influence of two functional dextrins on the gel properties of kappa-carrageenan. Food Res Int 2020; 138:109666. [PMID: 33292956 DOI: 10.1016/j.foodres.2020.109666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
The physicochemical properties of κ-carrageenan (KC) can be improved by incorporation with small-molecule cosolvents. The texture and rheological properties, micromorphology, and crystallinity of KC incorporating indigestible dextrin (IDD) and beta-limit dextrin (BLD) were investigated. The rheological properties and sol-gel transition temperatures of the gels were slightly improved and the hardness of KC gels was significantly increased after the two dextrins were mixed in. Fourier transform infrared spectroscopy results indicated hydrogen-bonding interactions were strengthened in the presence of the dextrins. Confocal laser scanning microscope images revealed that a more homogenous structure was formed of the KC gel after the addition of dextrins. Moreover, X-ray diffraction patterns indicated the crystallinity of KC gel decreased upon dextrin addition. At the same dextrin content, IDD exerted a greater influence than BLD. IDD contents exceeding 3% (w/w) led to undesirable effects, whereas up to 5% (w/w) of BLD could be added. The two dextrins affected the rearrangement of the KC random coils in the sol state, and facilitated aggregation of the KC chains during cooling to form gel network structures after gelation. Therefore, the appropriate addition of these two dextrins can improve the texture and stability of KC gels and expand their application in functional foods.
Collapse
Affiliation(s)
- Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Zhan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
15
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
16
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
17
|
Pettinelli N, Rodríguez-Llamazares S, Bouza R, Barral L, Feijoo-Bandín S, Lago F. Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm 2020; 589:119828. [PMID: 32871220 DOI: 10.1016/j.ijpharm.2020.119828] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
In this study, a novel injectable hydrogel based on iota and kappa carrageenan, locust bean gum and gelatin was prepared for wound healing and tissue repairing applications. This injectable hydrogel was obtained via physical crosslinking. FTIR analysis confirmed the physical interaction between the biopolymeric components of the hydrogel. The prepared injectable hydrogel exhibited shear-thinning characteristics and could be injected for minimally invasive applications. Also, the hydrogel showed a porous structure, physiological and mechanical stability and biocompatibility. The in vitro cell culture studies showed that fibroblasts were able to grow, adhere and spread inside the hydrogel, indicating that hydrogel could support tissue repair. Moreover, hydrogel could be useful for the delivery of biomolecules. Vascular endothelial growth factor was encapsulated within the hydrogel and subsequently released, which accelerated the migration of human umbilical vein endothelial cells and facilitated in vitro wound healing. Overall, the results indicate that hydrogel can be a potential injectable delivery vehicle for wound healing and tissue repair.
Collapse
Affiliation(s)
- Natalia Pettinelli
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain.
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepcion, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción, Avda. Cordillera 2634, Coronel, Chile
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Sandra Feijoo-Bandín
- Cellular and Molecular Cardiology Research Unit. Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital. Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit. Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital. Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
18
|
Ashe S, Behera S, Dash P, Nayak D, Nayak B. Gelatin carrageenan sericin hydrogel composites improves cell viability of cryopreserved SaOS-2 cells. Int J Biol Macromol 2020; 154:606-620. [PMID: 32156543 DOI: 10.1016/j.ijbiomac.2020.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Cryopreservation and the low revival rate of cryopreserved cells remains a major challenge in cell based bone regeneration therapies. In our current study we aimed to develop a sericin based hydrogel composite incorporating various drugs and growth factors to enhance cell attachment, cryopreservation to increase the cellular viability upon revival. Sericin, gelatin and carrageenan blended hydrogel composites were prepared and explored for their physicochemical properties. The hydrogels prepared were porous and showed higher biocompatibility. Further, silver nanoparticles, alendronate and insulin like growth factor (IGF-1) were incorporated into the hybrid hydrogels individually and checked for sustained drug release profile. IGF-1 incorporated hydrogels composites showed better osteogenic cell attachment, proliferation and cell revival upon cryopreservation. The clonogenic potential of seeded cells upon 30 days of cryopreservation was also evaluated which was 55% in IGF-1 incorporated scaffold cells. A flow cytometry based staining protocol using Annexin V was developed which showed a live cell population up to 80% even after 30 days of crypreservation. These results validate the potential of our formulated hydrogels as cell based systems aimed for increasing cell survival upon cryopreservation and thus has a great potential for bone repair and regeneration.
Collapse
Affiliation(s)
- Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Sashikant Behera
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Priyanka Dash
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
19
|
Electrostatic hydrogels formed by gelatin and carrageenan induced by acidification: Rheological and structural characterization. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Muzammil KM, Mukherjee D, Azamthulla M, Teja BV, Kaamnoore D, Anbu J, Srinivasan B, Jeevan Kasture G. Castor oil reinforced polymer hybrids for skin tissue augmentation. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- K. Mohammed Muzammil
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dhrubojyoti Mukherjee
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Mohammad Azamthulla
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Banala Venkatesh Teja
- Pharmaceutics and Pharmacokinetics Devision, Central Drug Research Institute, Lucknow, India
| | - Devanand Kaamnoore
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Jayaraman Anbu
- Department of Pharmacology, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Bharath Srinivasan
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Gargi Jeevan Kasture
- Department of Pharmaceutics, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications. Curr Pharm Des 2020; 25:1172-1186. [PMID: 31465278 DOI: 10.2174/1381612825666190425190754] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient's body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. METHODS Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. RESULTS Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. CONCLUSION In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.
Collapse
Affiliation(s)
- Dilshad Qureshi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Suraj Kumar Nayak
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Samarendra Maji
- SRM Research Institute, SRM Institute of Science and Technology, Kanchipuram, India
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Gwangwon, Korea
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
22
|
Santos LS, Andrade TDA, Barbosa Gomes de Carvalho YM, Santos Oliveira AM, Barros Silva Soares de Souza EP, dos Santos CP, Frank LA, Guterres SS, Lima ÁS, Chaud MV, Alves TR, Shanmugam S, Quintans Júnior LJ, Araújo AADS, Serafini MR. Gelatin-based mucoadhesive membranes containing inclusion complex of thymol/β-cyclodextrin for treatment of oral infections. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1706509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lana Silva Santos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | | | | | - Luiza Abrahão Frank
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sílvia Stanisçuaski Guterres
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro Silva Lima
- Institute of Technology and Research, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Thais Ribeiro Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba, Sorocaba, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Mairim Russo Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
23
|
Long Y, Song B, Shi C, Liu W, Gu H. AuNPs composites of gelatin hydrogels crosslinked by ferrocene‐containing polymer as recyclable supported catalysts. J Appl Polym Sci 2019. [DOI: 10.1002/app.48653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Chutong Shi
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
24
|
Hydrogels based on gelatin: Effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Kumar S, Marrero-Berrios I, Kabat M, Berthiaume F. Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Curr Pharm Des 2019; 25:1236-1248. [PMID: 31109271 PMCID: PMC7746437 DOI: 10.2174/1381612825666190521120051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic skin wounds and pressure ulcers represent major health care problems in diabetic individuals, as well as patients who suffered a spinal cord injury. Current treatment methods are only partially effective and such wounds exhibit a high recurrence rate. Open wounds are at high risk of invasive wound infections, which can lead to amputation and further disability. An interdisciplinary approach is needed to develop new and more effective therapies. METHODS The purpose of this work is to review recent studies focusing on the use of algal polysaccharides in commercially available as well as experimental wound dressings. Studies that discuss wound dressings based on algal polysaccharides, some of which also contain growth factors and even living cells, were identified and included in this review. RESULTS AND CONCLUSION Algal polysaccharides possess mechanical and physical properties, along with excellent biocompatibility and biodegradability that make them suitable for a variety of applications as wound dressings. Furthermore, algal polysaccharides have been used for a dual purpose, namely as wound covering, but also as a vehicle for drug delivery to the wound site.
Collapse
Affiliation(s)
| | | | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
26
|
Ullah K, Ali Khan S, Murtaza G, Sohail M, Manan A, Afzal A. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int J Pharm 2018; 556:236-245. [PMID: 30553956 DOI: 10.1016/j.ijpharm.2018.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
Abstract
In present investigation, gelatin-based (AA-co-AMPS) hydrogels were prepared using N, N'-Methylenebisacrylamide (MBA) as a cross-linker and ammonium per sulfate (APS) as an initiator. The successful crosslinking and network formation was confirmed by Fourier transform infrared spectroscopy (FT IR). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) investigations proved the higher thermal stability and successful entrapment of oxaliplatin (OXP) in the polymeric network. X-ray diffraction (XRD) confirmed the loss in crystallinity of the drug after loading in the hydrogel. Scanning electron microscopy (SEM) revealed the porous surface of the hydrogel. The newly formed hydrogels were responsive to change in pH. The swelling, drug loading and drug release was increased with increase in concentration of acrylic acid (AA) while gelatin and 2-acrylamido 2-methylpronesulfonic acid (AMPS) were found to act inversely. The in-vitro enzymatic degradation study showed that the blank hydrogels were more stable against the blank PBS than the collagenase and lysozyme. MTT-assay proved that the blank hydrogels were cyto-compatible while free OXP as well as OXP-loaded hydrogels showed dose dependent controlled cytotoxicity against Vero, MCF-7 and HCT-116 cell lines. The preliminary safety evaluation and oral tolerability showed that the hydrogel suspension was biocompatible and well tolerable upto 4000 mg/kg of body weight without causing any hematological or histopathological changes in rabbits.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Abdul Manan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Attia Afzal
- Faculty of Pharmacy, The University of Lahore, Pakistan; International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| |
Collapse
|
27
|
Akhlaq M, Maryam F, Elaissari A, Ullah H, Adeel M, Hussain A, Ramzan M, Ullah O, Zeeshan Danish M, Iftikhar S, Aziz N. Pharmacokinetic evaluation of quetiapine fumarate controlled release hybrid hydrogel: a healthier treatment of schizophrenia. Drug Deliv 2018; 25:916-927. [PMID: 29649903 PMCID: PMC6058488 DOI: 10.1080/10717544.2018.1458922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 01/11/2023] Open
Abstract
The current study aimed to rationally develop and characterize pH-sensitive controlled release hydrogels by graft polymerization of gelatin (Gel) and hydroxypropyl methyl cellulose (HPMC) in the presence of glutaraldehyde (GA) using quetiapine fumarate for the treatment of schizophrenia. The prepared hydrogels discs were subjected to various physicochemical studies including: swelling, diffusion, porosity, sol-gel analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Three different pH values (1.2, 6.8 and 7.4) were used to determine shape, transition, and controlled release behavior of prepared hydrogels. Various kinetic models including zero order, first order, Higuchi model and Power Law equation were applied on drug release data. The optimized hydrogels were subjected to in vivo studies using albino rabbits. Swelling and release results were found to be insignificant (p < .05) evidencing that there was no significant difference in swelling and drug release rate of hydrogels in different pH mediums. Swelling, porosity, gel-fraction, and drug released (%) were found to be dependent on concentrations of Gel, HPMC, and GA. Kinetic models revealed that QTP-F release followed non-Fickian diffusion. In-vivo studies contributed significantly higher plasma QTP-F concentration (Cmax), time for maximum plasma concentration (Tmax), area under the curve (AUC0-inf) and half-life (t1/2) as 18.32 ± 0.50 µg/ml, 8.00 ± 0.01 hrs, 6021.2 ± 5.09 µg.hrs/ml and 10.06 ± 0.43 hrs, respectively, for test-hydrogels when compared to reference market brand (Qusel® 200 mg, Hilton Pharma, Karachi, Pakistan) QTP-F tablets. It might be concluded that QTP-F loaded pH-sensitive hydrogels were developed successfully with reduced dosing frequency for schizophrenia.
Collapse
Affiliation(s)
- Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Faiza Maryam
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Hashmat Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Abid Hussain
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Ramzan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Obaid Ullah
- Drug Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Muhammad Zeeshan Danish
- Department of Pharmaceutics, University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | | | - Nighat Aziz
- Department of Pharmacology, Gomal Medical College, Dera Ismail Khan, Pakistan
| |
Collapse
|
28
|
Mohammadzadeh Pakdel P, Peighambardoust SJ. A review on acrylic based hydrogels and their applications in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:123-143. [PMID: 29602074 DOI: 10.1016/j.jenvman.2018.03.076] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/26/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The acrylic based hydrogels have attracted the attention of many researchers in the field of pollutants adsorption such as dyes and metal cations due to their high swelling and adsorption capacities. This review introduces acrylic based hydrogels and focuses on their adsorption properties. We first described the methods for synthesizing hydrogels. Usual methods of characterization of acrylic based hydrogels such as swelling, adsorption capacity and desorption efficiency of the pollutants have been investigated. In addition, the adsorption isotherm and kinetic models which determine the mechanism of pollutants' adsorption by hydrogels have been introduced and relations that determine the values of thermodynamic parameters which define accomplishment of adsorption process have been investigated. In the following sections, a perfect insight has been provided on natural and synthetic acrylic based hydrogels. The effective parameters of swelling and adsorption by acrylic based hydrogels have been reviewed and the mechanism of pollutant's adsorption by acrylic based hydrogels has been discussed.
Collapse
|
29
|
Tytgat L, Vagenende M, Declercq H, Martins J, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Synergistic effect of κ-carrageenan and gelatin blends towards adipose tissue engineering. Carbohydr Polym 2018; 189:1-9. [DOI: 10.1016/j.carbpol.2018.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 02/02/2023]
|
30
|
Dolci LS, Liguori A, Panzavolta S, Miserocchi A, Passerini N, Gherardi M, Colombo V, Bigi A, Albertini B. Non-equilibrium atmospheric pressure plasma as innovative method to crosslink and enhance mucoadhesion of econazole-loaded gelatin films for buccal drug delivery. Colloids Surf B Biointerfaces 2018; 163:73-82. [DOI: 10.1016/j.colsurfb.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023]
|
31
|
History, Classification, Properties and Application of Hydrogels: An Overview. GELS HORIZONS: FROM SCIENCE TO SMART MATERIALS 2018. [DOI: 10.1007/978-981-10-6077-9_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|