1
|
Wang YZ, Wang ZX, Jiang HJ, Ni LH, Ju H, Wu YC, Li HJ. Advances in the use of nanotechnology for treating gout. Nanomedicine (Lond) 2025; 20:355-369. [PMID: 39873132 PMCID: PMC11812334 DOI: 10.1080/17435889.2025.2457315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Gout is a commonly occurring form of inflammatory arthritis caused by persistently elevated levels of uric acid. Its incidence rate rises with the increases of living standards and poor dietary habits, which has a considerable impact on the quality of life of the patients. Although there is a wide assortment of drugs available for the management of gout, the effectiveness and security of these drugs are limited by their poor chemical stability and insufficient targeting. Therefore, development of effective nanomedicine systems to overcome these problems and treat gout becomes a high priority. This review provides a detailed introduction research progress on developing advanced nanomedicines using polymers, hydrogel, nanocapsules, lipids, bionic vesicles, inorganic artificial organelles and electronically controlled conveyor systems carriers to improve gout therapy.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | | | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| |
Collapse
|
2
|
Polez RT, Kimiaei E, Madani Z, Österberg M, Baniasadi H. Tragacanth gum hydrogels with cellulose nanocrystals: A study on optimizing properties and printability. Int J Biol Macromol 2024; 280:136182. [PMID: 39357735 DOI: 10.1016/j.ijbiomac.2024.136182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 μm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %) due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m3), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl₂. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
| | - Erfan Kimiaei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Zahra Madani
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
3
|
Sabahi Mohammadi N, Sowti Khiabani M, Ghanbarzadeh B, Rezaei Mokarram R, Tizchang S. Dispersion of halloysite nanotube/lipase nanohybrids as nanofillers into polyvinyl alcohol-sodium alginate cryogel: Characterization and bio-catalytic activity analysis. Int J Biol Macromol 2024; 281:136529. [PMID: 39401624 DOI: 10.1016/j.ijbiomac.2024.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2023] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The purpose of this study is to formulate and characterize the cryogels containing halloysite nanotube (HNT)/lipase nanohybrid (NH-cryogel) in comparison to pure cryogels as well as cryogels containing lipase (lipase-cryogel). The cryogels were synthesized using polyvinyl alcohol (PVA) and sodium alginate (SA). The products are tested to explore the influence of the HNT/lipase nanohybride (NH) as nanofillers on the cryogel properties using methods such as swelling degree, water uptake measurement, TGA, XRD, FESEM and FTIR. Additionally, the effects of cryogels on the stability and biocatalytic activities of lipase and NH, were studied and compared to the free lipase to evaluate their potential applications as enzyme carriers. The addition of nanofillers into the cryogel improved is thermal stability. The results implied that NH-cryogel had better enzyme activity than lipase-cryogel and free lipase at different temperatures and pH values. The NH-cryogel residual activity was 85.5 % after ten cycles of reuse while lipase-cryogel showed lower residual activity (60.3 %). Furthermore, the NH-cryogel retained 81.1 % of its residual activity while this was 51.0 % for lipase-cryogel after thirty days of storage. Therefore, the presented results in this study provide a pathway to show that produced nano-composite cryogels could be useful substances for food and pharmaceutical industries applications.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Samira Tizchang
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
4
|
Sun J, Du J, Liu X, An J, Hu Y, Wang J, Zhu F, Feng H, Cheng S, Tian H, Mei X, Wu C. Chondroitin sulfate-modified tragacanth gum-gelatin composite nanocapsules loaded with curcumin nanocrystals for the treatment of arthritis. J Nanobiotechnology 2024; 22:270. [PMID: 38769551 PMCID: PMC11104008 DOI: 10.1186/s12951-024-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses, and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1β, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jing Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Fu Zhu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
5
|
Lee D, Noh J, Moon SY, Shin TJ, Choi YK, Park J. Pectin Nanoporous Structures Prepared via Salt-Induced Phase Separation and Ambient Azeotropic Evaporation Processes. Biomacromolecules 2024; 25:1709-1723. [PMID: 38377481 DOI: 10.1021/acs.biomac.3c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2024]
Abstract
Polysaccharide nanoporous structures are suitable for various applications, ranging from biomedical scaffolds to adsorption materials, owing to their biocompatibility and large surface areas. Pectin, in particular, can create 3D nanoporous structures in aqueous solutions by binding with calcium cations and creating nanopores by phase separation; this process involves forming hydrogen bonds between alcohols and pectin chains in water and alcohol mixtures and the resulting penetration of alcohols into calcium-bound pectin gels. However, owing to the dehydration and condensation of polysaccharide chains during drying, it has proven to be challenging to maintain the 3D nanoporous structure without using a freeze-drying process or supercritical fluid. Herein, we report a facile method for creating polysaccharide-based xerogels, involving the co-evaporation of water with a nonsolvent (e.g., a low-molecular-weight hydrophobic alcohol such as isopropyl or n-propyl alcohol) at ambient conditions. Experiments and coarse-grained molecular dynamics simulations confirmed that salt-induced phase separation and hydrogen bonding between hydrophobic alcohols and pectin chains were the dominant processes in mixtures of pectin, water, and hydrophobic alcohols. Furthermore, the azeotropic evaporation of water and alcohol mixed in approximately 1:1 molar ratios was maintained during the natural drying process under ambient conditions, preventing the hydration and aggregation of the hydrophilic pectin chains. These results introduce a simple and convenient process to produce 3D polysaccharide xerogels under ambient conditions.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Chemical Engineering, Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Juran Noh
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Su-Young Moon
- Gas & Carbon Convergent Research Center, Chemical & Process Technology, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yeol Kyo Choi
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Juhyun Park
- Department of Chemical Engineering, Department of Intelligent Energy and Industry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
7
|
Tsou CH, Shui YJ, Du J, Yao WH, Wu CS, Suen MC, Chen S. Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol. Polymers (Basel) 2023; 15:polym15112535. [PMID: 37299334 DOI: 10.3390/polym15112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
In this investigation, purified attapulgite (ATT) and polyvinyl alcohol (PVA) were utilized to fabricate nanocomposite hydrogels and a xerogel, with a focus on studying the impact of minor additions of ATT on the properties of the PVA nanocomposite hydrogels and xerogel. The findings demonstrated that at a concentration of 0.75% ATT, the water content and gel fraction of the PVA nanocomposite hydrogel reached their peak. Conversely, the nanocomposite xerogel with 0.75% ATT reduced its swelling and porosity to the minimum. SEM and EDS analyses revealed that when the ATT concentration was at or below 0.5%, nano-sized ATT could be evenly distributed in the PVA nanocomposite xerogel. However, when the concentration of ATT rose to 0.75% or higher, the ATT began to aggregate, resulting in a decrease in porous structure and the disruption of certain 3D porous continuous structures. The XRD analysis further affirmed that at an ATT concentration of 0.75% or higher, a distinct ATT peak emerged in the PVA nanocomposite xerogel. It was observed that as the content of ATT increased, the concavity and convexity of the xerogel surface, as well as the surface roughness, decreased. The results also confirmed that the ATT was evenly distributed in the PVA, and a combination of hydrogen bonds and ether bonds resulted in a more stable gel structure. The tensile properties exhibited that when compared with pure PVA hydrogel, the maximum tensile strength and elongation at break were achieved at an ATT concentration of 0.5%, indicating increases of 23.0% and 11.8%, respectively. The FTIR analysis results showed that the ATT and PVA could generate an ether bond, further confirming that ATT could enhance the PVA properties. The TGA analysis showed that the thermal degradation temperature peaked when the ATT concentration was at 0.5%, providing further evidence that the compactness of the nanocomposite hydrogel and the dispersion of the nanofiller was superior, contributing to a substantial increase in the mechanical properties of the nanocomposite hydrogel. Finally, the dye adsorption results displayed a significant rise in dye removal efficiency for methylene blue with the increase in the ATT concentration. At an ATT concentration of 1%, the removal efficiency rose by 103% compared with that of the pure PVA xerogel.
Collapse
Affiliation(s)
- Chi-Hui Tsou
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yu-Jie Shui
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Juan Du
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei-Hua Yao
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan, China
| | - Chin-San Wu
- Department of Applied Cosmetology, KaoYuan University, Kaohsiung County 82101, Taiwan, China
| | - Maw-Cherng Suen
- Department of Fashion Business Administration, Lee-Ming Institute of Technology, New Taipei City 24305, Taiwan, China
| | - Shuang Chen
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
8
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
9
|
Boamah PO, Afoakwah NA, Onumah J, Osei ED, Mahunu GK. Physicochemical Properties, Biological Properties and Applications of Gum Tragacanth-A Review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
|
10
|
Bakhtiyari M, Hamidi-Esfahani Z, Barzegar M. Optimization of co-encapsulation of L. plantarum cells and Silybum marianum seed extract and evaluation of protective effect of extract on cells survival in simulated gastrointestinal fluids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
11
|
Cold plasma modification of food macromolecules and effects on related products. Food Chem 2022; 382:132356. [DOI: 10.1016/j.foodchem.2022.132356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022]
|
12
|
Adelnia H, Ensandoost R, Shebbrin Moonshi S, Gavgani JN, Vasafi EI, Ta HT. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
13
|
Moghadam MA, Mohammadi R, Sadeghi E, Mohammadifar MA, Nejatian M, Fallah M, Rouhi M. Preparation and characterization of poly(vinyl alcohol)/gum tragacanth/cellulose nanocomposite film. J Appl Polym Sci 2021. [DOI: 10.1002/app.50672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Affiliation(s)
- Majid Alizadeh Moghadam
- Student Research Committee, Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Mohammadi
- Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Ehsan Sadeghi
- Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohammad Amin Mohammadifar
- Research Group for Food Production Engineering National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Mohammad Nejatian
- Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Maryam Fallah
- Student Research Committee, Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Milad Rouhi
- Department of Food Science and Technology School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
14
|
Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
|
15
|
Shoaib MH, Sikandar M, Ahmed FR, Ali FR, Qazi F, Yousuf RI, Irshad A, Jabeen S, Ahmed K. Applications of Polysaccharides in Controlled Release Drug Delivery System. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022] Open
|
16
|
Martín-Illana A, Cazorla-Luna R, Notario-Pérez F, Bedoya LM, Rubio J, Tamayo A, Ruiz-Caro R, Veiga MD. Smart vaginal bilayer films of Tenofovir based on Eudragit® L100/natural polymer for the prevention of the sexual transmission of HIV. Int J Pharm 2021; 602:120665. [PMID: 33933643 DOI: 10.1016/j.ijpharm.2021.120665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the absence of an effective vaccine, vaginal microbicides are essential for preventing the sexual transmission of HIV to women. Antiretroviral vaginal films have emerged as promising choices, especially those offering mucoadhesivity and controlled drug release. Tenofovir-loaded bilayer films based on Eudragit® L100 (EL100) and a biopolymer - gum arabic, karaya gum, pectin or tragacanth gum - were developed in a single-stage process. Cytotoxicity studies in three human cell lines indicated no toxicity of the excipients at the concentrations tested. Raman spectroscopy and SEM confirmed the formation of the two layers and their anchoring. Texture analysis showed no major differences between the batches. The swelling of the film is conditioned by its biopolymer nature and by the amount of EL100, which acts as structuring agent thus enhancing swelling. Tragacanth gum-based batches showed high mucoadhesion regardless the amount of EL100. The controlled release of Tenofovir in simulated vaginal fluid was faster in the presence of simulated seminal fluid due to the dissolution of EL100. Films containing 400 mg of EL100 and tragacanth gum are promising candidates for future studies, as they could sexually safeguard women from HIV for at least one week and ensure greater protection during intercourse.
Collapse
Affiliation(s)
- Araceli Martín-Illana
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Raúl Cazorla-Luna
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Fernando Notario-Pérez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Luis Miguel Bedoya
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Juan Rubio
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Aitana Tamayo
- Institute of Ceramics and Glass, Spanish National Research Council, C/ Kelsen 5, 28049 Madrid, Spain.
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Dolores Veiga
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Das S, Kaur S, Rai VK. Gastro-retentive drug delivery systems: a recent update on clinical pertinence and drug delivery. Drug Deliv Transl Res 2021; 11:1849-1877. [PMID: 33403646 DOI: 10.1007/s13346-020-00875-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/29/2020] [Indexed: 01/20/2023]
Abstract
Gastro-retentive drug delivery systems are some of the best technologies delivered through oral route. These mainly came into picture for their effective local action in the GI region, specifically for the drugs with narrow absorption window. In the recent decades, several technologies have evolved showing different mechanisms for retaining the drug in GI region for longer duration with increased bioavailability. Floatable, mucoadhesive, swelable, magnetic, nanofibrous, high-density, and expandable systems have been investigated extensively as the potential gastro-retentive strategies. The advances in the technologies studied, their clinical pertinence, and methods of drug delivery are described in this review with their immense future utilities. Their entry into the pharmaceutical market is a huge matter to look into as most of the studied strategies are facing problems and hence are underrated to overcome the clinical trials. Their success in the clinical trials are enormously required for gaining their access into the pharmaceutical market. Selection of the right technology for the right purpose through the right mechanism of action is to be done for obtaining the system with desired activity.
Collapse
Affiliation(s)
- Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sukhbir Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
18
|
Nejatian M, Abbasi S, Azarikia F. Gum Tragacanth: Structure, characteristics and applications in foods. Int J Biol Macromol 2020; 160:846-860. [DOI: 10.1016/j.ijbiomac.2020.05.214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
19
|
Sun L, Feng X, Zhong T, Zhang X. Preparation of supermacroporous cryogels with improved mechanical strength for efficient purification of lysozyme from chicken egg white. J Sep Sci 2020; 43:3315-3326. [DOI: 10.1002/jssc.202000255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Lifen Sun
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xiyun Feng
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Tianyi Zhong
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| | - Xufeng Zhang
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming P. R. China
| |
Collapse
|
20
|
Niknia N, Kadkhodaee R, Eshtiaghi MN. Gum tragacanth-polyvinyl alcohol aerogel for oral delivery of silymarin. Int J Biol Macromol 2020; 157:151-157. [PMID: 32344081 DOI: 10.1016/j.ijbiomac.2020.04.202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2019] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
This study reports for the first time the fabrication of highly porous aerogels of mixed gum tragacanth-polyvinyl alcohol (GT-PVA) for loading and oral delivery of silymarin (SM). Various analytical techniques were used to investigate changes in the physical, textural, mechanical and microstructural properties of aerogels as affected by blending ratio and vacuum impregnation (VI) of SM. Results showed that the mixing ratio of 1:1 led to aerogels of larger surface area (1029.20 m2·g-1) and superior physicochemical properties. However, at mixing ratio of 3:1 (GT:PVA) higher loading capacity (45.57% ± 2.3%) was obtained. SM loading, on the other hand, had an adverse effect on the porosity, microstructure and physical attributes of aerogels transforming them from meso-porous to macro-porous structures. The release rate of SM in simulated gastrointestinal media was found to follow Korsmeyere-Peppas model.
Collapse
Affiliation(s)
- Nushin Niknia
- Department of Food Chemistry, Research Institute of Food Science and Technology, PO Box 91895/157/356, Mashhad, Iran.
| | - Rassoul Kadkhodaee
- Department of Food Nanotechnology, Research Institute of Food Science and Technology, PO Box 91895/157/356, Mashhad, Iran.
| | - Mohammad Naghi Eshtiaghi
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Mahidol, Thailand.
| |
Collapse
|
21
|
El-Salamouni NS, Gowayed MA, Labib GS. Controlled release Ibu-cryobarriers for the prevention of post-operative adhesions: In-vitro/in-vivo comparative study. Int J Pharm 2019; 565:70-82. [DOI: 10.1016/j.ijpharm.2019.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
|
22
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
23
|
Ratish Ramanan K, Rifna E, Mahendran R. Effect of concentration and temperature on the formation of wheat hydrogel and xerogel pattern. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/28/2022]
|
24
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|