1
|
Yu J, Tavsanli B, Tamminga MJ, Gillies ER. Compact Polyelectrolyte Complexes of Poly(l-Lysine) and Anionic Polysaccharides. Biomacromolecules 2024; 25:5160-5168. [PMID: 39041825 DOI: 10.1021/acs.biomac.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compact polyelectrolyte complexes (CoPECs) can exhibit mechanical properties similar to those of biological tissues and other interesting properties, such as self-healing. To date, a variety of CoPECs prepared from synthetic polyelectrolytes have been investigated, but there are very few examples based entirely on biopolymers. We describe here an investigation of CoPECs based on poly(l-lysine) (PLL) with sodium hyaluronate (HA) and alginate (Alg). A 2:1 ratio of cation:anion and 0.25 M NaBr was beneficial for the formation of viscoelastic PLL-HA CoPECs, with the favorable ratio attributed to the spacing of carboxylates on HA being one every two saccharide units. In contrast, 1.0 M NaBr and a 1:1 ratio were better for PLL-Alg CoPECs. Both CoPECs swelled or retained a constant volume when immersed in hypertonic media, but contracted in hypotonic media. The loading of molecules into the PLL-HA (2:1) CoPECs was investigated. Higher loadings were achieved for anionic molecules compared to cations, presumably due to the excess cationic binding sites on the networks. The times required for full release of the molecules ranged from less than 2 h for neutral paracetamol to about 48 h for crystal violet and diclofenac.
Collapse
Affiliation(s)
- Jaehak Yu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Burak Tavsanli
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Micah J Tamminga
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R Gillies
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
2
|
Quintana-Quirino M, Hernández-Rangel A, Silva-Bermudez P, García-López J, Domínguez-Hernández VM, Araujo Monsalvo VM, Gimeno M, Shirai K. Green Foaming of Biologically Extracted Chitin Hydrogels Using Supercritical Carbon Dioxide for Scaffolding of Human Osteoblasts. Polymers (Basel) 2024; 16:1569. [PMID: 38891515 PMCID: PMC11174636 DOI: 10.3390/polym16111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Chitin is a structural polysaccharide abundant in the biosphere. Chitin possesses a highly ordered crystalline structure that makes its processing a challenge. In this study, chitin hydrogels and methanogels, prepared by dissolution in calcium chloride/methanol, were subjected to supercritical carbon dioxide (scCO2) to produce porous materials for use as scaffolds for osteoblasts. The control of the morphology, porosity, and physicochemical properties of the produced materials was performed according to the operational conditions, as well as the co-solvent addition. The dissolution of CO2 in methanol co-solvent improved the sorption of the compressed fluid into the hydrogel, rendering highly porous chitin scaffolds. The chitin crystallinity index significantly decreased after processing the hydrogel in supercritical conditions, with a significant effect on its swelling capacity. The use of scCO2 with methanol co-solvent resulted in chitin scaffolds with characteristics adequate to the adhesion and proliferation of osteoblasts.
Collapse
Affiliation(s)
- Mariana Quintana-Quirino
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (M.Q.-Q.); (A.H.-R.)
| | - Adriana Hernández-Rangel
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (M.Q.-Q.); (A.H.-R.)
| | - Phaedra Silva-Bermudez
- Tissue Engineering, Cellular Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.S.-B.); (J.G.-L.)
| | - Julieta García-López
- Tissue Engineering, Cellular Therapy and Regenerative Medicine Unit, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (P.S.-B.); (J.G.-L.)
| | - Víctor Manuel Domínguez-Hernández
- Biomechanics Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (V.M.D.-H.); (V.M.A.M.)
| | - Victor Manuel Araujo Monsalvo
- Biomechanics Laboratory, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico; (V.M.D.-H.); (V.M.A.M.)
| | - Miquel Gimeno
- Food and Biotechnology Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Keiko Shirai
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico; (M.Q.-Q.); (A.H.-R.)
| |
Collapse
|
3
|
Xu J, Lin Y, Wang Y, Gao H, Li Y, Zhang C, Chen Q, Chen S, Peng Q. Multifunctional Regeneration Silicon-Loaded Chitosan Hydrogels for MRSA-Infected Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2303501. [PMID: 37956229 DOI: 10.1002/adhm.202303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Repeated microbial infection, excess reactive oxygen species (ROS) accumulation, cell dysfunction, and impaired angiogenesis under hyperglycemia severely inhibit diabetic wound healing. Therefore, developing multifunctional wound dressings accommodating the complex microenvironment of diabetic wounds is of great significance. Here, a multifunctional hydrogel (Regesi-CS) is prepared by loading regeneration silicon (Regesi) in the non-crosslinked chitosan (CS) solution, followed by freeze-drying and hydration. As expected, the blank non-crosslinked CS hydrogel (1%) shows great antibacterial activity against Escherichia coli, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA), improves fibroblast migration, and scavenges intracellular ROS. Interestingly, after loading 1% Regesi, the Regesi-CS (1%-1%) hydrogel shows greater antibacterial activity, significantly promotes fibroblasts proliferation and migration, scavenges much more ROS, and substantially protects fibroblasts under oxidative stress, yet Regesi alone has no or even negative effects. In the MRSA-infected diabetic wound model, Regesi-CS (1%-1%) hydrogel effectively promotes wound healing by eliminating bacterial infection, enhancing granulation tissue formation, promoting collagen deposition, and improving angiogenesis. In conclusion, Regesi-CS hydrogel may be a potential wound dressing for the effective treatment and management of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jingchen Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yao Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hongyu Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanhong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chaoliang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Charron PN, Tahir I, McConnell S, Sedler D, Floreani RA. Physico-mechanical and ex vivo analysis of aloe-alginate hydrogels for cervical cancer treatment. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A leading cancer diagnosis in women worldwide is cervical cancer, with current treatments all posing a risk of serious side effects. Less toxic, but effective treatments are sought after. Aloe vera ( barbadensis miller), known for its beneficial properties, has been studied for cancer treatment. While aloe gel has been shown to exhibit anti-cancer activity, it cannot form a hydrogel alone. Therefore, an interpenetrating network comprising alginate blended with aloe was examined as a cervical cancer treatment. We hypothesized the antioxidant properties of aloe gel would decrease cancer cell viability while the alginate hydrogel would improve mucoadhesion. We further hypothesized the antioxidant activity of aloe gel would induce cancer cell death at levels similar to common chemotherapeutics, and aimed to determine if these chemotherapeutic behaviors are constructive or destructive. Material and adhesive properties, drug encapsulation, and cancer cell viability were investigated and validated. The effect of aloe-alginate hydrogels on cervical cancer cell viability was not significantly different compared to aloe-blends containing doxorubicin (DOX), indicating that the aloe alone decreased cancer cell viability rendering the additional cytotoxic therapeutic not impactful as an adjuvant therapy. This study provides insight into the potential of natural biopolymers for treating cervical cancer without systemic toxic compounds.
Collapse
Affiliation(s)
- Patrick N Charron
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Irfan Tahir
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Sierra McConnell
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Danielle Sedler
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Rachael A Floreani
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Materials Science Program, University of Vermont, Burlington, VT, USA
- Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
6
|
Hernández-Valencia CG, Hernández-Valdepeña MA, Vázquez A, Cedeño-Caero L, Pedraza-Chaverri J, Sánchez-Sánchez R, Gimeno M. Enzymatic poly(gallic acid)-grafted α-l-lysine inhibits Staphylococcus aureus and Escherichia coli strains with no cytotoxicity for human cells. BIOMATERIALS ADVANCES 2022; 138:212960. [PMID: 35913230 DOI: 10.1016/j.bioadv.2022.212960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The α-l-Lysine (LL) grafting onto the enzymatic poly(gallic acid) (PGAL) produces a helicoidal brush-like antimicrobial polymer containing outer positive-charged moieties. Best results are found with ca. 16 mol% α-LL-grafting for the inhibition of gram-positive Staphylococcus aureus and gram-negative Escherichia coli strains. Membrane permeability, confocal and scanning electron microscopy studies suggest a pore-formation and translocation mechanisms by initial electrostatic interaction of positive charged polymer at the negatively charged bacterial membranes. The attained polymer displays high concentration of hemolysis (Hc) in erythrocytes, and no lymphocyte mitochondrial activity. Interestingly, PGAL-LL is not cytotoxic on human dermal fibroblast. The antioxidant activity after the LL hybridization is also demonstrated by DPPH, ORAC, FRAP and hydroxyl radical scavenging, which enhances the preservation of human cells in addition to antimicrobial for this polymer.
Collapse
Affiliation(s)
- Carmen G Hernández-Valencia
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Miguel A Hernández-Valdepeña
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alfredo Vázquez
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Luis Cedeño-Caero
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México, Mexico; Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnológico de Monterrey, Puente 222, Col. Arboledas del Sur, C.P. 14380 Ciudad de Mexico, Mexico
| | - Miquel Gimeno
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| |
Collapse
|
7
|
Zhang J, Hu L, Zhang Q, Guo C, Wu C, Shi Y, Shu R, Tan L. Polyhexamethylene guanidine hydrochloride modified sodium alginate nonwoven with potent antibacterial and hemostatic properties for infected full-thickness wound healing. Int J Biol Macromol 2022; 209:2142-2150. [PMID: 35500777 DOI: 10.1016/j.ijbiomac.2022.04.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
The development of multifunctional wound dressings has always been considered as a promising strategy to promote blood coagulation, inhibit bacterial infection, and accelerate wound healing. Herein, an antibacterial and hemostatic dressing (SA-PHMG) was developed based on sodium alginate (SA) nonwoven and polyhexamethylene guanidine hydrochloride (PHMG) through a completely green industrial route, including dipping, padding, and drying. According to studies, SA-PHMG dressings exhibited excellent liquid absorption capacity and water vapor permeability. Moreover, bactericidal assays have demonstrated that SA-PHMG dressings have ideal antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and mixed bacteria, maintaining potent antibacterial activity even after 10 cycles of antibacterial trials or 50 times of washing or soaping. The in vitro evaluation of the hemostatic effect indicated that the SA-PHMG could significantly promote blood clotting by activating platelets, and in vitro and in vivo hemolysis, cytotoxicity and skin irritation studies demonstrated the ideal biocompatibility of the dressings. In addition, better wound closure and tissue regeneration were recorded using SA-PHMG nonwoven as the dressing based on an infected full-thickness wound model. In conclusion, this antibacterial, hemostatic, biocompatible, and environmentally friendly SA-PHMG nonwoven exhibit the potential for infected wound healing.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Liwei Hu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Zhang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chuan Guo
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Chenyi Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yidong Shi
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China
| | - Rui Shu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lin Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University, Research Center for Fiber Science and Engineering Technology, Yibin Park, Yibin 64460, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Iglesias-Mejuto A, García-González CA. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112525. [PMID: 34857304 DOI: 10.1016/j.msec.2021.112525] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023]
Abstract
3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO2 drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Hu J, Tan X, Wang D, Li Y, Liang H, Peng J, Li F, Zhou Q, Geng P, Wang S, Yu Y, Liu J. A stepwise-targeting strategy for the treatment of cerebral ischemic stroke. J Nanobiotechnology 2021; 19:371. [PMID: 34789285 PMCID: PMC8600695 DOI: 10.1186/s12951-021-01118-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background Effective amelioration of neuronal damages in the case of cerebral ischemic stroke (CIS) is essential for the protection of brain tissues and their functional recovery. However, most drugs can not penetrate the blood–brain barrier (BBB), resulting in the poor therapeutic outcomes. Results In this study, the derivatization and dual targeted delivery technologies were used to actively transport antioxidant melatonin (MLT) into the mitochondria of oxidative stress-damaged cells in brain tissues. A mitochondrial targeting molecule triphenylphosphine (TPP) was conjugated to melatonin (TPP-MLT) to increase the distribution of melatonin in intracellular mitochondria with the push of mitochondrial transmembrane potential. Then, TPP-MLT was encapsulated in dual targeted micelles mediated by TGN peptide (TGNYKALHPHNG) with high affinity for BBB and SHp peptide (CLEVSRKNG) for the glutamate receptor of oxidative stress-damaged neural cells.TGN/SHp/TPP-MLT micelles could effectively scavenge the overproduced ROS to protect neuronal cells from oxidative stress injury during CIS occurrence, as reflected by the improved infarct volume and neurological deficit in CIS model animals. Conclusions These promising results showed this stepwise-targeting drug-loaded micelles potentially represent a significant advancement in the precise treatment of CIS. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01118-6.
Collapse
Affiliation(s)
- Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Xueying Tan
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Dongwei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yixuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Fengyan Li
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, 315100, China
| | - Quan Zhou
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Peiwu Geng
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shuanghu Wang
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yue Yu
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo, 315012, China
| | - Jin Liu
- Department of Neurosurgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
10
|
Peng J, Yin Y, Liang H, Lu Y, Zheng H, Wu G, Rao S, Chen J, Yan F, Hu J. Tumor Microenvironment Responsive Pepper Mild Mottle Virus-Based Nanotubes for Targeted Delivery and Controlled Release of Paclitaxel. Front Bioeng Biotechnol 2021; 9:763661. [PMID: 34660562 PMCID: PMC8514841 DOI: 10.3389/fbioe.2021.763661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Plant virus nanoparticles (PVNPs) have been widely used for drug delivery, antibody development and medical imaging because of their good biodegradation and biocompatibility. Particles of pepper mild mottle virus (PMMoV) are elongated and may be useful as drug carriers because their shape favours long circulation, preferential distribution and increased cellular uptake. Moreover, its effective degradation in an acidic microenvironment enables a pH-responsive release of the encapsulated drug. In this study, genetic engineering techniques were used to form rod-shaped structures of nanoparticles (PMMoV) and folated-modified PMMoV nanotubes were prepared by polyethylene glycol (PEG) to provide targeted delivery of paclitaxel (PTX). FA@PMMoV@PTX nanotubes were designed to selectively target tumor cells and to release the encapsulated PTX in response to pH. Efficient cell uptake of FA@PMMoV@PTX nanotubes was observed when incubated with tumor cells, and FA@PMMoV@PTX nanotubes had superior cytotoxicity to free PTX, as reflected by cell survival and apoptosis. This system is a strong candidate for use in developing improved strategies for targeted treatment of tumors.
Collapse
Affiliation(s)
- Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yueyan Yin
- College of Plant Protection, Yunnan Agricultural University, Kunming, China.,Institute of Alpine Economic Plants, Yunnan Academy of Agricultural Sciences, Lijiang, China
| | - Hongze Liang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jingbo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Mariia K, Arif M, Shi J, Song F, Chi Z, Liu C. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis. Int J Biol Macromol 2021; 183:435-446. [PMID: 33932420 DOI: 10.1016/j.ijbiomac.2021.04.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022]
Abstract
Several dressing materials can be used efficiently in recent times, both in their natural and synthetic combinations like; microfibers, film, nanofibers, hydrogels, and various drugs. The specific characteristics, such as biocompatibility and providing a favorable environment for wound healing, make many polysaccharides pivotal as wound dressings. Keeping in view the importance of these polysaccharides, we have developed novel chitosan-ulvan hydrogel incorporated by cellulose nanocrystals (CNCs) loading epidermal growth factor (EGF) drug (CS-U-CNC-EGF) by the freeze-dried process. The morphological features of novel hydrogel were perceived by FTIR, XRD, FESEM, and DSC analysis. The incorporation of the nanocrystals content modified the porous microstructure at pore size from 237 ± 59 μm to 53 ± 16 μm, improved mechanical stress curve from 0.57 MPa to 1.2 MPa, thermal and swelling behavior. The novel nanocomposites revealed non-toxic behavior and excellent cell proliferation. Whereas hydrogel showed sustained release of the epidermal growth factor (EGF), thereby enhancing EGF delivery at the wound site for 15 days from a 100% wound contraction treated group. Moreover, the controlled release of EGF from CS-U-CNC-EGF hydrogels showed significantly faster-wound healing efficiency concerning considerably faster granulations tissue formation and collagen deposition. The study's results point to possible future applications of this composite hydrogel in wound healing as a wound dressing material.
Collapse
Affiliation(s)
- Kazharskaia Mariia
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Muhammad Arif
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Jie Shi
- Qingdao Biotemed Biomaterials Co. Ltd., No. 168 Zhuzhou Road, 266101 Qingdao, China
| | - Fulai Song
- Qingdao Biotemed Biomaterials Co. Ltd., No. 168 Zhuzhou Road, 266101 Qingdao, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
12
|
Cazorla-Luna R, Martín-Illana A, Notario-Pérez F, Ruiz-Caro R, Veiga MD. Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers (Basel) 2021; 13:2241. [PMID: 34301004 PMCID: PMC8309414 DOI: 10.3390/polym13142241] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have several advantages for the development of drug delivery systems, since they are biocompatible, biodegradable and easy to obtain from renewable resources. However, their most notable advantage may be their ability to adhere to biological tissues. Many of these biopolymers have ionized forms, known as polyelectrolytes. When combined, polyelectrolytes with opposite charges spontaneously form polyelectrolyte complexes or multilayers, which have great functional versatility. Although only one natural polycation-chitosan has been widely explored until now, it has been combined with many natural polyanions such as pectin, alginate and xanthan gum, among others. These polyelectrolyte complexes have been used to develop multiple mucoadhesive dosage forms such as hydrogels, tablets, microparticles, and films, which have demonstrated extraordinary potential to administer drugs by the ocular, nasal, buccal, oral, and vaginal routes, improving both local and systemic treatments. The advantages observed for these formulations include the increased bioavailability or residence time of the formulation in the administration zone, and the avoidance of invasive administration routes, leading to greater therapeutic compliance.
Collapse
Affiliation(s)
| | | | | | | | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (R.C.-L.); (A.M.-I.); (F.N.-P.); (R.R.-C.)
| |
Collapse
|
13
|
Effect of Chitosan and Aloe Vera Extract Concentrations on the Physicochemical Properties of Chitosan Biofilms. Polymers (Basel) 2021; 13:polym13081187. [PMID: 33917123 PMCID: PMC8067903 DOI: 10.3390/polym13081187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022] Open
Abstract
Chitosan films have been extensively studied as dressings in formulations for the treatment of chronic wounds. The incorporation of aloe vera (Aloe barbadensis Miller) into chitosan dressings could potentialize the healing process since aloe vera shows several pharmacological activities. This work aimed to evaluate the effect of aloe vera and chitosan concentrations on the physicochemical properties of the developed films. The films were obtained by casting technique and characterized with respect to their color parameters, morphology, barrier and mechanical properties, and thermal analysis. Results showed that the presence of aloe vera modified the films′ color parameters, changed barrier properties, increased fluid handling capacity (FHC), and decreased water-vapor permeability (WVP). The reduced elongation at break resulted in more rigid films. Aloe vera concentration did not significantly change film properties, but the presence of this gel increased the films’ stability at temperatures below 200 °C, showing similar behavior as chitosan films above 400 °C. The results suggest a crosslinking/complexation between chitosan and aloe vera, which combine appropriate physicochemical properties for application as wound dressing materials.
Collapse
|
14
|
Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydr Polym 2021; 257:117601. [PMID: 33541636 DOI: 10.1016/j.carbpol.2020.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/23/2022]
Abstract
The exploitation of natural origin macromolecules, as complex physical mixtures or drugs, increases in biomedical or tissue engineering (TE) solutions. Aloe Vera is a highly explored medicinal plant, from which the main polysaccharide is acemannan (ACE). The ACE combination with chitosan and alginate results in interactions that lead to mixed junction zones formation, predicting membrane functionality improvement. This work proposes the development and characterization of ACE-based blended films as a promising strategy to design a nature-derived bioactive platform. The results confirmed that stable complex polyelectrolyte structures were formed through different intermolecular interactions. The films present good dimensional stability, flexibility, an adequate swelling ability with mostly radial water uptake, and a sustainable ACE release to the medium. Positive biological performance of the ACE-based blended films with L929 cells also suggested that they can be applied in TE solutions, with the potential to act as bioactive topical platforms.
Collapse
|
15
|
Antioxidant and antimicrobial material by grafting of L-arginine onto enzymatic poly(gallic acid). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111650. [PMID: 33579431 DOI: 10.1016/j.msec.2020.111650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
Microwave-mediated grafting of L-Arg onto naturally derived and stable multiradical poly(gallic acid) (PGAL) in aqueous media has been successfully achieved. This polymeric material has no adverse effect in human cells as there is no hemolytic activity upon MTT and Neutral Red assays. The analytical and computational characterization studies carried out in this study describe a helical molecular structure with random incorporation of L-Arginine pendant groups from PGAL's backbone. The antioxidant properties of the precursor polymer are preserved as proved by the elimination of stable DPPH and hydroxyl radical scavenging, as well as the FRAP and ORAC assays. Regarding the latter, the oxygen radical inhibition is enhanced compared to PGAL, which is attributed to the guanidyl moieties. PGAL-g-L-Arg displays antimicrobial activity against Gram (+) Listeria monocytogenes and Staphylococcus aureus strains with a MIC of 0.8 g/L and a bacteriostatic effect against Gram (-) Escherichia coli. Additionally, scanning electron and confocal fluorescence microscopies as well as crystal violet colorimetric assay demonstrate that the mechanism involved in the bacterial inhibition is related to the formation of porous channels on the membrane, which is discussed according to the helical secondary structure of the polymer and the amino acid guanidyl moieties interacting to bacterial membranes.
Collapse
|
16
|
Double membrane based on lidocaine-coated polymyxin-alginate nanoparticles for wound healing: In vitro characterization and in vivo tissue repair. Int J Pharm 2020; 591:120001. [DOI: 10.1016/j.ijpharm.2020.120001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022]
|
17
|
Varaprasad K, Jayaramudu T, Kanikireddy V, Toro C, Sadiku ER. Alginate-based composite materials for wound dressing application:A mini review. Carbohydr Polym 2020; 236:116025. [PMID: 32172843 DOI: 10.1016/j.carbpol.2020.116025] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Alginate biopolymer has been used in the design and development of several wound dressing materials in order to improve the efficiency of wound healing. Mainly, alginate improves the hydrophilic nature of wound dressing materials in order to create the required moist wound environment, remove wound exudate and increase the speed of skin recovery of the wound. In addition, alginate can easily cross-link with other organic and inorganic materials and they can promote wound healing in clinical applications. This review article addresses the importance of alginates and the roles of derivative polymeric materials in wound dressing biomaterials. Additionally, studies on recent alginate-based wound dressing materials are discussed.
Collapse
Affiliation(s)
- Kokkarachedu Varaprasad
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile.
| | - Tippabattini Jayaramudu
- Laboratory of Material Sciences, Instituto de Quimica de Recursos Naturales, Universidad de Talca, 747, Talca, Chile
| | - Vimala Kanikireddy
- Department of Chemistry, Osmania University, Hyderabad, 500 007, Telangana, India
| | - Claudio Toro
- Centro de Investigación de Polímeros Avanzados, CIPA, Avenida Collao 1202, Edificio de Laboratorios, Concepción, Chile
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering, (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsartillerie Rd, Pretoria, 0183, South Africa
| |
Collapse
|
18
|
Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. ARHIV ZA FARMACIJU 2020. [DOI: 10.5937/arhfarm2004173q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Harrison TD, Yunyaeva O, Borecki A, Hopkins CC, de Bruyn JR, Ragogna PJ, Gillies ER. Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules 2019; 21:152-162. [PMID: 31502452 DOI: 10.1021/acs.biomac.9b01115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(n-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride]. The networks were compacted by ultracentrifugation, then their composition, swelling, rheological, and self-healing properties were studied. Their properties depended on the structure of the phosphonium polymer and the salt concentration, but in general, they exhibited predominantly gel-like behavior with relaxation times greater than 40 s and self-healing over 2-18 h. Anionic molecules, including fluorescein, diclofenac, and adenosine-5'-triphosphate, were encapsulated into the PECs with high loading capacities of up to 16 wt %. Fluorescein and diclofenac were slowly released over 60 days, which was attributed to a combination of hydrophobic and ionic interactions with the dense PEC network. The cytotoxicities of the polymers and their corresponding networks with HA to C2C12 mouse myoblast cells was investigated and found to depend on the structure of the polymer and the properties of the network. Overall, this work demonstrates the utility of polyphosphonium-HA networks for the loading and slow release of ionic drugs and that their physical and biological properties can be readily tuned according to the structure of the phosphonium polymer.
Collapse
Affiliation(s)
- Tristan D Harrison
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Olga Yunyaeva
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Aneta Borecki
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Cameron C Hopkins
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - John R de Bruyn
- Department of Physics and Astronomy and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 3K7
| | - Paul J Ragogna
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7
| | - Elizabeth R Gillies
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B7.,Department of Chemical and Biochemical Engineering , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B9
| |
Collapse
|
20
|
Amani S, Mohamadnia Z. Modulation of interfacial electrical charges in assembled nano-polyelectrolyte complex of alginate-based macromolecules. Int J Biol Macromol 2019; 135:163-170. [DOI: 10.1016/j.ijbiomac.2019.05.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022]
|
21
|
Quintana-Quirino M, Morales-Osorio C, Vigueras Ramírez G, Vázquez-Torres H, Shirai K. Bacterial cellulose grows with a honeycomb geometry in a solid-state culture of Gluconacetobacter xylinus using polyurethane foam support. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Effect of bio-chemical chitosan and gallic acid into rheology and physicochemical properties of ternary edible films. Int J Biol Macromol 2019; 125:149-158. [DOI: 10.1016/j.ijbiomac.2018.12.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
|