1
|
Thakur N, Singh B. Evaluating physiochemical characteristics of tragacanth gum-gelatin network hydrogels designed through graft copolymerization technique. Int J Biol Macromol 2024; 266:131082. [PMID: 38537849 DOI: 10.1016/j.ijbiomac.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The present work deals with the evaluation of the physiochemical and biomedical properties of hydrogels derived from copolymerization of tragacanth gum (TG) and gelatin for use in drug delivery (DD) applications. Copolymers were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. FE-SEM revealed heterogeneous morphology and XRD analysis demonstrated an amorphous nature with short range pattern of polymer chains within the copolymers. The release of the drug ofloxacin occurred through a non-Fickian diffusion mechanism and the release profile was best described by the Korsmeyer-Peppas kinetic model. The hydrogels exhibited blood compatibility and demonstrated a thrombogenicity value of 75.63 ± 1.98 % during polymer-blood interactions. Polymers revealed mucoadhesive character during polymer-mucous membrane interactions and required 119 ± 8.54 mN detachment forces to detach from the biological membrane. The copolymers illustrated the antioxidant properties as evidenced by 2, 2'-diphenylpicrylhydrazyl (DPPH) assay which demonstrated a 65.71 ± 3.68 % free radical inhibition. Swelling properties analysis demonstrated that by change in monomer and cross linker content during the reaction increased the crosslinking of the network. These results suggest that the pore size of network hydrogels could be controlled as per the requirement of DD systems. The copolymers were prepared at optimized reaction conditions using 14.54 × 10-1 molL-1 of acrylic acid monomer and 25.0 × 10-3 molL-1 of crosslinker NNMBA. The optimized hydrogels exhibited a crosslink density of 2.227 × 10-4 molcm-3 and a mesh size of 7.966 nm. Additionally, the molecular weight between two neighboring crosslinks in the hydrogels was determined to be 5332.209 gmol-1.The results indicated that the combination of protein-polysaccharide has led to the development of hydrogels suitable for potential applications in sustained drug delivery.
Collapse
Affiliation(s)
- Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
2
|
Siraj EA, Yayehrad AT, Belete A. How Combined Macrolide Nanomaterials are Effective Against Resistant Pathogens? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5289-5307. [PMID: 37732155 PMCID: PMC10508284 DOI: 10.2147/ijn.s418588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Macrolide drugs are among the broad-spectrum antibiotics that are considered as "miracle drugs" against infectious diseases that lead to higher morbidity and mortality rates. Nevertheless, their effectiveness is currently at risk owing to the presence of devastating, antimicrobial-resistant microbes. In view of this challenge, nanotechnology-driven innovations are currently being anticipated for promising approaches to overcome antimicrobial resistance. Nowadays, various nanostructures are being developed for the delivery of antimicrobials to counter drug-resistant microbial strains through different mechanisms. Metallic nanoparticle-based delivery of macrolides, particularly using silver and gold nanoparticles (AgNPs & AuNPs), demonstrated a promising outcome with worthy stability, oxidation resistance, and biocompatibility. Similarly, macrolide-conjugated magnetic NPs resulted in an augmented antimicrobial activity and reduced bacterial cell viability against resistant microbes. Liposomal delivery of macrolides also showed favorable synergistic antimicrobial activities in vitro against resistant strains. Loading macrolide drugs into various polymeric nanomaterials resulted in an enhanced zone of inhibition. Intercalated nanomaterials also conveyed an outstanding macrolide delivery characteristic with efficient targeting and controlled drug release against infectious microbes. This review abridges several nano-based delivery approaches for macrolide drugs along with their recent achievements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Ebrahim Abdela Siraj
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashagrachew Tewabe Yayehrad
- Department of Pharmacy, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Siddiqui R, Boghossian A, Kawish M, Jabri T, Shah MR, Anuar TS, Al-Shareef Z, Khan NA. Nanocarrier Drug Conjugates Exhibit Potent Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Properties. Diseases 2023; 11:diseases11020058. [PMID: 37092440 PMCID: PMC10123729 DOI: 10.3390/diseases11020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023] Open
Abstract
Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, PuncakAlam Campus, Selangor 42300, Malaysia
| | - Zainab Al-Shareef
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Siddiqui R, Boghossian A, Alqassim SS, Kawish M, Gul J, Jabri T, Shah MR, Khan NA. Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures. Arch Microbiol 2023; 205:170. [PMID: 37017767 DOI: 10.1007/s00203-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Jasra Gul
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Arefkhani M, Babaei A, Masoudi M, Kafashan A. A step forward to overcome the cytotoxicity of graphene oxide through decoration with tragacanth gum polysaccharide. Int J Biol Macromol 2023; 226:1411-1425. [PMID: 36442552 DOI: 10.1016/j.ijbiomac.2022.11.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hybridization of nanomaterials (NMs) with natural polymers is one of the best techniques to promote their exciting properties. In this way, the main objective of this work was to investigate the efficiency of decoration of the graphene oxide (GO) nano-sheets with tragacanth gum (TG) polysaccharide. To aim this, different approaches were used (with and without ultrasonic treatment) and various tests (XRD, FTIR, Raman, UV-Vis, DLS, Zeta potential, contact angle, AFM, FE-SEM, TEM, and MTT assay) were conducted. Test results indicated that the nano-hybrids were successfully synthesized. Furthermore, our findings represented that, the TG hybridized GO (TG-GO) appreciably enhanced the biocompatibility of GO. Moreover, it was demonstrated that the ultrasonic treatment of TG solution put a remarkable impact on the microstructure, wettability, and also surface charge characteristic of fabricated nano-hybrids and consequently improved the biocompatibility against L929-fibroblast cells.
Collapse
Affiliation(s)
- Mahdi Arefkhani
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Maha Masoudi
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Azade Kafashan
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| |
Collapse
|
7
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
|
8
|
Orally Administered Amphotericin B Nanoformulations: Physical Properties of Nanoparticle Carriers on Bioavailability and Clinical Relevance. Pharmaceutics 2022; 14:pharmaceutics14091823. [PMID: 36145572 PMCID: PMC9505005 DOI: 10.3390/pharmaceutics14091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Amphotericin B is an effective polyene antifungal considered as a “gold standard” in the management of fungal infections. Currently, it is administered mainly by IV due to poor aqueous solubility, which precludes its delivery orally. Paradoxically, IV administration is akin to side effects that have not been fully eliminated even with more recent IV formulations. Thus, the need for alternative formulations/route of administration for amphotericin B remains crucial. The oral route offers the possibility of delivering amphotericin B systemically and with diminished side effects; however, enterocyte permeation remains a constraint. Cellular phagocytosis of submicron particles can be used to courier encapsulated drugs. In this regard, nanoparticulate delivery systems have received much attention in the past decade. This review examines the trajectory of orally delivered amphotericin B and discusses key physical factors of nanoformulations that impact bioavailability. The review also explores obstacles that remain and gives a window into the possibility of realizing an oral nanoformulation of amphotericin B in the near future.
Collapse
|
9
|
Mallakpour S, Tabesh F, Hussain CM. Potential of tragacanth gum in the industries: a short journey from past to the future. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
10
|
Akbar N, Kawish M, Khan NA, Shah MR, Alharbi AM, Alfahemi H, Siddiqui R. Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics (Basel) 2022; 11:696. [PMID: 35625340 PMCID: PMC9137731 DOI: 10.3390/antibiotics11050696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
To combat the public health threat posed by multiple-drug-resistant (MDR) pathogens, new drugs with novel chemistry and modes of action are needed. In this study, several drugs including Hesperidin (HES), curcumin (CUR), and Amphotericin B (AmpB) drug-nanoparticle formulations were tested for antibacterial strength against MDR Gram-positive bacteria, including Bacillus cereus, Streptococcus pyogenes, Methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae, and Gram-negative bacteria, including Escherichia coli K1, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens. Nanoparticles were synthesized and subjected to Atomic force microscopy, Fourier transform-infrared spectroscopy, and Zetasizer for their detailed characterization. Antibacterial assays were performed to determine their bactericidal efficacy. Lactate dehydrogenase (LDH) assays were carried out to measure drugs' and drug-nanoparticles' cytotoxic effects on human cells. Spherical NPs ranging from 153 to 300 nm were successfully synthesized. Results from antibacterial assays revealed that drugs and drug-nanoparticle formulations exerted bactericidal activity against MDR bacteria. Hesperidin alone failed to exhibit antibacterial effects but, upon conjugation with cinnamic-acid-based magnetic nanoparticle, exerted significant bactericidal activity against both the Gram-positive and Gram-negative isolates. AmpB-LBA-MNPs produced consistent, potent antibacterial efficacy (100% kill) against all Gram-positive bacteria. AmpB-LBA-MNPs showed strong antibacterial activity against Gram-negative bacteria. Intriguingly, all the drugs and their conjugated counterpart except AmpB showed minimal cytotoxicity against human cells. In summary, these innovative nanoparticle formulations have the potential to be utilized as therapeutic agents against infections caused by MDR bacteria and represent a significant advancement in our effort to counter MDR bacterial infections.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (M.K.); (M.R.S.)
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 26521, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates; (N.A.); (R.S.)
| |
Collapse
|
11
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
12
|
Kawish M, Jabri T, Elhissi A, Zahid H, Muhammad Iqbal K, Rao K, Gul J, Abdullah M, Shah MR. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol 2021; 26:291-301. [PMID: 33475034 DOI: 10.1080/10837450.2020.1866602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
The current study focuses on the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded lactobionic acid (LBA)-functionalized iron oxide magnetic nanoparticles (MNP-LBA). Atomic force microscopy and dynamic light scattering showed that the developed CFT-loaded MNP-LBA is spherical, with a measured hydrodynamic size of 147 ± 15.9 nm and negative zeta potential values (-35 ± 0.58 mV). Fourier transformed infrared analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiencies of 91.5 ± 2.2%, and the drug was released gradually in vitro and shows prolonged in vitro stability using simulated gastrointestinal (GI) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.46 ± 2.5 µg/mL in comparison with its control (1.96 ± 0.58 µg/mL). Overall, the developed MNP-LBA formulation was found promising for provision of high-drug entrapment, gradual drug release and was appropriate for enhancing the oral delivery of CFT.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Tooba Jabri
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Office of The Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Hina Zahid
- Faculty of Pharmaceutical Sciences, Dow University of Health Sciences Karachi, Karachi, Pakistan
| | - Kanwal Muhammad Iqbal
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Komal Rao
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Jasra Gul
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Abdullah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
13
|
Sharma M, Chaudhary D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management. Int J Pharm 2020; 594:120176. [PMID: 33326825 DOI: 10.1016/j.ijpharm.2020.120176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Bromelain, a cysteine protease exhibits promising potential in amelioration of wide variety of inflammatory disorders. Its denaturation or aggregation in gastric milieu depletes its therapeutic potential along with unpredictable prophylactic hypersensitivity reactions. Hence, efficient carrier system to improve bromelain's stability and avoid related side effects is of utmost importance. Therefore, present investigation was undertaken to prepare bromelain loaded nanostructured lipid carriers (Br-NCs) with high drug loading, stability and efficacy in rheumatoid arthritis management. Br-NCs fabricated via double emulsion solvent evaporation method were characterized for physical properties, morphology and stability. Optimized batch exhibited spherical shape, nanometric size (298.23 nm) and entrapment efficiency ~77% with sustained release behavior and improved gastric stability. Br-NCs exhibited 4.63-folds improvement in shelf-life compared to bromelain at room temperature. The protective potential of orally administered Br-NCs in rheumatoid arthritis was evaluated via assessing arthritis severity in wistar rats along with biochemical, hematological and immunological parameters. Br-NCs remarkably (p < 0.05) diminished paw edema, joint stiffness, mechanical allodynia and tissue damage along with alleviation of oxidative stress and immunological markers. Radiological joint alterations were also notably preserved with Br-NCs. Thus, preclinical studies distinctly manifested that Br-NCs formulation opens new avenue for development of novel effective therapeutic modality for rheumatoid arthritis management.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India.
| | - Deepika Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan 304022, India
| |
Collapse
|
14
|
Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, Khan NA. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express 2020; 10:127. [PMID: 32681358 PMCID: PMC7368000 DOI: 10.1186/s13568-020-01061-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
Collapse
|
15
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
16
|
Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics (Basel) 2020; 9:antibiotics9050276. [PMID: 32466210 PMCID: PMC7277095 DOI: 10.3390/antibiotics9050276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Collapse
|
17
|
Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. Int J Biol Macromol 2020; 152:492-502. [PMID: 32097738 DOI: 10.1016/j.ijbiomac.2020.02.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 01/13/2023]
Abstract
Amphotericin B is an antibiotic used in the treatment of fungal disease and leishmania; however, it exhibits side effects to patients, hindering its wider application. Therefore, nanocarriers have been investigated as delivery systems for amphotericin B (AMB) in order to decrease its toxicity, besides increase bioavailability and solubility. Amphiphilic copolymers are interesting materials to encapsulate hydrophobic drugs such as AMB, hence copolymers of cashew gum (CG) and l-lactide (LA) were synthesized using two different CG:LA molar ratios (1:1 and 1:10). Data obtained revealed that copolymer nanoparticles present similar figures for particle sizes and zeta potentials; however, particle size of encapsulated AMB increases if compared to unloaded nanoparticles. The 1:10 nanoparticle sample has better stability although higher polydispersity index (PDI) if compared to 1:1 sample. High amphotericin (AMB) encapsulation efficiencies and low hemolysis were obtained. AMB loaded copolymers show lower aggregation pattern than commercial AMB solution. AMB loaded nanoparticles show antifungal activities against four C. albicans strains. It can be inferred that cashew gum/polylactide copolymers have potential as nanocarrier systems for AMB.
Collapse
|
18
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2025]
|
19
|
Amphiphilic p-sulfonatocalix[6]arene based self-assembled nanostructures for enhanced clarithromycin activity against resistant Streptococcus Pneumoniae. Colloids Surf B Biointerfaces 2019; 186:110676. [PMID: 31838269 DOI: 10.1016/j.colsurfb.2019.110676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022]
Abstract
Amphiphilic calixarenes are preferred to generate nano-cargos for drugs due to their stability, possibilities for modification and intrinsic host cavities. Here we are reporting the synthesis of amphiphilic calixarene and its evaluation as drug delivery system. Water soluble amphiphilic p-sulfonatocalix[6]arene was synthesized through sulfonation and lipophilic conjugation on its upper and lower rims respectively. The synthesized amphiphile self-assembled into nanostructures in the presence of Clarithromycin and FITC as model hydrophobic drugs followed by a wide range of characterization. Clarithromycin loaded self-assembled nanostructures was screened for its bactericidal potential in resistant S. pneumonia through various in-vitro assays. The amphiphilic calixarene self-assembled into polydispersed nanostructures with 136.45 ± 2.41 nm mean diameter and -49.93 ± 0.35 mV surface charges. The amphiphile was capable to load Clarithromycin (57.54 ± 1.88 %) and fluorescent dye and was highly stable. Clarithromycin loaded nanostructures revealed significant biofilm and bacterial growth inhibition and cell destruction properties. Results authenticate calixarene amphiphile as an efficient nano-carrier for improving Clarithromycin efficacy.
Collapse
|
20
|
Abstract
The fundamental aspects of the manufacturing of gold nanoparticles (AuNPs) are discussed in this review. In particular, attention is devoted to the development of a simple and versatile method for the preparation of these nanoparticles. Eco-friendly synthetic routes, such as wet chemistry and biosynthesis with the aid of polymers, are of particular interest. Polymers can act as reducing and/or capping agents, or as soft templates leading to hybrid nanomaterials. This methodology allows control of the synthesis and stability of nanomaterials with novel properties. Thus, this review focus on a fundamental study of AuNPs properties and different techniques to characterize them, e.g., Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), UV-Visible spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy, Small-angle X-Ray Scattering (SAXS), and rheology. Recently, AuNPs obtained by “green” synthesis have been applied in catalysis, in medicine, and as antibacterials, sensors, among others.
Collapse
|
21
|
Tan JSL, Roberts C, Billa N. Pharmacokinetics and tissue distribution of an orally administered mucoadhesive chitosan-coated amphotericin B-Loaded nanostructured lipid carrier (NLC) in rats. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:141-154. [DOI: 10.1080/09205063.2019.1680926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Affiliation(s)
- Janet Sui Ling Tan
- School of Pharmacy, The University of Nottingham, Malaysia, Semenyih, Selangor, Malaysia
| | - Clive Roberts
- School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Nashiru Billa
- School of Pharmacy, The University of Nottingham, Malaysia, Semenyih, Selangor, Malaysia
- College of Pharmacy, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
|
23
|
Ling JTS, Roberts CJ, Billa N. Antifungal and Mucoadhesive Properties of an Orally Administered Chitosan-Coated Amphotericin B Nanostructured Lipid Carrier (NLC). AAPS PharmSciTech 2019; 20:136. [PMID: 30838459 DOI: 10.1208/s12249-019-1346-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2018] [Accepted: 02/18/2019] [Indexed: 01/11/2023] Open
Abstract
Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
Collapse
|
24
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|