1
|
Badawey SE, Heikal L, Teleb M, Abu-Serie M, Bakr BA, Khattab SN, El-Khordagui L. Biosurfactant-amphiphilized hyaluronic acid: A dual self-assembly anticancer nanoconjugate and drug vector for synergistic chemotherapy. Int J Biol Macromol 2024; 271:132545. [PMID: 38815938 DOI: 10.1016/j.ijbiomac.2024.132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Novel amphiphilic nanoconjugates of hyaluronic acid (HA), 50 kDa (HA50) and 100 kDa (HA100), and the lipopeptide biosurfactant surfactin (SF) were developed for potential anticancer applications. Physicochemical characterization indicated the formation of an ester conjugate (HA: SF molar ratio 1: 40) with the HA50-SF derivative exhibiting higher degree of substitution, hydrolytic stability, and surface activity. Self-assembly resulted in nanomicelles with smaller size and greater negative charge relative to SF micelles. Biological data demonstrated distinct anticancer activity of HA50-SF which displayed greater synergistic cytotoxicity and selectivity for MDA-MB 231 and MCF-7 breast cancer cells alongside greater modulation of apoptosis-related biomarkers leading to apoptosis. As bioactive vector for chemotherapeutic agents, the selected HA50-SF nanoconjugate efficiently (70 %) entrapped berberine (BER) producing a sustained release BER-HA50-SF synergistic anticancer nanoformulation. Lactoferrin (Lf) coating for dual HA/Lf targeting endowed Lf/BER-HA50-SF with significantly greater selectivity for both cell lines. A murine Ehrlich breast cancer model provided evidence for the efficacy and safety of Lf/BER-HA50-SF via tumoral, histological, immunohistochemical, molecular and systemic toxicity assessments. Thus, HA-SF nanoconjugates integrating the HA and SF properties and biofunctionalties present a novel biopolymer-biosurfactant platform of benefit to oncology nanomedicine and possibly other applications.
Collapse
Affiliation(s)
- Sara E Badawey
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, 21321 Alexandria, Egypt
| | - Labiba El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
2
|
Valachová K, Hassan ME, Šoltés L. Hyaluronan: Sources, Structure, Features and Applications. Molecules 2024; 29:739. [PMID: 38338483 PMCID: PMC10856924 DOI: 10.3390/molecules29030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Hyaluronan (HA) is a non-sulfated glycosaminoglycan that is present in a variety of body tissues and organs. Hyaluronan has a wide range of biological activities that are frequently influenced by molar mass; however, they also depend greatly on the source, purity, and kind of impurities in hyaluronan. High-molar-mass HA has anti-inflammatory, immunosuppressive, and antiangiogenic properties, while low-molar-mass HA has opposite properties. A number of chemical modifications have been performed to enhance the stability of HA and its applications in medical practice. Hyaluronan is widely applied in medicine, such as viscosupplementation, ophthalmology, otolaryngology, wound healing, cosmetics, and drug delivery. In this review, we summarized several medical applications of polymers based on the hyaluronan backbone.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| | - Mohamed E. Hassan
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
- Centre of Excellence, Encapsulation & Nanobiotechnology Group, Chemistry of Natural and Microbial Products Department, National Research Centre, El Behouth Street, Cairo 12622, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
3
|
Seres L, Csapó E, Varga N, Juhász Á. The Effect of Concentration, Temperature, and pH on the Formation of Hyaluronic Acid-Surfactant Nanohydrogels. Gels 2023; 9:529. [PMID: 37504408 PMCID: PMC10379036 DOI: 10.3390/gels9070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The assembly of colloidal hyaluronic acid (HyA, as a polysaccharide) based hydrogel particles in an aqueous medium is characterized in the present paper, with an emphasis on the particular case of nanohydrogels formed by surfactant-neutralized polysaccharide networks. The structural changes and particle formation process of polysaccharide- and cationic-surfactant-containing systems were induced by the charge neutralization ability and the hydrophobic interactions of cetyltrimethylammonium bromide (CTAB) under different conditions. Based on the rheological, light scattering, ζ-potential, turbidity, and charge titration measurements, it can be concluded that the preparation of the HyA-CTAB particles can be greatly controlled. The results indicate that more available negative charges can be detected on the polymer chain at smaller initial amounts of HyA (cHyA < 0.10 mg/mL), where a molecular solution can be formed. The change in the pH has a negligible effect on the formation process (particle aggregation appears at nCTAB/nHyA,monomer~1.0 in every case), while the temperature dependence of the critical micelle concentration (c.m.c.) of CTAB determines the complete neutralization of the forming nanohydrogels. The results of our measurements confirm that after the appearance of stable colloidal particles, a structural change and aggregation of the polymer particles take place, and finally the complete charge neutralization of the system occurs.
Collapse
Affiliation(s)
- László Seres
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Norbert Varga
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Sepulveda AF, Kumpgdee-Vollrath M, Franco MK, Yokaichiya F, de Araujo DR. Supramolecular structure organization and rheological properties modulate the performance of hyaluronic acid-loaded thermosensitive hydrogels as drug-delivery systems. J Colloid Interface Sci 2023; 630:328-340. [DOI: 10.1016/j.jcis.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
5
|
Hornok V, Amin KWK, Kovács AN, Juhász Á, Katona G, Balogh GT, Csapó E. Increased blood-brain barrier permeability of neuroprotective drug by colloidal serum albumin carriers. Colloids Surf B Biointerfaces 2022; 220:112935. [DOI: 10.1016/j.colsurfb.2022.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
|
6
|
Ma L, Zong J, Xun X, Hu X, Chen Z, Zhang Q, Peng M, Song B, Ao H. Fabrication of gentamicin loaded Col-I/HA multilayers modified titanium coatings for prevention of implant infection. Front Chem 2022; 10:1019332. [DOI: 10.3389/fchem.2022.1019332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, gentamicin loaded collagen I/hyaluronic acid multilayers modified titanium coating (TC-AA(C/H)6-G) was fabricated via a layer-by-layer (LBL) covalent immobilization method. The drug releasing properties of collagen I/Hyaluronic acid (Col-I/HA) multilayers and the effect of loaded gentamicin on the antibacterial properties and cytocompatibility of modified TC were investigated. The gentamicin release assay indicated that the Col-I/HA multilayers modified TC exhibited agreeable drug-loading amount (537.22 ± 29.66 µg of gentamicin) and controlled-release performance (240 h of sustained release time). TC-AA(C/H)6-G revealed satisfactory antibacterial activity and inhibited the colonization and biofilm formation of S. aureus. Fortunately, the functions of hMSCs on TC-AA(C/H)6-G did not affected by the loaded gentamicin, and TC-AA(C/H)6-G could improve the adhesion, proliferation and osteogenic differentiation of cells, as well as TC-AA(C/H)6. In vivo animal study indicated that TC-AA(C/H)6-G could effectively control intramedullary cavity infection caused by S. aureus and prevent bone destruction.
Collapse
|
7
|
Varga N, Seres L, Kovács NA, Turcsányi Á, Juhász Á, Csapó E. Serum albumin/hyaluronic acid nanoconjugate: Evaluation of concentration-dependent structural changes to form an efficient drug carrier particle. Int J Biol Macromol 2022; 220:1523-1531. [PMID: 36122775 DOI: 10.1016/j.ijbiomac.2022.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Norbert Varga
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - László Seres
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Nikolett Alexandra Kovács
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Árpád Turcsányi
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary; Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, Szeged, Hungary.
| |
Collapse
|
8
|
Bi-layered carboxymethyl cellulose-collagen vitrigel dual-surface adhesion-prevention membrane. Carbohydr Polym 2022; 285:119223. [DOI: 10.1016/j.carbpol.2022.119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
|
9
|
Albumin-hyaluronic acid colloidal nanocarriers: Effect of human and bovine serum albumin for intestinal ibuprofen release enhancement. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Juhász Á, Ungor D, Várkonyi EZ, Varga N, Csapó E. The pH-Dependent Controlled Release of Encapsulated Vitamin B 1 from Liposomal Nanocarrier. Int J Mol Sci 2021; 22:9851. [PMID: 34576015 PMCID: PMC8466024 DOI: 10.3390/ijms22189851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly presented a simple encapsulation method to prepare thiamine hydrochloride (vitamin B1)-loaded asolectin-based liposomes with average hydrodynamic diameter of ca. 225 and 245 nm under physiological and acidic conditions, respectively. In addition to the optimization of the sonication and magnetic stirring times used for size regulation, the effect of the concentrations of both asolectin carrier and initial vitamin B1 on the entrapment efficiency (EE %) was also investigated. Thermoanalytical measurements clearly demonstrated that after the successful encapsulation, only weak interactions were discovered between the carriers and the drug molecules. Moreover, the dissolution profiles under physiological (pH = 7.40) and gastric conditions (pH = 1.50) were also registered and the release profiles of our liposomal B1 system were compared with the dissolution profile of the pure drug solution and a manufactured tablet containing thiamin hydrochloride as active ingredient. The release curves were evaluated by nonlinear fitting of six different kinetic models. The best goodness of fit, where the correlation coefficients in the case of all three systems were larger than 0.98, was reached by application of the well-known second-order kinetic model. Based on the evaluation, it was estimated that our liposomal nanocarrier system shows 4.5-fold and 1.5-fold larger drug retention compared to the unpackaged vitamin B1 under physiological conditions and in artificial gastric juice, respectively.
Collapse
Affiliation(s)
- Ádám Juhász
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm Sqr. 8, H-6720 Szeged, Hungary
| | - Ditta Ungor
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Egon Z. Várkonyi
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Norbert Varga
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
| | - Edit Csapó
- MTA-SZTE “Momentum” Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. Sqr. 1, H-6720 Szeged, Hungary; (Á.J.); (D.U.); (E.Z.V.); (N.V.)
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm Sqr. 8, H-6720 Szeged, Hungary
| |
Collapse
|
11
|
Shoaib MH, Sikandar M, Ahmed FR, Ali FR, Qazi F, Yousuf RI, Irshad A, Jabeen S, Ahmed K. Applications of Polysaccharides in Controlled Release Drug Delivery System. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
12
|
Kovács AN, Varga N, Juhász Á, Csapó E. Serum protein-hyaluronic acid complex nanocarriers: Structural characterisation and encapsulation possibilities. Carbohydr Polym 2021; 251:117047. [DOI: 10.1016/j.carbpol.2020.117047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
|
13
|
Consumi M, Leone G, Pepi S, Pardini A, Lamponi S, Bonechi C, Tamasi G, Rossi C, Magnani A. Calcium ions hyaluronan/gellan gum protective shell for delivery of oleuropein in the knee. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- INSTM, Firenze, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- INSTM, Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Alessio Pardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- INSTM, Firenze, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- CSGI, Sesto Fiorentino, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- CSGI, Sesto Fiorentino, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- CSGI, Sesto Fiorentino, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- INSTM, Firenze, Italy
| |
Collapse
|
14
|
Turcsányi Á, Varga N, Csapó E. Chitosan-modified hyaluronic acid-based nanosized drug carriers. Int J Biol Macromol 2020; 148:218-225. [PMID: 31954121 DOI: 10.1016/j.ijbiomac.2020.01.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 11/18/2022]
Abstract
Fabrication possibilities, detailed size and structural characterization of biodegradable chitosan (Chit) polysaccharide-modified hyaluronic acid (HyA)-based colloidal carriers are demonstrated. The negatively charged and highly hydrophilic HyA polymer chains have been ionically modified by positively charged pure Chit and crosslinked Chit macromolecules at various Chit/HyA weight ratios, which resulted in the formation of carrier nanoparticles (NPs) having three different nanostructures depending on the polymer concentrations. Electrostatically-compensated Chit/HyA polymer coils with loose colloidal structure, tripolyphosphate (TPP)-crosslinked Chit-TPP/HyA NPs having interpenetrating polymer network and well-defined Chit-TPPcore-HyAshell NPs with diameters of 100-300 nm were also prepared and were loaded with tocopherol (TCP) and cholecalciferol (D3) having Vitamin E and D activity, respectively. By using rheological, particle charge titration and conductivity studies we first confirmed that the expected 1:1 Chit/HyA monomer molar ratio is strongly influenced by the pH of the polymer solutions as well as the deacetylation degree of Chit which are crucial factors for the solubility, purity and the quality of the commercially available biocompatible Chit in aqueous medium. Encapsulation studies revealed that D3 could be better incorporated in every system, especially in Chit-TPP/HyA NPs, while for TCP the simple Chit/HyA polymer coils were the most promising carriers.
Collapse
Affiliation(s)
- Árpád Turcsányi
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla Square 1, Szeged, Hungary
| | - Norbert Varga
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla Square 1, Szeged, Hungary
| | - Edit Csapó
- Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla Square 1, Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720, Dóm Square 8, Szeged, Hungary.
| |
Collapse
|
15
|
Slow degrading hyaluronic acid hydrogel reinforced with cationized graphene nanosheets. Int J Biol Macromol 2019; 141:232-239. [DOI: 10.1016/j.ijbiomac.2019.08.243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022]
|
16
|
Chen X, Lu B, Zhou D, Shao M, Xu W, Zhou Y. Photocrosslinking maleilated hyaluronate/methacrylated poly (vinyl alcohol) nanofibrous mats for hydrogel wound dressings. Int J Biol Macromol 2019; 155:903-910. [PMID: 31730992 DOI: 10.1016/j.ijbiomac.2019.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/19/2023]
Abstract
Although electrospinning of nanofibrous scaffolds benefit to wound healing have been developed at a fast pace, achieving nanofibrous scaffolds with high absorptivity by green electrospinning and crosslinking techniques is still a great challenge. Here, we developed a maleilated hyaluronate/methacrylated poly (vinyl alcohol) (MHA) (MaPVA) composite nanofibers by electrospinning from pure water solvent and followed by photopolymerization to form crosslinking nanofibers network. Electrospinnability of MHA/MaPVA blend systems were investigated and the results shows that the morphology and diameter of the nanofibers were mainly affected by MHA/MaPVA weight ratios by changing viscosity and conductivity of the blend solutions. The crystalline microstructure of the electrospun fibers was not well developed due to intermolecular hydrogen bonding interaction between the molecules of MHA and MaPVA. The photocrosslinking MHA/MaPVA nanofibrous mats can swell to form fibrous hydrogels with high water absorption, meanwhile it is cytocompatible and capable of promoting the cell attachment, which render it great potential for wound dressings.
Collapse
Affiliation(s)
- Xiao Chen
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Ding Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Mei Shao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China.
| |
Collapse
|
17
|
Dolinina E, Akimsheva E, Parfenyuk E. Silica microcapsules as containers for protein drugs: Direct and indirect encapsulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Vitamin E-Loaded PLA- and PLGA-Based Core-Shell Nanoparticles: Synthesis, Structure Optimization and Controlled Drug Release. Pharmaceutics 2019; 11:pharmaceutics11070357. [PMID: 31336591 PMCID: PMC6680571 DOI: 10.3390/pharmaceutics11070357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
The (±)-α-Tocopherol (TP) with vitamin E activity has been encapsulated into biocompatible poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA) carriers, which results in the formation of well-defined nanosized (d ~200–220 nm) core-shell structured particles (NPs) with 15–19% of drug loading (DL%). The optimal ratios of the polymer carriers, the TP active drug as well as the applied Pluronic F127 (PLUR) non-ionic stabilizing surfactant, have been determined to obtain NPs with a TP core and a polymer shell with high encapsulation efficiency (EE%) (69%). The size and the structure of the prepared core-shell NPs as well as the interaction of the carriers and the PLUR with the TP molecules have been determined by transmission electron microscopy (TEM), dynamic light scattering (DLS), infrared spectroscopy (FT-IR) and turbidity studies, respectively. Moreover, the dissolution of the TP from the polymer NPs has been investigated by spectrophotometric measurements. It was clearly confirmed that increase in the EE% from ca. 70% (PLA/TP) to ca. 88% (PLGA65/TP) results in the controlled release of the hydrophobic TP molecules (7 h, PLA/TP: 34%; PLGA75/TP: 25%; PLGA65/TP: 18%). By replacing the PLA carrier to PLGA, ca. 15% more active substance can be encapsulated in the core (PLA/TP: 65%; PLGA65/TP: 80%).
Collapse
|
19
|
Synthesis, physicochemical, rheological and in-vitro characterization of double-crosslinked hyaluronic acid hydrogels containing dexamethasone and PLGA/dexamethasone nanoparticles as hybrid systems for specific medical applications. Int J Biol Macromol 2019; 126:193-208. [DOI: 10.1016/j.ijbiomac.2018.12.181] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
20
|
Varga N, Hornok V, Janovák L, Dékány I, Csapó E. The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids Surf B Biointerfaces 2019; 176:212-218. [PMID: 30623808 DOI: 10.1016/j.colsurfb.2019.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
Abstract
Three drugs with different hydrophilicity are encapsulated in poly-lactide (PLA) and Poly(lactide-co-glycolide) (PLGA) drug delivery systems prepared by ring-opening polymerization (ROP). Formation of well-defined core-shell type nanoparticles (NPs) is observed for α-tocopherol (TP) and by systematically altering the hydrophilicity of the drug carrier NPs the entrapment efficiency (EE (%)) can be remarkably controlled. The highest (90%) of EE (%) is obtained for the most lipophilic TP from the applied three drugs in the 75% lactide-containing PLGA75 NPs, which is ca. 69% for PLA NPs. Subsequent to drug loading the detailed characterization of the polymers and the formed NPs was carried out. Precipitation titrations reveal that our PLGAs have narrower weight distribution than the commercially available polymer enabling favorable properties to obtain NPs with better size distribution. It is pointed out that during the synthesis the applied solvent and stabilizing agent play a decisive role in the size distribution and stability of the drug carrier NPs. The Pluronic F127-stabilized NPs have the smallest diameter (ca. 190 nm) with less polydispersity among the applied stabilizing agent in nanoprecipitation.
Collapse
Affiliation(s)
- Norbert Varga
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720, Rerrich B. Square 1, Szeged, Hungary
| | - Viktória Hornok
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720, Rerrich B. Square 1, Szeged, Hungary; MTA Premium Post Doctorate Research Program, University of Szeged, Hungary.
| | - László Janovák
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720, Rerrich B. Square 1, Szeged, Hungary
| | - Imre Dékány
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720, Rerrich B. Square 1, Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720, Dóm square 8, Szeged, Hungary
| | - Edit Csapó
- University of Szeged, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, H-6720, Rerrich B. Square 1, Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720, Dóm square 8, Szeged, Hungary.
| |
Collapse
|
21
|
Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 2019; 121:556-571. [DOI: 10.1016/j.ijbiomac.2018.10.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022]
|