1
|
Yu J, Ge W, Wang K, Hao W, Yang S, Xu Y, Feng T, Han P, Sun X. Crosslinking ability of hydrolyzed distarch phosphate and its stabilizing effect on rehydrated sea cucumber. Food Chem 2024; 456:139866. [PMID: 38852446 DOI: 10.1016/j.foodchem.2024.139866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Effective crosslinking among food constituents has the potential to enhance their overall quality. Distarch phosphate (DSP), a common food additive employed as a thickening agent, bears a pre-crosslinked oligosaccharide (PCO) moiety within its molecular structure. Once this moiety is released, its double reducing end has the potential to undergo crosslinking with amino-rich macromolecules through Maillard reaction. In this study, hydrolyzed distarch phosphate (HDSP) was synthesized, and spectroscopic analysis verified the presence of PCO within HDSP. Preliminary validation experiment showed that HDSP could crosslink chitosan to form a hydrogel and significant browning was also observed during the process. Furthermore, rehydrated sea cucumber (RSC) crosslinked with HDSP exhibited a more intact appearance, higher mechanical strength, better color profile, and increased water-holding capacity. This series of results have confirmed that HDSP is capable to crosslink amino-rich macromolecules and form more stable three-dimensional network.
Collapse
Affiliation(s)
- Jiaqi Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wenhao Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangju Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Tingyu Feng
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Ocean University of China, Qingdao 266109, China
| | - Peng Han
- Dalian Municipal central hospital, Dalian 116021, China
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Li C, Hou S, Lian D, Chen M, Li S, Li P, Wang T, Zhang W, Zhou Y, Jiang J, Ji Y. pH-controlled acetic acid pretreatment for coproduction of low degree of polymerization xylo-oligosaccharides and glucose from corncobs. BIORESOURCE TECHNOLOGY 2024; 415:131702. [PMID: 39490599 DOI: 10.1016/j.biortech.2024.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Acetic acid (HAc) pretreatment has been widely used for the production of xylo-oligosaccharides (XOS), requiring harsh reaction conditions because XOS are intermediates during the xylan degradation process. This complexity makes the pretreatment process difficult to regulate. In this study, a pH-controlled HAc pretreatment using sodium hydroxide (NaOH) was proposed to enhance the yield of XOS and to reduce its degree of polymerization (DP) from corncobs (CC). By employing this method (0.3 M-2.7), 49.7 % of XOS with DP 2-6 was obtained, alongside a notable increase in the fraction of XOS with DP 2-4 (10.1 g/L). This performance significantly surpassed that of the HAc alone (0.3 M). Moreover, the glucose yield from CC via pH-controlled HAc pretreatment was as high as 93.1 % after 72-h enzymatic hydrolysis. These results suggested that the pH-controlled HAc pretreatment could be a promising strategy for the coproduction of low-DP XOS and fermentable sugars.
Collapse
Affiliation(s)
- Chenxi Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Hou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dianxing Lian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mohaoyang Chen
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science and Technology, College of Material Science and Engineering, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Ting Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products/Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Weiwei Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yawen Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jianxin Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yongjun Ji
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Fan X, Li K, Qin X, Li Z, Du Y. Structural Characterization and Screening for Anti-inflammatory Activity of Polysaccharides with Different Molecular Weights from Astragali Radix. Chem Biodivers 2024; 21:e202400262. [PMID: 38705857 DOI: 10.1002/cbdv.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Astragali Radix polysaccharides (APSs) exhibit a broad spectrum of biological activity, which is mainly related to immune regulation. At present, most available studies focus on total APSs or a certain component of APSs. However, systematic structural study and screening for the anti-inflammatory activity of polysaccharides with different molecular weights (MW) have yet to be conducted. In this study, lipopolysaccharide (LPS)-induced RAW264.7 macrophages were used as a model to investigate the anti-inflammatory activity of APSs and its fractions. The results revealed that fraction APS-I had better anti-inflammatory effects than APS-II. After APS-I was hydrolyzed by trifluoroacetic acid (TFA), the resulting degradation products oligosaccharides were fully methylated. These derivatized oligosaccharides were further analyzed by MALDI-TOF-MS and UPLC-Q-Exactive-MS/MS. The results showed that APS-I was a hetero-polysaccharide with a molecular weight of about 2.0×106 Da, mainly consisting of glucose (46.8 %) and galactose (34.4 %). The degree of polymerization of Astragali Radix oligosaccharides (APOS) was 2-16. APOS were identified as 1,4-glucooligosaccharides and 1,4-galactooligosaccharides. The findings of this study lay the foundation for further elucidation of structure-function relationships of APSs and provide guidance for the development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xinhui Fan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Engineering Research Center of Glycoconjugates of Ministry of Education, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Song H, Guo R, Sun X, Kou Y, Ma X, Chen Y, Song L, Yuan C, Wu Y. Xylooligosaccharides from corn cobs alleviate loperamide-induced constipation in mice via modulation of gut microbiota and SCFA metabolism. Food Funct 2023; 14:8734-8746. [PMID: 37694718 DOI: 10.1039/d3fo02688d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This study aimed to optimize the structure and efficacy of xylooligosaccharides (XOSs) from corn cobs in constipated mice. Structural analysis revealed that XOSs from corn cobs were composed of β-Xyl-(1 →4)-[β-Xyl-(1→4)]n-α/β-Xyl (n = 0-5) without any other substituents. XOS administration significantly reduced the defecation time, increased the gastrointestinal transit rate, restored the gastrointestinal neurotransmitter imbalance, protected against oxidative stress, and reversed constipation-induced colonic inflammation. Fecal metabolite and microbiota analysis showed that XOS supplementation significantly increased short chain fatty acid (SCFA) levels and improved the gut microbial environment. These findings highlighted the potential of XOSs from corn cobs as an active ingredient for functional foods or as a therapeutic agent in constipation therapy.
Collapse
Affiliation(s)
- Hong Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Rui Guo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xianbao Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yuxing Kou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xuan Ma
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinan Chen
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunmei Yuan
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Ramanathan S, Kasemchainan J, Chuang HC, Sobral AJFN, Poompradub S. Rhodamine B dye degradation using used face masks-derived carbon coupled with peroxymonosulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121386. [PMID: 36868547 DOI: 10.1016/j.envpol.2023.121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Catalytic carbon materials from used face masks (UFM) activated by peroxymonosulfate (PMS) were developed for the degradation of rhodamine B (RhB) dye in aqueous solution. The UFM-derived carbon (UFMC) catalyst had a relatively large surface area as well as active functional groups and promoted the generation of singlet 1O2 and radicals from PMS, giving a high RhB degradation performance (98.1% after 3 h) in the presence of 3 mM PMS. The UFMC could degrade only 13.7% at a minimal RhB dose of 10-5 M. The principal reactive oxygen species of sulphate (SO4•), hydroxyl radicals (•OH), and singlet 1O2 were discovered using electron paramagnetic resonance and radical scavenger studies. Finally, a toxicological plant and bacterial study was performed to demonstrate the potential non-toxicity of the degraded RhB water sample.
Collapse
Affiliation(s)
- Subramaninan Ramanathan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jitti Kasemchainan
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Green Materials for Industrial Application, Faculty of Science, Chulanongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Li L, Li Z, Balle T, Liu G, Guo Z. Biosynthesis of pectic oligosaccharide-based amphiphiles as novel stabilizers of nanoemulsions by coupling enzymatic depolymerization with alkyl/alkenyl succinylation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Álvarez C, González A, Ballesteros I, Gullón B, Negro MJ. In Vitro Assessment of the Prebiotic Potential of Xylooligosaccharides from Barley Straw. Foods 2022; 12:foods12010083. [PMID: 36613299 PMCID: PMC9818743 DOI: 10.3390/foods12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Barley straw was subjected to hydrothermal pretreatment (steam explosion) processing to evaluate its potential as a raw material to produce xylooligosaccharides (XOS) suitable for use as a prebiotic. The steam explosion pretreatment generated a liquid fraction containing solubilised hemicellulose. This fraction was purified using gel permeation chromatography to obtain a fraction rich in XOS DP2-DP6. The sample was characterised through analytical techniques such as HPAEC-PAD, FTIR and MALDI-TOF-MS. The prebiotic activity was evaluated using in vitro fermentation in human faecal cultures through the quantification of short-chain fatty acid (SCFA) and lactate production, the evolution of the pH and the consumption of carbon sources. The total SCFA production at the end of fermentation (30 h) was 90.1 mM. Positive significant differences between the amount of XOS from barley straw and fructooligosaccharides after incubation were observed.
Collapse
Affiliation(s)
- Cristina Álvarez
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-346-60-57
| | - Alberto González
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| |
Collapse
|
9
|
Recent advances in oral delivery of bioactive molecules: Focus on prebiotic carbohydrates as vehicle matrices. Carbohydr Polym 2022; 298:120074. [DOI: 10.1016/j.carbpol.2022.120074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
10
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
11
|
Yang H, Liu J, Tao Y, Zhu T, Li Y, Nong G. Synthesis of Xylo‐oligosaccharide from D‐xylose by Catalyst of Oxalate Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Yang
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Jingguang Liu
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Yanzhi Tao
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
| | - Tian Zhu
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| | - Yijing Li
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| | - Guangzai Nong
- School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China
- School of Light Industry and Food Engineering Guangxi University Nanning Guangxi 530004 China
| |
Collapse
|
12
|
Zhang W, Zhang B, Lei F, Li P, Jiang J. Coproduction xylo-oligosaccharides with low degree of polymerization and glucose from sugarcane bagasse by non-isothermal subcritical carbon dioxide assisted seawater autohydrolysis. BIORESOURCE TECHNOLOGY 2022; 349:126866. [PMID: 35183726 DOI: 10.1016/j.biortech.2022.126866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
High pretreatment temperature is necessary to obtain xylo-oligosaccharides (XOS) with low degree of polymerization (DP). However, traditional isothermal pretreatment for XOS production may increase the generation of xylose and furfural with the reaction time extending (10-100 min). In this study, non-isothermal subcritical CO2-assisted seawater autohydrolysis (NSCSA) firstly used seawater and CO2 for the coproduction of XOS with low DP and glucose. 51.44% XOS was obtained at 205 °C/5 MPa, and low-DP (2-4) XOS accounted for 79.13% of the total XOS. Furthermore, the specific surface area and total pore volume of the pretreated sugarcane bagasse (SCB) were 1.96 m2/g and 0.011 cm3/g, respectively, increased by 148% and 83% than that of nature SCB. Compared with subcritical CO2 pretreatment, NSCSA is an efficient method for the coproduction of XOS with low DP and glucose through inorganic salts in seawater and H2CO3 formed from CO2.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China
| | - Bo Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
13
|
Zhang L, Zhang X, Lei F, Jiang J, Ji L. Coproduction of xylo-oligosaccharides and glucose from sugarcane bagasse in subcritical CO 2-assisted seawater system. BIORESOUR BIOPROCESS 2022; 9:34. [PMID: 38647821 PMCID: PMC10991134 DOI: 10.1186/s40643-022-00525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abundant seawater resources can replace the shortage of freshwater resources. The co-production of xylo-oligosaccharides and glucose from sugarcane bagasse by subcritical CO2-assisted seawater pretreatment was studied in this paper. We investigated the effects of pretreatment conditions of temperature, CO2 pressure and reaction time on the yield of xylo-oligosaccharides in subcritical CO2-assisted seawater systems. The maximum xylo-oligosaccharide yield of 68.23% was obtained at 165 °C/2 MPa/5 min. After further enzymatic hydrolysis of the solid residue, the highest glucose yield of 94.45% was obtained. In this system, there is a synergistic effect of mixed ions in seawater and CO2 to depolymerize xylan into xylo-oligosaccharides with a lower degree of polymerization. At the same time, the addition of CO2 increased the pore size and porosity of sugarcane bagasse, improved the efficiency of enzymatic hydrolysis and increased the yield of glucose. Therefore, this study provides a more environmentally friendly and sustainable process for the co-production of xylo-oligosaccharides and glucose from sugarcane bagasse, and improves the utilization of seawater resources.
Collapse
Affiliation(s)
- Leping Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Singh RP, Bhaiyya R, Thakur R, Niharika J, Singh C, Latousakis D, Saalbach G, Nepogodiev SA, Singh P, Sharma SC, Sengupta S, Juge N, Field RA. Biochemical Basis of Xylooligosaccharide Utilisation by Gut Bacteria. Int J Mol Sci 2022; 23:2992. [PMID: 35328413 PMCID: PMC8954004 DOI: 10.3390/ijms23062992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Xylan is one of the major structural components of the plant cell wall. Xylan present in the human diet reaches the large intestine undigested and becomes a substrate to species of the gut microbiota. Here, we characterised the capacity of Limosilactobacillus reuteri and Blautia producta strains to utilise xylan derivatives. We showed that L. reuteri ATCC 53608 and B. producta ATCC 27340 produced β-D-xylosidases, enabling growth on xylooligosaccharide (XOS). The recombinant enzymes were highly active on artificial (p-nitrophenyl β-D-xylopyranoside) and natural (xylobiose, xylotriose, and xylotetraose) substrates, and showed transxylosylation activity and tolerance to xylose inhibition. The enzymes belong to glycoside hydrolase family 120 with Asp as nucleophile and Glu as proton donor, as shown by homology modelling and confirmed by site-directed mutagenesis. In silico analysis revealed that these enzymes were part of a gene cluster in L. reuteri but not in Blautia strains, and quantitative proteomics identified other enzymes and transporters involved in B. producta XOS utilisation. Based on these findings, we proposed a model for an XOS metabolism pathway in L. reuteri and B. producta strains. Together with phylogenetic analyses, the data also revealed the extended xylanolytic potential of the gut microbiota.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Raja Bhaiyya
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Jayashree Niharika
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Chandrajeet Singh
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar 140306, India; (R.B.); (R.T.); (J.N.); (C.S.)
| | - Dimitrios Latousakis
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (D.L.); (N.J.)
| | - Gerhard Saalbach
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Sergey A. Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; (P.S.); (S.S.)
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India;
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India; (P.S.); (S.S.)
| | - Nathalie Juge
- The Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (D.L.); (N.J.)
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK; (G.S.); (S.A.N.)
| |
Collapse
|
15
|
Rodríguez ES, Díaz-Arenas GL, Makart S, Ghosh D, Patti AF, Garnier G, Tanner J, Paull B. Determination of xylooligosaccharides produced from enzymatic hydrolysis of beechwood xylan using high-performance anion-exchange chromatography tandem mass spectrometry. J Chromatogr A 2022; 1666:462836. [DOI: 10.1016/j.chroma.2022.462836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/01/2023]
|
16
|
Fuso A, Risso D, Rosso G, Rosso F, Manini F, Manera I, Caligiani A. Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods 2021; 10:1197. [PMID: 34073196 PMCID: PMC8229101 DOI: 10.3390/foods10061197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/22/2021] [Indexed: 11/24/2022] Open
Abstract
Hazelnuts are one of the most widely consumed nuts, but their production creates large quantities of by-products, especially shells, that could be upcycled into much more valuable products. Recent studies have shown that hazelnut shell hemicellulose is particularly rich in compounds that are potential precursors of xylooligosaccharides and arabino-xylooligosaccharides ((A)XOS), previously defined as emerging prebiotics very beneficial for human health. The production of these compounds on an industrial scale-up could have big consequences on the functional foods market. However, to produce (A)XOS from a lignocellulosic biomass, such as hazelnut shell, is not easy. Many methods for the extraction and the purification of these prebiotics have been developed, but they all have different efficiencies and consequences, including on the chemical structure of the obtained (A)XOS. The latter, in turn, is strongly correlated to the nutritional effects they have on health, which is why the optimization of the structural characterization process is also necessary. Therefore, this review aims to summarize the progress made by research in this field, so as to contribute to the exploitation of hazelnut waste streams through a circular economy approach, increasing the value of this biomass through the production of new functional ingredients.
Collapse
Affiliation(s)
- Andrea Fuso
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ginevra Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Franco Rosso
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Federica Manini
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Ileana Manera
- Soremartec Italia Srl, Ferrero Group, 12051 Alba, Italy; (D.R.); (G.R.); (F.R.); (F.M.); (I.M.)
| | - Augusta Caligiani
- Food and Drug Department, University of Parma, Via Parco Area delle Scienze 17/A, 43124 Parma, Italy;
| |
Collapse
|
17
|
Kim M, Jang JK, Park YS. Production Optimization, Structural Analysis, and Prebiotic- and Anti-Inflammatory Effects of Gluco-Oligosaccharides Produced by Leuconostoc lactis SBC001. Microorganisms 2021; 9:microorganisms9010200. [PMID: 33477973 PMCID: PMC7835818 DOI: 10.3390/microorganisms9010200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
Leuconostoc lactis SBC001, isolated from chive, produces glucansucrase and synthesizes oligosaccharides through its enzymatic activity. This study was conducted to optimize oligosaccharide production using response surface methodology, analyze the structure of purified oligosaccharides, and investigate the prebiotic effect on 24 bacterial and yeast strains and the anti-inflammatory activity using RAW 264.7 macrophage cells. The optimal conditions for oligosaccharide production were a culture temperature of 30 °C and sucrose and maltose concentrations of 9.6% and 7.4%, respectively. Based on 1H-NMR spectroscopic study, the oligosaccharides were identified as gluco-oligosaccharides that consisted of 23.63% α-1,4 glycosidic linkages and 76.37% α-1,6 glycosidic linkages with an average molecular weight of 1137 Da. The oligosaccharides promoted the growth of bacterial and yeast strains, including Lactobacillus plantarum, L. paracasei, L. johnsonii, Leuconostoc mesenteroides, L. rhamnosus, and Saccharomyces cerevisiae. When lipopolysaccharide-stimulated RAW 264.7 cells were treated with the oligosaccharides, the production of nitric oxide was decreased; the expression of inducible nitric oxide synthase, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-10 was suppressed; and the nuclear factor-kappa B signaling pathway was inhibited. In conclusion, the gluco-oligosaccharides obtained from Leu. lactis SBC001 exhibited a prebiotic effect on six bacterial and yeast strains and anti-inflammatory activity in RAW 264.7 macrophage cells.
Collapse
Affiliation(s)
- Minhui Kim
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Jae-Kweon Jang
- Food Nutrition Major, School of Food, Chungkang College of Cultural Industries, Icheon 17390, Korea;
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Correspondence: ; Tel.: +82-31-750-5378
| |
Collapse
|
18
|
Vieira TF, Corrêa RCG, Peralta RA, Peralta-Muniz-Moreira RF, Bracht A, Peralta RM. An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides. Curr Pharm Des 2020; 26:1759-1777. [PMID: 32039673 DOI: 10.2174/1381612824666180517120642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides. METHODS The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken. RESULTS The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules. CONCLUSION A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.
Collapse
Affiliation(s)
- Tatiane F Vieira
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil
| | - Rúbia C G Corrêa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.,Program of Master in Science, Technology and Food Safety, Cesumar Institute of Science, Technology and Innovation (ICETI), Centro Universitário de Maringá, Maringá, Paraná, Brazil
| | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, SC, Brazil
| | | | - Adelar Bracht
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Rosane M Peralta
- Program Post-graduated of Food Science, Universidade Estadual de Maringa, Maringa, PR, Brazil.,Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
19
|
Xu J, Dai L, Zhang C, Gui Y, Yuan L, Lei Y, Fan B. Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 305:123043. [PMID: 32114304 DOI: 10.1016/j.biortech.2020.123043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
How to propel an efficient exploitation of waste streams is a pivotal tache for the long-range augment of hydrothermal biomass valorization. A facile approach was proposed to simultaneously produce carbon dots (CDs), fermentable sugar, and cellulose enzymatic lignin from agricultural straw with the aid of ionic liquid (IL, 1-aminoethyl-3-methylimidazolium nitrate, [C2NH2MIm][NO3]) catalyzed hydrothermal treatment. The graphite N-doped CDs with bright-blue fluorescence, which was mainly derived from the incorporation of hemicellulose (e.g. xylooligosaccharides), lignin and [C2NH2MIm][NO3], exhibited an average-diameter of 8.14 nm. The exfoliation of amorphous parts and robust fibers was formed to improve cellulose digestibility from 14.7 to 81.6%. The efficient recovery and checkup of lignin pave a way for its potential depolymerization into arenes. This protocol offers a significant benefit for large-scale hydrothermal biorefinery where reduction of process waste is a prime concern, and leads to high-value products (i.e., CDs and lignin) that also fosters the feasibility of bioethanol.
Collapse
Affiliation(s)
- Jikun Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuntao Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Gui
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Lei
- Center for Energy Resources Engineering, Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Baoan Fan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
20
|
Li H, Chen X, Xiong L, Zhang L, Chen X, Wang C, Huang C, Chen X. Production, separation, and characterization of high-purity xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse. BIORESOURCE TECHNOLOGY 2020; 299:122625. [PMID: 31881437 DOI: 10.1016/j.biortech.2019.122625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The production of high-purity xylobiose from lignocellulose is an expensive and tedious process. In this work, the production of xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse was investigated. Furthermore, a simple process for the separation of xylobiose from enzymatic hydrolysate by activated carbon absorption, water washing, and ethanol-water desorption was developed. Under the optimized separation conditions, 96.77% xylobiose was adsorbed at 16% activated carbon loadings. Moreover, xylose and acetate could not be detected after washing by 3-fold volume of water. Xylobiose with 80.16% yield was eluted by 5-fold volume of 5% (v/v) ethanol-water. The reusability of activated carbon was evaluated by 5 cycles of adsorption-desorption process, suggesting that the activated carbon exhibited good reusability. The separated xylobiose sample with high-purity (97.29%) was confirmed by HPLC, ESI-MS, and NMR. Overall, this study provided a low-cost and robust technology for the production and separation of high-purity xylobiose from lignocellulose.
Collapse
Affiliation(s)
- Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xindong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Liquan Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Chao Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, People's Republic of China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, People's Republic of China; R&D Center of Xuyi Attapulgite Applied Technology, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Xuyi 211700, People's Republic of China.
| |
Collapse
|
21
|
Shu Z, Yang Y, Ding Z, Wang W, Zhong R, Xia T, Li W, Kuang H, Wang Y, Sun X. Structural characterization and cardioprotective activity of a novel polysaccharide from Fructus aurantii. Int J Biol Macromol 2020; 144:847-856. [DOI: 10.1016/j.ijbiomac.2019.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
|
22
|
Huang C, Wang X, Liang C, Jiang X, Yang G, Xu J, Yong Q. A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:189. [PMID: 31384296 PMCID: PMC6661736 DOI: 10.1186/s13068-019-1527-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Prehydrolyzate, which is from the prehydrolysis process in dissolving pulps industry, contains various sugar-derived and lignin compounds such as xylooligosaccharides (XOS), gluco-oligosaccharides, xylose, glucose, and soluble lignin (S-L). The XOS has several beneficial effects on human physiology. XOS and S-L in prehydrolyzate are difficult to efficiently fractionate due to their similar molecular weights and water solubility. In this work, we proposed a sustainable and green process using polystyrene divinylbenzene (PS-DVB) resin to simultaneously separate and recover XOS and S-L. Enzymatic hydrolysis with endo-1,4-β-xylanase and fermentation with P. stipites were sequentially applied to purify XOS to minimize xylose content as well as amplify contents of xylobiose and xylotriose. In addition, 2D-HSQC NMR was used to analyze the structural characteristics of XOS and S-L. Furthermore, the biological abilities of antioxidants and prebiotics of these fractions were investigated by scavenging radicals and cultivating intestinally beneficial bacterias, respectively. RESULTS Results showed that PS-DVB resin could simultaneously separate XOS and solubilized lignin with excellent yields of 93.2% and 85.3%, respectively. The obtained XOS after being purified by enzymatic hydrolysis and fermentation contained 57.7% of xylobiose and xylotriose. 10.4% amount of inherent xylan was found in the S-L fraction obtained by PS-DVB resin separation. 2D-HSQC NMR revealed that lignin carbohydrate complexes existed in both XOS and S-L as covalent linkages between lignin and 4-O-methylglucuronoarabinoxylan. The biological application results showed that the antioxidant capacity of S-L was stronger than XOS, while XOS was superior in promoting growth of intestinal Bifidobacteria adolescentis and stimulating production of short-chain fatty acids by Lactobacillus acidophilus. CONCLUSIONS The proposed strategy of sequentially combining hydrophobic resin separation, enzymatic hydrolysis, and fermentation was successfully demonstrated and resulted in simultaneous production of high-quality XOS and solubilized lignin. These biomass-derived products in prehydrolyzate can be regarded as value-adding prebiotics and antioxidants.
Collapse
Affiliation(s)
- Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037 China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004 China
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005 USA
| | - Xucai Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037 China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004 China
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005 USA
| | - Gan Yang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037 China
| | - Jie Xu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037 China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037 China
| |
Collapse
|
23
|
Wang J, Duan HL, Ma SY, Zhang J, Zhang ZQ. Solidification of a Switchable Solvent-Based QuEChERS Method for Detection of 16 Pesticides in Some Fruits and Vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8045-8052. [PMID: 31241326 DOI: 10.1021/acs.jafc.9b00686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
n-Octadecylamine was adopted as a cleanup agent to develop a novel solidification of a switchable solvent-based QuEChERS method. At higher temperatures (such as 55 °C), n-octadecylamine can melt into a liquid, allowing effective extraction of matrix interferences in acetonitrile solution (i.e., in dispersive liquid-liquid microextraction). At lower temperatures, n-octadecylamine carrying matrix interferences can rapidly solidify and easily separate from the acetonitrile solution. The results demonstrated that n-octadecylamine possessed a better ability to remove matrix interferences and reduce matrix effects than those of traditional solid-phase dispersive extraction cleanup agents of primary secondary amine and octadecyl bonded silica gel. By coupling it with gas chromatography-mass spectrometry, the proposed method was applied to the detection of 16 pesticides in cucumber. The recoveries were from 80.9 to 112.6% with relative standard deviations less than 12.9%. Satisfactory results were also obtained for the detection of 16 pesticides in pear, orange, apple, pepper, lettuce, and tomato.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
- Institute of Agricultural Product Quality Standard and Testing Research , Tibet Academy of Agricultural and Animal Husbandry Sciences , Lhasa 850032 , China
| | - Hui-Ling Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Shi-Yao Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education , Shaanxi Normal University , Xi'an 710062 , China
| |
Collapse
|
24
|
Khangwal I, Shukla P. Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech 2019; 9:187. [PMID: 31065487 PMCID: PMC6485268 DOI: 10.1007/s13205-019-1716-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Prebiotics are necessary natural and synthetic food ingredients that help in the growth and development of gut microflora. There is a complex relationship between gut dysbiosis and microbes, so alteration in both probiotics and prebiotics can reduce illness of gut, which further plays a decisive role in human health. The prebiotic efficiency can be validated using various in vitro and in vivo experiments, and this gives an important insight to this field. This review focuses on these aspects including the standardized assessment of prebiotics and its metabolic products for customary applications. This review has also summarized the mechanism of their beneficial actions such as immunomodulation, nutrient absorption, pathogen inhibition, etc., and its significance in human nutrition. In addition to this, some fascinating applications of prebiotics in health-related disorders have also discussed, with current challenges in this facet.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|