1
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Nanocellulose separation from barley straw via ultrasound-assisted choline chloride - Formic acid deep eutectic solvent pretreatment and high-intensity ultrasonication. ULTRASONICS SONOCHEMISTRY 2024; 110:107048. [PMID: 39241460 PMCID: PMC11405825 DOI: 10.1016/j.ultsonch.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The present study aims at investigating the application of ultrasound assisted choline chloride (ChCl) - formic acid (FA) deep eutectic solvent (DES) pretreatment of Barley straw. In addition, the efficiency of a wet grinding followed by high intensity ultrasound (HIUS) treatment for production of cellulose nanofibers (CNF) has been evaluated. The DES (using ChCl: FA at 1:9 M ratio) treatment at 45 kHz ultrasound frequency and 3 h of treatment duration resulted in 84.68 ± 1.02 % and 82.96 ± 0.79 % of lignin and hemicellulose solubilisation, respectively. The purification of DES treated solid residue resulted in cellulose with more than 90 % purity. Further, 10 min of wet grinding followed by 40 min of HIUS treatment resulted in more than 80 % nano-fibrillation efficiency. The produced CNF had diameters less than 100 nm in number size distribution and type I cellulose structure. This study confirmed that the developed process offers a sustainable method for producing nanocellulose from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR), School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin-City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub (SHRH), Technological University Dublin-City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
2
|
Khan MA, Li MC, Lv K, Sun J, Liu C, Liu X, Shen H, Dai L, Lalji SM. Cellulose derivatives as environmentally-friendly additives in water-based drilling fluids: A review. Carbohydr Polym 2024; 342:122355. [PMID: 39048218 DOI: 10.1016/j.carbpol.2024.122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
The application of cellulose derivatives including carboxymethyl cellulose (CMC), polyanionic cellulose (PAC), hydroxyethyl cellulose (HEC), cellulose nanofibrils (CNFs), and cellulose nanocrystals (CNCs) has gained enormous interest, especially as environmentally friendly additives for water-based drilling fluids (WBDFs). This is due to their sustainable, biodegradable, and biocompatible nature. Furthermore, cellulose nanomaterials (CNMs), which include both CNFs and CNCs, possess unique properties such as nanoscale dimensions, a large surface area, as well as unique mechanical, thermal, and rheological performance that makes them stand out as compared to other additives used in WBDFs. The high surface hydration capacity, strong interaction with bentonite, and the presence of a complex network within the structure of CNMs enable them to act as efficient rheological modifiers in WBDFs. Moreover, the nano-size dimension and facilely tunable surface chemistry of CNMs make them suitable as effective fluid loss reducers as well as shale inhibitors as they have the ability to penetrate, absorb, and plug the nanopores within the exposed formation and prevent further penetration of water into the formation. This review provides an overview of recent progress in the application of cellulose derivatives, including CMC, PAC, HEC, CNFs, and CNCs, as additives in WBDFs. It begins with a discussion of the structure and synthesis of cellulose derivatives, followed by their specific application as rheological, fluid loss reducer, and shale inhibition additives in WBDFs. Finally, the challenges and future perspectives are outlined to guide further research and development in the effective utilization of cellulose derivatives as additives in WBDFs.
Collapse
Affiliation(s)
- Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Shaine Mohammadali Lalji
- Department of Petroleum Engineering, NED University of Engineering & Technology, University Road, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Choline chloride - oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. Int J Biol Macromol 2024; 281:136213. [PMID: 39368590 DOI: 10.1016/j.ijbiomac.2024.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the production of cellulose nanofibers (CNF) from Barley straw using ultrasound-assisted deep eutectic solvent (US-DES) treatment for biomass fractionation and subsequent high-intensity ultrasonication (HIUS) for nano-fibrillation. Two deep eutectic solvents (DES), synthesized from choline chloride (ChCl) and oxalic acid dihydrate (OAD) at 1:1 and 2:1 M ratio, achieved solubilisation of over 80 % of lignin and hemicellulose under optimal conditions. The purification of these DES-treated materials resulted in cellulose with a purity >88 %. CNFs, characterized by a size of <100 nm, a polydispersity index under 0.5, and a zeta potential lower than -30 mV, were successfully isolated through a combination of wet grinding and HIUS treatment. SEM and XRD results showed the formation of a network of interconnected fibres with a Type I cellulose structure. This research highlights Barley straw's potential as a sustainable source of high-value CNF from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
4
|
Silva NC, Silva MJ, Assis OBG, Martelli-Tosi M. Ultrasound-assisted extraction of bioactives as a strategic step for chemical pretreatments in nanocellulose production from acerola by-products. Int J Biol Macromol 2024; 276:133876. [PMID: 39009259 DOI: 10.1016/j.ijbiomac.2024.133876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Acerola by-products (AB) have been used as raw material for extracting active compounds; however, there were no studies related to the use of the remaining acerola by-product (RAB) from this extraction. This portion still has fibers and can be used for the production of cellulose nanofibrils (CNFs); therefore, the main objective of this study was to evaluate the production of CNFs using AB and RAB and to investigate whether the extraction can be a treatment step before bleaching/acid hydrolysis. AB and RAB were characterized before and after being chemically treated (AB_CT and RAB_CT, respectively). The fibers extracted from the RAB showed the highest cellulose contents (RAB: 36.6 % and RAB_CT: 69.9 %), suggesting that the extraction process had an impact on by-product defibrillation. The same trends were observed for CNFs produced by acid hydrolysis. CNFs based on RAB showed higher yield (CNF_RAB: 25.2 % and CNF_RAB_CT: 24.2 %), higher crystallinity index (CNF_RAB: 68.3 % and CNF_RAB_CT: 71.7 %) and higher thermal stability compared to CNFs extracted from AB and AB_CT. This study proved that it is feasible to use by-products after removing the active compounds for CNF production without other pre-treatments or in association with chemical treatment to obtain more crystalline and thermally stable CNFs.
Collapse
Affiliation(s)
- Natalia Cristina Silva
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Maycon Jhony Silva
- EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil; Departament of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, 13565-905, São Carlos, São Paulo, Brazil
| | - Odílio Benedito Garrido Assis
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; EMBRAPA Instrumentação, Rua XV de Novembro, 1452, 13561-206, São Carlos, São Paulo, Brazil
| | - Milena Martelli-Tosi
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Faculty of Animal Science and Food Engineering, Av. Duque de Caxias Norte, 225, 13, 635-900 - Pirassununga, Brazil; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
5
|
Zang K, Sun Y, Jiang Y, Liu M, Sun J, Li H, Zheng F, Sun B. Preparation and characterization of Baijiu Jiuzao cellulose nanofibers-kafirin composite bio-film with excellent physical properties. Int J Biol Macromol 2024:133993. [PMID: 39084967 DOI: 10.1016/j.ijbiomac.2024.133993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Jiuzao is the main solid by-products of Baijiu industry, which contain a high amount of underutilized cellulose and proteins. In recent years, cellulose nanofibers mixed with proteins to prepare biodegradable bio-based film materials have received widespread attention. In this study, we propose a novel method to simultaneously extract kafirin and cellulose from strong-flavor type of Jiuzao, and modify cellulose to prepare cellulose nanofibers by the TEMPO (2,2,6,6-tetramethylpiperidine-1-oxide) oxidation-pressure homogenization technique, and finally mix kafirin with cellulose nanofibers to prepare a new biodegradable bio-based composite film. Based on the analysis of one-way and response surface experiments, the highest purity of cellulose was 82.04 %. During cellulose oxidation, when NaClO was added at 25 mmol/g, cellulose nanofibers have a particle size of 80-120 nm, a crystallinity of 65.8°. Finally, kafirin and cellulose nanofibers were mixed to prepare films. The results showed that when cellulose nanofibers were added at 1 %, the film surface was smooth, the light transmittance was 60.8 %, and the tensile strength was 9.17 MPa at maximum, which was 104 % higher than pure protein film. The contact angle was 34.3°. This paper provides new ideas and theoretical basis for preparing biodegradable bio-based composite film materials, and improves the added value of Jiuzao.
Collapse
Affiliation(s)
- Kai Zang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yue Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yunsong Jiang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, 100048, People's Republic of China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
6
|
Tessaro L, Pereira AGR, Martelli-Tosi M, Sobral PJDA. Improving the Properties of Gelatin-Based Films by Incorporation of "Pitanga" Leaf Extract and Crystalline Nanocellulose. Foods 2024; 13:1480. [PMID: 38790780 PMCID: PMC11120396 DOI: 10.3390/foods13101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Biopolymer-based films can be activated by the incorporation of active compounds into their matrix. Plant extracts are rich in phenolic compounds, which have antimicrobial and/or antioxidant properties. The aim of this study was to produce gelatin-based active films and nanocomposite films incorporated with "pitanga" (Eugenia uniflora L.) leaf extract (PLE) and/or crystalline nanocellulose extracted from soybean straw (CN), and to study the physicochemical, functional, microstructural, thermal, UV/Vis light barrier, and antioxidant properties of these materials. PLE enhanced some film properties, such as tensile strength (from 30.2 MPa to 40.6 MPa), elastic modulus (from 9.3 MPa to 11.3 MPa), the UV/Vis light barrier, and antioxidant activity, in addition to affecting the microstructural, surface, and color properties. These improvements were even more significant in nanocomposites simultaneously containing PLE and CN (59.5 MPa for tensile strength and 15.1 MPa for elastic modulus), and these composites also had lower moisture content (12.2% compared to 13.5-14.4% for other treatments) and solubility in water (from 48.9% to 44.1%). These improvements may be the result of interactions that occur between PLE's polyphenols and gelatin, mainly in the presence of CN, probably due to the formation of a stable PLE-CN-gelatin complex. These results are relevant for the food packaging sector, as the activated nanocomposite films exhibited enhanced active, barrier, and mechanical properties due to the presence of PLE and CN, in addition to being entirely produced with sustainable components from natural and renewable sources.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Ana Gabrielle R. Pereira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (A.G.R.P.); (M.M.-T.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building Block, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
7
|
Fu J, Zhou Y, Xie H, Duan Q, Yang Y, Liu H, Yu L. From macro- to nano- scales: Effect of fibrillary celluloses from okara on performance of edible starch film. Int J Biol Macromol 2024; 262:129837. [PMID: 38302023 DOI: 10.1016/j.ijbiomac.2024.129837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Starch/cellulose composite is one of the most promising systems since both matrix and reinforce agent have same chemical unite glucose, which results in an excellent compatibility. In this work, edible starch film was developed by compositing starch with diverse fibrillary celluloses (FCs) derived from okara, employing a confluence of chemical interactions and mechanical influences. Since diameter of the FCs can be easily controlled by processing methodologies, it is the first time to systematically investigate the effect of diameter of the FCs from macro to nano-scales on the performances of starch-based film. The fabricated macro- and nano-fibrillar celluloses and reinforced starch films were characterized by scanning electron microscope, optical microscopy, Fourier transform infrared spectroscopy, Rheometer and contact angle. Results showed that the FCs increased modulus (about 170 %) and tensile strength (about 180 %) significantly as expected since they are well-compatible and some chemical interactions. It was found that nano-fibrillary celluloses (CNFs) improve the toughness (about 20 %) of the starch film more efficiently, which improved the well-recognized weakness of starch-based materials. The nano-scale roughness on the surface of the starch film caused by different shrinkage ratios between starch and CNFs during drying reduced water sensitivity, which is another well-recognized weakness of starch film.
Collapse
Affiliation(s)
- Jun Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Yinglin Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huifang Xie
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Qinfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yiwen Yang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Long Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Wang S, Guo Y, Zhu X, Xie D, Wang Z. Effects of the Roasting-Assisted Aqueous Ethanol Extraction of Peanut Oil on the Structure and Functional Properties of Dreg Proteins. Foods 2024; 13:758. [PMID: 38472872 DOI: 10.3390/foods13050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The effects of the roasting-assisted aqueous ethanol extraction of peanut oil on the structure and functional properties of dreg proteins were investigated to interpret the high free oil yield and provide a basis for the full utilization of peanut protein resources. The roasting-assisted aqueous ethanol extraction of peanut oil obtained a free oil yield of 97.74% and a protein retention rate of 75.80% in the dreg. The water-holding capacity of dreg proteins increased significantly, and the oil-holding capacity and surface hydrophobicity decreased significantly, reducing the binding ability with oil and thus facilitating the release of oil. Although the relative crystallinity and denaturation enthalpy of the dreg proteins decreased slightly, the denaturation temperatures remained unchanged. Infrared and Raman spectra identified decreases in the C-H stretching vibration, Fermi resonance and α-helix, and increases in random coil, β-sheet and β-turn, showing a slight decrease in the overall ordering of proteins. After the roasting treatment, 62.57-135.33% of the protein functional properties were still preserved. Therefore, the roasting-assisted aqueous ethanol extraction of peanut oil is beneficial for fully utilizing the oil and protein resources in peanuts.
Collapse
Affiliation(s)
- Sicheng Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yubao Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiuling Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dan Xie
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhenzhen Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
9
|
Liu L, Fisher KD, Bussey WD. Comparison of Emulsion Stabilizers: Application for the Enhancement of the Bioactivity of Lemongrass Essential Oil. Polymers (Basel) 2024; 16:415. [PMID: 38337303 DOI: 10.3390/polym16030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Recent focus on cellulose nanomaterials, particularly biodegradable and biocompatible cellulose nanocrystals (CNCs), has prompted their use as emulsion stabilizers. CNCs, when combined with salt, demonstrate enhanced emulsion stabilization. This study explored three emulsion stabilizers: Tween 80, soybean CNCs with salt (salted CNCs), and a combination of salted CNCs with Tween 80. Soybean CNCs, derived from soybean stover, were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Antifungal testing against Aspergillus flavus revealed increased bioactivity in all lemongrass essential oil (EO)-loaded emulsions compared to pure essential oil. In addition, all three emulsions exhibited a slight reduction in antifungal activity after 30 days of room temperature storage. The release experiment revealed that the EO-loaded nanoemulsion exhibited a slow-release profile. The nanoemulsion stabilized by salted CNCs and Tween 80 exhibited significantly lower release rates when compared to the nanoemulsion stabilized solely by Tween 80, attributed to the gel network formed by salted CNCs. The findings of this study highlight the efficacy of cellulose nanocrystals procured from soybean byproducts in conjunction with synthetic surfactants to create nanoencapsulated essential oils, resulting in improved antimicrobial efficacy and the achievement of sustained release properties.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kaleb D Fisher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | - William D Bussey
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
10
|
Qi W, Tong X, Wang M, Liu S, Cheng J, Wang H. Impact of soybean protein isolate concentration on chitosan-cellulose nanofiber edible films: Focus on structure and properties. Int J Biol Macromol 2024; 255:128185. [PMID: 37977456 DOI: 10.1016/j.ijbiomac.2023.128185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chitosan and cellulose nanofiber films are frequently employed as biodegradable materials for food packaging. However, many exhibit suboptimal hydrophobicity and antioxidant properties. To address these shortcomings, we enhanced the performance by adding different concentrations of soybean protein isolate (SPI) to chitosan-cellulose nanofiber (CS-CNF) films. As SPI concentration varied, the turbidity, particle size, and ζ-potential of the film-forming solutions initially decreased and subsequently increased. This suggests that 1 % SPI augments the electrostatic attraction and compatibility. Rheological analysis confirmed a pronounced apparent viscosity at this concentration. Analyses using Fourier transform infrared spectra, Raman spectra, X-ray diffraction, and Scanning electron microscope revealed the presence of hydrogen bonds and electrostatic interactions between SPI and CS-CNF, indicative of superior compatibility. When SPI concentration was set at 1 %, notable enhancements in film attributes were observed: improvements in tensile strength and elongation at break, a reduction in water vapor permeability by 8.23 %, and an elevation in the contact angle by 18.85 %. Furthermore, at this concentration, the ABTS+ and DPPH scavenging capacities of the film surged by 61.53 % and 46.18 %, respectively. Meanwhile, the films we prepare are not toxic. This research offers valuable insights for the advancement and application of protein-polysaccharide-based films.
Collapse
Affiliation(s)
- Weijie Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
He Y, Huang Y, Zhu X, Guo R, Wang Z, Lei W, Xia X. Investigation of the effect and mechanism of nanocellulose on soy protein isolate- konjac glucomannan composite hydrogel system. Int J Biol Macromol 2024; 254:127943. [PMID: 37951435 DOI: 10.1016/j.ijbiomac.2023.127943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
To enrich the application of nanocomposite hydrogels, we introduced two types of nanocellulose (CNC, cellulose nanocrystals; CNF, cellulose nanofibers) into the soy protein isolate(SPI)- konjac glucomannan (KGM) composite hydrogel system, respectively. The similarities and differences between the two types of nanocellulose as textural improvers of composite gels were successfully explored, and a model was developed to elaborate their interaction mechanisms. Appropriate levels of CNC (1.0 %) and CNF (0.75 %) prolonged SPI denaturation within the system, exposed more buried functional groups, improved molecular interactions, and strengthened the honeycomb structural skeleton formed by KGM. The addition of CNC resulted in greater gel strength (SKC1 2708.53 g vs. Control 810.35 g), while the addition of CNF improved the elasticity (SKF0.75 1940.24 g vs. Control 405.34 g). This was mainly attributed to the reinforcement of the honeycomb-structured, water binding and trapping, and the synergistic effect of covalent (disulfide bonds) and non-covalent interactions (hydrogen bonds, ionic bonds) within the gel network. However, the balance and interactions between proteins and polysaccharides were disrupted in the composite system with excessive CNF addition (≥0.75 %), which broken the stability of the honeycomb-like structure. We expect this study will draw attention on potential applications of CNC and CNF in protein-polysaccharide binary systems and facilitate the creation of novel, superior, mechanically strength-regulated nanofiber composite gels.
Collapse
Affiliation(s)
- Yang He
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Ruqi Guo
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Zihan Wang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiaoyu Xia
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
12
|
Liu L, Abiol KAE, Friest MA, Fisher KD. Synergistic Stabilization of Nanoemulsion Using Nonionic Surfactants and Salt-Sensitive Cellulose Nanocrystals. Polymers (Basel) 2023; 15:4682. [PMID: 38139935 PMCID: PMC10747914 DOI: 10.3390/polym15244682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Soybean stover is a lignocellulose biomass that is rich in cellulose. In the present study, soybean cellulose nanocrystals (CNCs) were prepared from soybean stover by alkaline treatment, bleaching treatment, acid hydrolysis, dialysis and ultrasonication. The as-prepared soybean CNC was characterized by transmission electron microscopy (TEM), zetasizer and rheometer. The effects of NaCl on the particle size, zeta potential, and viscosity of soybean CNC was studied. Soybean CNC was explored as an emulsion stabilizer for lemongrass-essential-oil-loaded emulsions. Soybean CNCs could stabilize the oil-in-water emulsion against coalescence but not flocculation. The addition of NaCl reduced the creaming index and enhanced the encapsulation efficiency and freeze-thaw stability of the CNC-stabilized emulsion. Salted CNC (i.e., CNC in the presence of NaCl) enhanced the thermodynamic stability (i.e., heating-cooling and freeze-thaw stability) of Tween 80 stabilized emulsion, while unsalted CNC did not. Synergistic effects existed between Tween 80 and salted CNC in stabilizing oil-in-water emulsions. The nanoemulsion stabilized with Tween 80 and salted CNC had a mean particle size of ~70 nm, and it was stable against all thermodynamic stability tests. This is the first study to report the synergistic interaction between salted CNC and small molecular weight surfactants (e.g., Tween 80) to improve the thermodynamic stability of nanoemulsion.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kyle A. E. Abiol
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50010, USA
| | - Mason A. Friest
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Kaleb D. Fisher
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
13
|
Xu H, Zhang J, Zhou Q, Li W, Liao X, Gao J, Zheng M, Liu Y, Zhou Y, Jiang L, Sui X, Xiao Y. Synergistic effect and mechanism of cellulose nanocrystals and calcium ion on the film-forming properties of pea protein isolate. Carbohydr Polym 2023; 319:121181. [PMID: 37567717 DOI: 10.1016/j.carbpol.2023.121181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Seth R, Meena A, Meena R. Enzyme-based green synthesis, characterisation, and toxicity studies of cellulose nanocrystals/fibres produced from the Vetiveria zizanioides roots agro-waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116984-116999. [PMID: 36484940 DOI: 10.1007/s11356-022-24455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Vetiver zizanioides roots are considered the most useful part of the plant. It is widely used to extract oil. The aromatic oil is used in perfumery, food-flavouring and cosmetic industries. However, presently, there are no reports available for the usage of vetiver roots agro-waste after oil extraction in nano-based products. Considering the concept of value-added products and green-chemistry approaches, synthesising cellulose nanoparticles (CNPs) using enzymatic treatment from agro-waste has emerged as a viable option. CNP's non-toxicity, biodegradability, and biocompatibility have sparked the industry's interest in its production. Therefore, in the present study, 3 enzymes, cellulase, pectinase, and viscozymes, were used for the green synthesis of CNP. The characterisation of CNP was done using techniques like DLS, FTIR, TEM, SEM, AFM, and TG/DTG, and cytotoxicity of CNP was studied in human skin cell-line (HaCaT) using MTT assay. Results show that CNPs synthesised using viscozyme and pectinase were of crystalline nature (2.0-3.0 nm) and cellulase were of fibres (40-60 nm). The FTIR confirmed that CNPs were devoid of lignin/hemicellulose. The AFM pictures revealed thick and thin nanoparticles with a variety of morphologies. The thermal stability of cellulose was higher compared to CNP. All the synthesised CNPs were crystaline, with a 60-70% crystallinity index. Furthermore, CNP did not show cytotoxic effect on HaCaT cells upto 500 µg/mL concentrations. In conclusion, pectinase and viscosyme may be used for synthesing cellulose-nanocrystals and cellulase enzyme for cellulose-nanofibers from the vetiver roots agro-waste. The findings revealed that Vetiveria zizanioides agro-waste-derived CNP is a sustainable material that can be used as a reinforcing agent/nanocarrier in textile and drug-delivery systems.
Collapse
Affiliation(s)
- Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramavatar Meena
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| |
Collapse
|
15
|
Li J, Alamdari NE, Aksoy B, Parit M, Jiang Z. Integrated enzyme hydrolysis assisted cellulose nanofibril (CNF) fabrication: A sustainable approach to paper mill sludge (PMS) management. CHEMOSPHERE 2023:138966. [PMID: 37220796 DOI: 10.1016/j.chemosphere.2023.138966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
The landfilling of paper mill sludge (PMS) has been restricted or even banned in many countries due to the raised concern about greenhouse gas (GHG) emissions and contamination of the soil and water, calling for a sustainable PMS management approach. The potential valorization of PMS to nanomaterials combined with traditional biorefinery was examined in this work. Three types of PMS-derived cellulose nanofibrils (CNFs) were prepared and evaluated: enzymatically assisted CNF (AU: with in-house produced enzyme and CT: with commercial enzyme), mechanically pretreated CNF (BT), and chemically pretreated CNF by TEMPO oxidation (TEMPO). It was found that enzyme-assisted mechanical fibrillation-derived CNFs had a comparable average diameter (27.9 nm for AU and 22.7 nm for CT) with that produced from mechanical pretreatment (26.5 nm for BT) and TEMPO oxidation pretreatment (20.0 nm for TEMPO), and they showed the best drainage properties among the three types of CNF. The CNFs resulting from enzymatic pretreatment reduced 15% of energy consumption compared to the mechanical method and had better thermostability than TEMPO oxidation method. In addition, the on-site produced enzyme showed similar performance to the commercial enzymes towards the CNF properties. These findings provide new insights into a promising integrated strategy in engineering CNF from PMS with on-site enzyme production as a novel and sustainable approach for PMS management and valorization.
Collapse
Affiliation(s)
- Jing Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Navid E Alamdari
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Burak Aksoy
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Mahesh Parit
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States
| | - Zhihua Jiang
- Alabama Center for Paper and Bioresource Engineering, Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
16
|
Dissanayake T, Trinh BM, Mekonnen TH, Sarkar P, Aluko RE, Bandara N. Improving properties of canola protein-based nanocomposite films by hydrophobically modified nanocrystalline cellulose. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Matheus JRV, Dalsasso RR, Rebelatto EA, Andrade KS, Andrade LMD, Andrade CJD, Monteiro AR, Fai AEC. Biopolymers as green-based food packaging materials: A focus on modified and unmodified starch-based films. Compr Rev Food Sci Food Saf 2023; 22:1148-1183. [PMID: 36710406 DOI: 10.1111/1541-4337.13107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023]
Abstract
The ideal food packaging materials are recyclable, biodegradable, and compostable. Starch from plant sources, such as tubers, legumes, cereals, and agro-industrial plant residues, is considered one of the most suitable biopolymers for producing biodegradable films due to its natural abundance and low cost. The chemical modification of starch makes it possible to produce films with better technological properties by changing the functional groups into starch. Using biopolymers extracted from agro-industrial waste can add value to a raw material that would otherwise be discarded. The recent COVID-19 pandemic has driven a rise in demand for single-use plastics, intensifying pressure on this already out-of-control issue. This review provides an overview of biopolymers, with a particular focus on starch, to develop sustainable materials for food packaging. This study summarizes the methods and provides a potential approach to starch modification for improving the mechanical and barrier properties of starch-based films. This review also updates some trends pointed out by the food packaging sector in the last years, considering the impacts of the COVID-19 pandemic. Perspectives to achieve more sustainable food packaging toward a more circular economy are drawn.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Raul Remor Dalsasso
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Evertan Antonio Rebelatto
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Kátia Suzana Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Lidiane Maria de Andrade
- Department of Chemical Engineering, Polytechnic School, University of São Paulo (USP), São Paulo, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical Engineering and Food Engineering, Technological Center, Federal University of Santa Catarina (USFC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Yang Z, Tong F, Peng Z, Wang L, Zhu L, Jiang W, Xiong G, Zheng M, Zhou Y, Liu Y. Development of colorimetric/Fluorescent two-channel intelligent response labels to monitor shrimp freshness. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zhang F, Shen R, Xue J, Yang X, Lin D. Characterization of bacterial cellulose nanofibers/soy protein isolate complex particles for Pickering emulsion gels: The effect of protein structure changes induced by pH. Int J Biol Macromol 2023; 226:254-266. [PMID: 36460250 DOI: 10.1016/j.ijbiomac.2022.11.245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
In this work, the influence of soy protein isolated at different pH values (1-9) on the self-assembly behaviors of bacterial cellulose nanofibers/soy protein isolate (BCNs/SPI) colloidal particles via anti-solvent precipitation were investigated. The results showed that the formation of BCNs/SPI at pH values of 1-5 was mainly driven by electrostatic interaction, while the formation of those at pH values of 5-9 was driven by weak molecular interactions including hydrogen bonding and steric-hindrance effect. The FTIR demonstrated that the conformation of protein involved a transition from order to disorder at the level of secondary structure as pH values were away from the isoelectric point. The fluorescence spectroscopy and UV-vis adsorption spectroscopy indicated that hydrophobic region of SPI at pH value of 5 displayed more exposed as compared with that at pH values away from the isoelectric point. The changes in structure conformation of SPI induced by pH values led to the changes in properties of the BCNs/SPI colloidal particles including particle size, microstructure, crystallinity, hydrophily, thermal stability, and rheological properties. Furthermore, the structures of BCNs/SPI colloidal particles at different pH values significantly affected the stability of Pickering emulsion gels stabilized by the corresponding complex colloidal particles. This study provided a theoretical basis for the design of food-grade Pickering emulsion gels stabilized by BCNs/SPI complex colloidal particles.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Xue
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China; Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
20
|
Zhao K, Tian X, Zhang K, Huang N, Wang Y, Zhang Y, Wang W. Using celluloses in different geometries to reinforce collagen-based composites: Effect of cellulose concentration. Int J Biol Macromol 2023; 226:202-210. [PMID: 36502942 DOI: 10.1016/j.ijbiomac.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Cellulose is frequently used to strengthen biocomposite films, but few literature systematically deliberates the effects of concentration of celluloses in different geometries on the reinforcement of these composites. Here we prepared three types of celluloses, including rod-like cellulose nanocrystalline (CNC), long-chain cellulose nanofiber (CNF) and microscopic cellulosic fines (CF). The effect of concentration of the three celluloses was examined on the barrier properties to water and light, thermostability, microstructure, and mechanical properties of collagen (COL) films. The addition of celluloses increased the watertightness and thermostability of composite films. Besides, FTIR showed a increased hydrogen bonding for COL/CNF and COL/CNC composite films, but decrease for COL/CF composites. As the concentration of CF and CNF increased, the strength of composites improved. The TS for COL/CNF (124 MPa) and COL/CF composites (113 MPa) were largely increased, compared with that of collagen ones (90 MPa). Considering the factors of crystallinity, hydrogen bonding, and interfacial tortuosity, COL/CNF composites possessed better mechanical behaviors than that of COL/CF and COL/CNC composites. Furthermore, Halpin-Kardos and Ouali models well predicted the modulus of COL/CNF composites when CNF was below and above percolation threshold (2.7 wt%), respectively.
Collapse
Affiliation(s)
- Kaixuan Zhao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Na Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yafei Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
21
|
Xiao Y, Xu H, Zhou Q, Li W, Gao J, Liao X, Yu Z, Zheng M, Zhou Y, Sui X, Liu Y. Influence mechanism of wheat bran cellulose and cellulose nanocrystals on the storage stability of soy protein isolate films: Conformation modification and molecular interaction perspective. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Preparation, Characterization, In Vitro Release, and Antibacterial Activity of Oregano Essential Oil Chitosan Nanoparticles. Foods 2022; 11:foods11233756. [PMID: 36496563 PMCID: PMC9736546 DOI: 10.3390/foods11233756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Essential oils have unique functional properties, but their environmental sensitivity and poor water solubility limit their applications. Therefore, we encapsulated oregano essential oil (OEO) in chitosan nanoparticles (CSNPs) and used tripolyphosphate (TPP) as a cross-linking agent to produce oregano essential oil chitosan nanoparticles (OEO-CSNPs). The optimized conditions obtained using the Box-Behnken design were: a chitosan concentration of 1.63 mg/mL, TPP concentration of 1.27 mg/mL, and OEO concentration of 0.30%. The OEO-CSNPs had a particle size of 182.77 ± 4.83 nm, a polydispersity index (PDI) of 0.26 ± 0.01, a zeta potential of 40.53 ± 0.86 mV, and an encapsulation efficiency of 92.90%. The success of OEO encapsulation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The scanning electron microscope (SEM) analysis showed that the OEO-CSNPs had a regular distribution and spherical shape. The in vitro release profile at pH = 7.4 showed an initial burst release followed by a sustained release of OEO. The antibacterial activity of OEO before and after encapsulation was measured using the agar disk diffusion method. In conclusion, OEO can be used as an antibacterial agent in future food processing and packaging applications because of its high biological activity and excellent stability when encapsulated.
Collapse
|
23
|
Arnoldussen B, Alhamid J, Wang P, Mo C, Zhang X, Zhang Q, Whiting M. Internal freezing and heat loss of apple ( Malus domestica Borkh.) and sweet cherry ( Prunus avium L.) reproductive buds are decreased with cellulose nanocrystal dispersions. FRONTIERS IN PLANT SCIENCE 2022; 13:949537. [PMID: 36483953 PMCID: PMC9724363 DOI: 10.3389/fpls.2022.949537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cold damage has caused more economic losses to fruit crop growers in the U.S. than any other weather hazard, making it a perennial concern for producers. Cellulose nanocrystals (CNCs) represent a new generation of renewable bio-nanomaterials, with many unique physical and chemical properties, including their low thermal conductivity. Our team has developed a process for creating CNC dispersions that can be sprayed onto woody perennial crops, forming a thin insulating film around buds which has been shown to increase cold tolerance. Using digital scanning calorimetry (DSC) on dormant apple (Malus domestica Borkh.) reproductive buds, we investigated the thermodynamic properties of plant materials treated with CNC dispersion at lower temperatures. Scanning electron microscopy (SEM) was used to evaluate the thickness of the CNC films and their deposition on the sweet cherry bud surface. Apple buds treated with 3% CNC exhibited lethal freezing at temperatures 3.2°C and 5.5°C lower than the untreated control when sampled 1 and 3 days after application, respectively. Additionally, the latent heat capacity (J/g) of the 3% CNC-treated buds was 46% higher compared with untreated buds 1 day after application, and this difference increased 3 days after application to 168% higher. The emissivity of cherry buds treated with 3% CNC was reduced by an average of 16% compared with the untreated buds. SEM was able to detect the dried films on the surface of the buds 3 days after application. Film thickness measured with SEM increased with material concentration. The emissivity, HTE, and LTE results show that CNC-treated reproductive buds released thermal energy at a slower rate than the untreated buds and, consequently, exhibited internal ice nucleation events at temperatures as much as 5.5°C lower. The increased enthalpy during the LTE in the CNC-treated apple buds shows more energy released at lethal internal freezing, indicating that CNC coatings are increasing the amount of supercooled water. The effects of CNC shown during the DSC tests were increased by CNC concentration and time post-application. These results suggest that CNC dispersions dry into nanofilms on the bud surface, which affects their thermodynamic processes at low temperatures.
Collapse
Affiliation(s)
- Brent Arnoldussen
- Irrigated Agriculture Research and Extension Center (IAREC), Department of Horticulture, Washington State University, Prosser, WA, United States
| | - Jassim Alhamid
- School of Mechanical and Material Engineering, Washington State University, Richland, WA, United States
| | - Peipei Wang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, United States
| | - Changki Mo
- School of Mechanical and Material Engineering, Washington State University, Richland, WA, United States
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Richland, WA, United States
| | - Qin Zhang
- Center for Precision and Automated Agricultural Systems (CPAAS), School of Biological Systems Engineering, Washington State University, Prosser, WA, United States
| | - Matthew Whiting
- Irrigated Agriculture Research and Extension Center (IAREC), Department of Horticulture, Washington State University, Prosser, WA, United States
| |
Collapse
|
24
|
Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, nanocomposite active films were fabricated containing silver nanoparticles (SNPs) embedded within soy protein isolate (SPI)/Persian gum (PG) matrices. The physical, mechanical, and antibacterial properties of these composite films were then characterized. In addition, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used to provide information about the microstructure, interactions, and crystallinity of the films. Pure SPI films had poor physicochemical attributes but the addition of PG (0.25, 0.5, or 1 wt%) improved their water vapor permeability, mechanical properties, and water solubility (WS). The moisture content (MC) of the films decreased after the introduction of PG, which was attributed to fewer free hydroxyl groups to bind to the water molecules. Our results suggest there was a strong interaction between the SPI and the PG and SNPs in the films, suggesting these additives behaved like active fillers. Optimum film properties were obtained at 0.25% PG in the SPI films. The addition of PG (0.25%) and SNPs (1%) led to a considerable increase in tensile strength (TS) and a decrease in elongation at break (EB). Furthermore, the incorporation of the SNPs into the SPI/PG composite films increased their antibacterial activity against pathogenic bacteria (Escherichia coli and Staphylococcus aureus), with the effects being more prominent for S. aureus. Spectroscopy analyses provided insights into the nature of the molecular interactions between the different components in the films. Overall, the biodegradable active films developed in this study may be suitable for utilization as eco-friendly packaging materials in the food industry.
Collapse
|
25
|
Antoniêto ACC, Nogueira KMV, Mendes V, Maués DB, Oshiquiri LH, Zenaide-Neto H, de Paula RG, Gaffey J, Tabatabaei M, Gupta VK, Silva RN. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int J Biol Macromol 2022; 221:456-471. [PMID: 36070819 DOI: 10.1016/j.ijbiomac.2022.08.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022]
Abstract
Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Vanessa Mendes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - David Batista Maués
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Letícia Harumi Oshiquiri
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Hermano Zenaide-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Renato Graciano de Paula
- Department of Physiological Sciences, Health Sciences Centre, Federal University of Espirito Santo, Vitória, ES 29047-105, Brazil
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland; BiOrbic, Bioeconomy Research Centre, University College Dublin, Belfield, Dublin, Ireland
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
26
|
Hu Y, Yang S, Zhang Y, Shi L, Ren Z, Hao G, Weng W. Effects of microfluidization cycles on physicochemical properties of soy protein isolate-soy oil emulsion films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Property evaluation of bacterial cellulose nanostructures produced from confectionery wastes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Silva NC, Esposto BS, Maniglia BC, Tapia‐Blácido DR, Martelli‐Tosi M. Using Experimental Design and Response Surface Methodology to optimize nanocellulose production from two types of pretreated soybean straw. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natalia C. Silva
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Rua Duque de Caxias Norte 225, CEP 13635‐900 Pirassununga SP Brazil
| | - Bruno S. Esposto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Bianca C. Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Delia R. Tapia‐Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| | - Milena Martelli‐Tosi
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Rua Duque de Caxias Norte 225, CEP 13635‐900 Pirassununga SP Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Av. Bandeirantes 3900 Universidade de São Paulo CEP 14040–901 Ribeirão Preto SP Brazil
| |
Collapse
|
29
|
Ran R, Chen S, Su Y, Wang L, He S, He B, Li C, Wang C, Liu Y. Preparation of pH-colorimetric films based on soy protein isolate/ZnO nanoparticles and grape-skin red for monitoring pork freshness. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Pradhan D, Jaiswal AK, Jaiswal S. Emerging technologies for the production of nanocellulose from lignocellulosic biomass. Carbohydr Polym 2022; 285:119258. [DOI: 10.1016/j.carbpol.2022.119258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
|
31
|
Choi I, Kim S, Lee JS, Chang Y, Han J. Development of a multilayer insect-repelling film with trans-anethole for the storage of almond flake cereal. J Food Sci 2022; 87:2869-2878. [PMID: 35638333 DOI: 10.1111/1750-3841.16192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Trans-anethole (AN), which exhibits strong insect-repellent activity against Plodia interpunctella larvae, was applied on a polyethylene terephthalate (PET) film as an active packaging coating layer. All developed films at different concentrations (25%, 30%, 40%, and 50%) exhibited significant insect repellent activities. However, these films did not significantly differ from the control film in terms of color and transparency. In addition, the developed polypropylene (PP) and PET laminated films containing 25% AN (PP/AN25/PET) exhibited strong and continuous insect-repellent activity for up to 42 days. Finally, the developed film showed 2.86-fold stronger repellent activity than that of the control film when applied to the almond flake cereals packaging. These results suggest that PP/AN25/PET could be used as a potent insect-repelling packaging film in a realistic grain-packaging system. PRACTICAL APPLICATION: A PP/trans-anethole/PET film that exhibited good insect-repellent activity for 42 days was newly developed in this study. As it showed strong insect repellency, especially in almond flake cereals packaging, it is expected to have high potential as an insect-repelling grain-packaging film.
Collapse
Affiliation(s)
- Inyoung Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Seungyeon Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jung-Soo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Jaejoon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.,Department of Food Biosciences and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Jafarzadeh S, Forough M, Amjadi S, Javan Kouzegaran V, Almasi H, Garavand F, Zargar M. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications. Crit Rev Food Sci Nutr 2022; 63:9667-9693. [PMID: 35522084 DOI: 10.1080/10408398.2022.2070721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumer demands to utilize environmentally friendly packaging have led researchers to develop packaging materials from naturally derived resources. In recent years, plant protein-based films as a replacement for synthetic plastics have attracted the attention of the global food packaging industry due to their biodegradability and unique properties. Biopolymer-based films need a filler to show improved packaging properties. One of the latest strategies introduced to food packaging technology is the production of nanocomposite films which are multiphase materials containing a filler with at least one dimension less than 100 nm. This review provides the recent findings on plant-based protein films as biodegradable materials that can be combined with nanoparticles that are applicable to food packaging. Moreover, it investigates the characterization of nanocomposite plant-based protein films/edible coatings. It also briefly describes the application of plant-based protein nanocomposite films/coating on fruits/vegetables, meat and seafood products, and some other foods. The results indicate that the functional performance, barrier, mechanical, optical, thermal and antimicrobial properties of plant protein-based materials can be extended by incorporating nanomaterials. Recent reports provide a better understanding of how incorporating nanomaterials into plant protein-based biopolymers leads to an increase in the shelf life of food products during storage time.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
33
|
Efthymiou MN, Tsouko E, Papagiannopoulos A, Athanasoulia IG, Georgiadou M, Pispas S, Briassoulis D, Tsironi T, Koutinas A. Development of biodegradable films using sunflower protein isolates and bacterial nanocellulose as innovative food packaging materials for fresh fruit preservation. Sci Rep 2022; 12:6935. [PMID: 35484184 PMCID: PMC9050891 DOI: 10.1038/s41598-022-10913-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
This study presents the valorization of side streams from the sunflower-based biodiesel industry for the production of bio-based and biodegradable food packaging following circular economy principles. Bacterial cellulose (BC) was produced via fermentation in 6 L static tray bioreactors using nutrient-rich supplements derived from the enzymatic hydrolysis of sunflower meal (SFM) combined with crude glycerol as carbon source. Novel biofilms were produced using either matrices of protein isolates extracted from sunflower meal (SFMPI) alone or SFMPI matrices reinforced with nanocellulose biofillers of commercial or bacterial origin. Acid hydrolysis was employed for ex-situ modification of BC to nanostructures (56 nm). The biofilms reinforced with bacterial nanocellulose structures (SFMPI-BNC) showed 64.5% higher tensile strength, 75.5% higher Young’s modulus, 131.5% higher elongation at break, 32.5% lower water solubility and 14.1% lower water vapor permeability than the biofilms produced only with SFMPI. The biofilms were evaluated on fresh strawberries packaging showing that the SFMPI-BNC-based films lead to effective preservation at 10 °C considering microbial growth and physicochemical profile (weight loss, chemical characterization, color, firmness and respiration activity). The SFMPI-BNC-based films could be applied in fresh fruit packaging applications.
Collapse
Affiliation(s)
- Maria-Nefeli Efthymiou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Erminta Tsouko
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Ioanna-Georgia Athanasoulia
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Maria Georgiadou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635, Athens, Greece
| | - Demetres Briassoulis
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 11855, Athens, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
34
|
Maniglia BC, Silveira TMG, Tapia-Blácido DR. Starch isolation from turmeric dye extraction residue and its application in active film production. Int J Biol Macromol 2022; 202:508-519. [PMID: 35007637 DOI: 10.1016/j.ijbiomac.2021.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022]
Abstract
In this study, we have isolated starch from turmeric dye extraction residue by steeping in acid medium (AS), steeping in water (WS), or steeping in alkaline medium (KS) and assessed the filmogenic capacity of the resulting starches. We have also characterized the chemical composition, morphology, swelling power, solubility, crystallinity, and active properties of the AS, WS, and KS starches and investigated the mechanical, functional, antioxidant, and antimicrobial properties of the corresponding films. The AS and KS starches showed lower apparent amylose content and higher purity, relative crystallinity, swelling power, and solubility than the WS starch. All the starches retained phenolic compounds and curcuminoids; their phenolic and curcuminoid contents were higher than the contents in the residue, especially in the case of the AS starch, which yielded films with the best antioxidant and antimicrobial activities. The AS and KS starches yielded films that were more resistant at break, less soluble in water, and less hydrophilic than the film obtained from the WS starch. Thus, submitting turmeric dye extraction residue to AS in ascorbic acid yielded a starch that resulted in films with good mechanical properties and better antioxidant and antimicrobial properties, to ensure safe and prolonged food shelf life.
Collapse
Affiliation(s)
- Bianca Chieregato Maniglia
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| | - Thamiris Maria Garcia Silveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Wang L, Cui Q, Pan S, Li Y, Jin Y, Yang H, Li T, Zhang Q. Facile isolation of cellulose nanofibers from soybean residue. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Rojas-Lema S, Nilsson K, Trifol J, Langton M, Gomez-Caturla J, Balart R, Garcia-Garcia D, Moriana R. “Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material”. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Development of pH-responsive antioxidant soy protein isolate films incorporated with cellulose nanocrystals and curcumin nanocapsules to monitor shrimp freshness. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106893] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Shen R, Lin D, Liu Z, Zhai H, Yang X. Fabrication of Bacterial Cellulose Nanofibers/Soy Protein Isolate Colloidal Particles for the Stabilization of High Internal Phase Pickering Emulsions by Anti-solvent Precipitation and Their Application in the Delivery of Curcumin. Front Nutr 2021; 8:734620. [PMID: 34557512 PMCID: PMC8454892 DOI: 10.3389/fnut.2021.734620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the anti-solvent precipitation and a simple complex method were applied for the preparation of bacterial cellulose nanofiber/soy protein isolate (BCNs/SPI) colloidal particles. Fourier transform IR (FT-IR) showed that hydrogen bonds generated in BCNs/SPI colloidal particles via the anti-solvent precipitation were stronger than those generated in BCNs/SPI colloidal particles self-assembled by a simple complex method. Meanwhile, the crystallinity, thermal stability, and contact angle of BCNs/SPI colloidal particles via the anti-solvent precipitation show an improvement in comparison with those of BCNs/SPI colloidal particles via a simple complex method. BCNs/SPI colloidal particles via the anti-solvent precipitation showed enhanced gel viscoelasticity, which was confirmed by dynamic oscillatory measurements. Furthermore, high internal phase Pickering emulsions (HIPEs) were additionally stable due to their stabilization by BCNs/SPI colloidal particles via the anti-solvent precipitation. Since then, HIPEs stabilized by BCNs/SPI colloidal particles via the anti-solvent precipitation were used for the delivery of curcumin. The curcumin-loaded HIPEs showed a good encapsulation efficiency and high 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal efficiency. Additionally, the bioaccessibility of curcumin was significantly increased to 30.54% after the encapsulation using the prepared HIPEs. Therefore, it can be concluded that the anti-solvent precipitation is an effective way to assemble the polysaccharide/protein complex particles for the stabilization of HIPEs, and the prepared stable HIPEs showed a potential application in the delivery of curcumin.
Collapse
Affiliation(s)
- Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhe Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Honglei Zhai
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
39
|
Tang L, Liao J, Dai H, Liu Y, Huang H. Comparison of cellulose nanocrystals from pineapple residues and its preliminary application for Pickering emulsions. NANOTECHNOLOGY 2021; 32:495708. [PMID: 34450604 DOI: 10.1088/1361-6528/ac21f1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Pineapple, as a world-famous tropical fruit, is also prone to produce by-products rich in cellulose. In this study, different sections of pineapple, including pineapple core (PC), pineapple pulp (PPu), pineapple leaf (PL) and pineapple peel (PPe) were used for production of pineapple cellulose nanocrystals (PCNCs) by sulfuric acid hydrolysis. The crystallinity of PCNCs from PC, PPu, PL and PPe were 57.81%, 55.68%, 59.19% and 53.58%, respectively, and the thermal stability of PCNCs in order was PC > PL > PPe > PPu. The prepared PCNCs from PC, PPu, PL and PPe were needle like structure at the average aspect ratios of 14.2, 5.6, 5.5, and 14.8, respectively. Additionally, the differences in the structure and properties of PCNCs affected the stability of the prepared Pickering emulsions, which ranked as PPu > PPe > PL > PC. The Pickering emulsions stabilized by PCNCs prepared from PPu could be stored stably for more than 50 d. These results show the differences of PCNCs from four sections of pineapple, and provide isolated raw material selection for the further application of PCNCs.
Collapse
Affiliation(s)
- Lu Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jing Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yushan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
40
|
Rodkantuk K, Chiewchan N, Devahastin S. Feasibility of using exogenous pectin to improve water redispersibility and viscoelasticity of reconstituted dried nanofibrillated cellulose from cabbage outer leaves. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Khanisorn Rodkantuk
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory Department of Food Engineering Faculty of Engineering King Mongkut’s University of Technology Thonburi 126 Pracha u‐tid Road Bangkok 10140 Thailand
- The Academy of Science The Royal Society of Thailand Dusit, Bangkok 10300 Thailand
| |
Collapse
|
41
|
Tessaro L, Lourenço RV, Martelli-Tosi M, do Amaral Sobral PJ. Gelatin/chitosan based films loaded with nanocellulose from soybean straw and activated with "Pitanga" (Eugenia uniflora L.) leaf hydroethanolic extract in W/O/W emulsion. Int J Biol Macromol 2021; 186:328-340. [PMID: 34246680 DOI: 10.1016/j.ijbiomac.2021.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 11/26/2022]
Abstract
Mechanical properties of biopolymer films can be a limitation for their application as packaging. Soybean straw crystalline nanocelluloses (NC) can act as reinforcement load to improve these material properties, and W/O/W double emulsion (DE) as encapsulating bioactive agents can contribute to produce active packaging. DE droplets were loaded with pitanga leaf (Eugenia uniflora L.) hydroethanolic extract. The mechanical, physicochemical, and barrier properties, and the microstructure of gelatin and/or chitosan films incorporated with NC or NC/DE were determined by classical methods. Film antioxidant activities were determined by ABTS and DPPH methods. The incorporation of NC/DE in gelatin and/or chitosan films (NC/DE films) changed the morphology of these films, which presented more heterogeneous air-side surfaces and cross-sections. They presented rougher topographies, notably greater resistance and stiffness, higher barrier properties to UV/Vis light and higher antioxidant activity than the NC films. Moisture content, solubility in water and water vapor permeability decreased due to the presence of DE. Overall, the NC/DE films improved all properties, when compared to the properties of NC films or those of films with only DE, from a previously published study. In spite of not having antimicrobial activity against the studied bacteria, NC/DE films did display a great antioxidant activity.
Collapse
Affiliation(s)
- Larissa Tessaro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil.
| | - Rodrigo Vinícius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Milena Martelli-Tosi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil; Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-industrial building, block C, 05508-080 São Paulo, SP, Brazil
| |
Collapse
|
42
|
Ran R, Wang L, Su Y, He S, He B, Li C, Wang C, Liu Y, Chen S. Preparation of pH-indicator films based on soy protein isolate/bromothymol blue and methyl red for monitoring fresh-cut apple freshness. J Food Sci 2021; 86:4594-4610. [PMID: 34392537 DOI: 10.1111/1750-3841.15884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/26/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
Intelligent pH-indicator films based on soy protein isolate (SPI) were prepared using pH-sensitive dyes (bromothymol blue and methyl red). The addition of mixed indicators imparts pH-indicator films with an appreciable microstructure, acceptable water resistance, and favorable optical properties. The incorporation of the mixed indicators did not lead to significant improvement in the mechanical properties of films due to weak ionic cross-linking by hydrogen bonding between the SPI macromolecules and low-molecular-weight indicators. Fourier-transform infrared spectroscopy indicated hydrogen bond-mediated intermolecular interactions, and scanning electron microscopy showed that BB/MR were well dispersed in the SPI film. The indicator addition hindered the sorption and passage of water molecules. The water vapor permeability, moisture sorption, moisture content, and total soluble matter were 4.32 to 6.12 ×10-12 g·cm/cm2 ·s·Pa, 36.70% to 73.33%, 25.28% to 44.11%, and 8.21% to 25.56%, respectively. Also, the addition of indicators reduced UV light transmittance with minimal effect on the transparency of the film. The presence of indicators enhanced the pH sensitivity, seen as a visible color reaction at different pHs (total color difference, ΔE > 5). When the pH-indicator film containing 8 ml/100 ml final film emulsions was used to monitor the fresh-cut apple freshness, a green color for fresh status was observed, which turned blue after 60 h. Collectively, our findings suggested that indicator-containing SPI films have the potential for monitoring the freshness of fruits. PRACTICAL APPLICATION: pH-indicator films can help consumers to identify the freshness of packaged food by a change in the color of the packaging material, which is easily visible to the unaided eye without the need for opening the packaging. This protects consumers' interests.
Collapse
Affiliation(s)
- Ruimin Ran
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Luyao Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuhang Su
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fujian Province, Fuzhou, China
| | - Shujian He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Binbin He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province, China
| |
Collapse
|
43
|
Wei Y, Jiang S, Li X, Li J, Dong Y, Shi SQ, Li J, Fang Z. "Green" Flexible Electronics: Biodegradable and Mechanically Strong Soy Protein-Based Nanocomposite Films for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37617-37627. [PMID: 34313436 DOI: 10.1021/acsami.1c09209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soy protein isolate (SPI) is envisioned as a promising alternative to fabricate "green" flexible electronics, showing great potential in the field of flexible wearable electronics. However, it is challenging to simultaneously achieve conductive film-based human motion-monitoring strain sensors with reliable fatigue resistance, robust mechanical property, environmental degradability, and sensing capability of human motions. Herein, we prepared a series of SPI-based nanocomposite films by embedding a surface-hydroxylated high-dielectric constant inorganic filler, BaTiO3, (HBT) as interspersed nanoparticles into a biodegradable SPI substrate. In particular, the fabricated film comprising 0.5 wt % HBT and glycerin (GL), namely, SPI-HBT0.5-GL0.5, presents multifunctional properties, including a combination of excellent toughness, tensile strength, conductivity, translucence, recyclability, and excellent thermal stability. Meanwhile, this multifunctional film could be simply degraded in phosphate buffered saline solution and does not cause any pollution to the environment. Attractively, wearable sensors prepared with this particular material (SPI-HBT0.5-GL0.5) displayed excellent biocompatibility, prevented the occurrence of an immune response, and could accurately monitor various types of human joint motions and successfully remain operable after 10,000 cycles. These properties make the developed SPI-based film a great candidate in formulating biobased and multifunctional wearable electronics.
Collapse
Affiliation(s)
- Yanqiang Wei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shuaicheng Jiang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiaona Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiongjiong Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Youming Dong
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton 76203, United States
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhen Fang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
- Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
44
|
Shi Z, Jiang Y, Sun Y, Min D, Li F, Li X, Zhang X. Nanocapsules of oregano essential oil preparation and characterization and its fungistasis on apricot fruit during shelf life. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zedong Shi
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Yaping Jiang
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Yingjie Sun
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Dedong Min
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Fujun Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo P.R. China
| |
Collapse
|
45
|
Water resistance and biodegradation properties of conventionally-heated and microwave-cured cross-linked cellulose nanocrystal/chitosan composite films. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Xiao Y, Liu Y, Kang S, Xu H. Insight into the formation mechanism of soy protein isolate films improved by cellulose nanocrystals. Food Chem 2021; 359:129971. [PMID: 33962191 DOI: 10.1016/j.foodchem.2021.129971] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/17/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the effects of cellulose nanocrystals (CNC) on the basic properties of soy protein isolate films, and especially to propose the corresponding formation mechanism. Tensile strength, barrier properties, and water resistance were effectively improved after the formation of nanocomposite films. Incorporating CNC could restrict water mobility and improve the viscoelastic properties of films. Appropriate content of CNC (0.50% and 0.75%) promoted the construction of a more homogeneous and compact film structure, which may be attributed to the CNC-induced conformational modifications and the enhanced hydrophobic and hydrogen-bond interactions. While excessive CNC (1.00%) was not conducive to the integrity and continuity of film structures, resulting in the weakened functional properties. The obtained films were able to decrease total viable counts and total volatile basic nitrogen of stored pork, and extend the shelf-life of strawberry. This work offers a theoretical basis for the application of CNC in packaging industry.
Collapse
Affiliation(s)
- Yaqing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shufang Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
48
|
Zielińska D, Szentner K, Waśkiewicz A, Borysiak S. Production of Nanocellulose by Enzymatic Treatment for Application in Polymer Composites. MATERIALS 2021; 14:ma14092124. [PMID: 33922118 PMCID: PMC8122419 DOI: 10.3390/ma14092124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
In the last few years, the scientific community around the world has devoted a lot of attention to the search for the best methods of obtaining nanocellulose. In this work, nanocellulose was obtained in enzymatic reactions with strictly defined dispersion and structural parameters in order to use it as a filler for polymers. The controlled enzymatic hydrolysis of the polysaccharide was carried out in the presence of cellulolytic enzymes from microscopic fungi-Trichoderma reesei and Aspergillus sp. It has been shown that the efficiency of bioconversion of cellulose material depends on the type of enzymes used. The use of a complex of cellulases obtained from a fungus of the genus Trichoderma turned out to be an effective method of obtaining cellulose of nanometric dimensions with a very low polydispersity. The effect of cellulose enzymatic reactions was assessed using the technique of high-performance liquid chromatography coupled with a refractometric detector, X-ray diffraction, dynamic light scattering and Fourier transform infrared spectroscopy. In the second stage, polypropylene composites with nanometric cellulose were obtained by extrusion and injection. It was found by means of X-ray diffraction, hot stage optical microscopy and differential scanning calorimetry that nanocellulose had a significant effect on the supermolecular structure, nucleation activity and the course of phase transitions of the obtained polymer nanocomposites. Moreover, the obtained nanocomposites are characterized by very good strength properties. This paper describes for the first time that the obtained cellulose nanofillers with defined parameters can be used for the production of polymer composites with a strictly defined polymorphic structure, which in turn may influence future decision making about obtaining materials with controllable properties, e.g., high flexibility, enabling the thermoforming process of packaging.
Collapse
Affiliation(s)
- Daria Zielińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
| | - Kinga Szentner
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland; (K.S.); (A.W.)
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland; (K.S.); (A.W.)
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland;
- Correspondence: ; Tel.: +48-616-653-549
| |
Collapse
|
49
|
Wei J, Jia S, Zhang L, Zhou Y, Lv Y, Zhang X, Shao Z. Preparation of treelike and rodlike carboxymethylated nanocellulose and their effect on carboxymethyl cellulose films. J Appl Polym Sci 2021. [DOI: 10.1002/app.50092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Wei
- Beijing Engineering Research Center of Cellulose and Its Derivatives School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Shuai Jia
- Beijing Engineering Research Center of Cellulose and Its Derivatives School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Lu Zhang
- Beijing Engineering Research Center of Cellulose and Its Derivatives School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Yi Zhou
- Synthetic resin and polyolefin Laboratory Petrochemical Research Institute, Chinese National Petroleum Corporation, China Petroleum Science and Technology Innovation Base Beijing China
| | - Yanyan Lv
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan Shanxi China
| | - Xinfang Zhang
- Beijing Engineering Research Center of Cellulose and Its Derivatives School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| | - Ziqiang Shao
- Beijing Engineering Research Center of Cellulose and Its Derivatives School of Materials Science and Engineering, Beijing Institute of Technology Beijing China
| |
Collapse
|
50
|
Li T, Xia N, Xu L, Zhang H, Zhang H, Chi Y, Zhang Y, Li L, Li H. Preparation, characterization and application of SPI-based blend film with antioxidant activity. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2020.100614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|