1
|
Abdelrahman MS, Khattab TA. Recent advances in photoresponsive printing inks for security encoding applications. LUMINESCENCE 2024; 39:e4800. [PMID: 38923447 DOI: 10.1002/bio.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Counterfeiting of banknotes, important documents, and branded goods continues to be a major worldwide problem for governments, businesses, and consumers. This problem has serious financial, security, and health implications. Due to their stability for printing on various substrates, the photochromic anticounterfeiting inks have received important interest. There have been various photochromic agents, such as polymer nanoparticles, quantum and carbon dots, and organic and inorganic fluorophores and luminophores, which have been broadly used for antiforging applications. In comparison to organic agents, inorganic photochromic materials have better stability under reversible/long-term light illumination. Recently, the remarkable optical characteristics and chemical stability of photoluminescent and photochromic agents have led to their extensive usage anticounterfeiting products. There have been also several strategies to tackle the rising problem of counterfeiting. Both of solvent-based and water-based inks have been developed for security encoding purposes. Additionally, the printing methods, including screen printing, labeling, stamping, inkjet printing, and handwriting, that have been used to apply anticounterfeiting inks onto various surfaces are discussed. The limitations of photoluminescent and photochromic agents and the potential for their future preparation to combat counterfeiting were discussed. This review would benefit academic researchers and industrial developers who are interested in the area of security printing.
Collapse
Affiliation(s)
- Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, Textile Research and Technology Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Preparation of epoxy resin/rare earth doped aluminate nanocomposite toward photoluminescent and superhydrophobic transparent woods. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
El-Newehy M, El-Hamshary H, Meera Moydeen A, Tawfeek AM. Immobilization of lanthanide doped aluminate phosphor onto recycled polyester toward the development of long-persistent photoluminescence smart window. LUMINESCENCE 2022; 37:610-621. [PMID: 35092144 DOI: 10.1002/bio.4201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Smart window can be defined as switchable material whose light transmission is altered upon exposure to light, voltage, or heat. However, smart windows usually produced from expensive and breakable glass materials. Herein, transparent smart window with long-persistent phosphorescence, high optical transmittance, ultraviolet protection, rigid, high photostability and durability, and superhydrophobicity was developed from recycled polyester (PET). Recycled polyester waste (RBW) was simply immobilized with different ratios of lanthanide-doped aluminate nanoparticles (LdAN) to provide a long-persistent phosphorescent polyester smart window (LdAN@PET) with an ability to persist emitting light for extended time periods. The solid-state high temperature technique was used to prepare LdA micro-scale powder. Then, the top-down technique was applied to afford the corresponding LdA nanoparticles. Recycled shredded recycled polyester bottles were charged into a hot bath to provide a clear plastic shred bulk, which was then well-mixed with LdAN and drop-casted to provide long-persistent luminescent smart window. In order to improve the phosphor dispersion in the PET bulk, LdAN was synthesized in the nanoparticle form which was characterized utilizing transmission electron microscope (TEM). For better preparation of translucent smart window of long-persistent phosphorescent polyester, LdAN must be homogeneously dispersed in the PET matrix without agglomeration. The morphology and chemical composition were studied by infrared spectra (FT-IR), X-ray fluorescent (XRF) analysis, scanning electron microscopy (SEM), and energy-dispersion X-ray analyzer (EDS). In addition, spectral profiles of excitation and emission, and decay and lifetime were used to better understand the photoluminescence properties. The hardness properties were also investigated. The developed phosphorescent transparent polyester smart window demonstrated a color switch to intense green underneath UV irradiation and greenish-yellow under darkness as verified by CIE Lab color parameters. The afterglow polyester smart window showed an absorption wavelength at 365 nm and two phosphorescence intensities at 442 and 512 nm. An enhanced UV protection, photostability and hydrophobic activity were detected. The luminescent polyester substrates with lower LdAN ratios demonstrated rapid and reversible fluorescent photochromic activity beneath the UV light. The luminescent polyester substrates with higher LdAN contents displayed long-persistent phosphorescence afterglow. The current strategy can be simply applied for the production of smart windows, low thickness anticounterfeiting films and warning signs.
Collapse
Affiliation(s)
- Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hany El-Hamshary
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Meera Moydeen
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Tawfeek
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Al-Qahtani SD, Snari RM, Alkhamis K, Alatawi NM, Alhasani M, Al-Nami SY, El-Metwaly NM. Development of silica-coated rare-earth doped strontium aluminate toward superhydrophobic, anti-corrosive and long-persistent photoluminescent epoxy coating. LUMINESCENCE 2022; 37:479-489. [PMID: 35043557 DOI: 10.1002/bio.4198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/05/2022]
Abstract
Long-persistent phosphorescent smart paints have the ability to continue glowing in the dark for a prolonged time period to function as energy-saving products. Herein, new epoxy/silica nanocomposite paints were prepared with different concentrations of lanthanide-doped aluminate nanoparticles (LAN; SrAl2 O4 : Eu2+ , Dy3+ ). The LAN pigment was firstly coated with SiO2 utilizing the heterogeneous precipitation technique to provide LAN-encapsulated between SiO2 nanoparticles (LAN@SiO2 ). The epoxy/silica/lanthanide-doped aluminate nanoparticles (ESLAN) nanocomposite paints were coated on steel. The prepared ESLAN paints were studied by transmission electron microscope (TEM), infrared spectra (FTIR), scanning electron microscope (SEM), X-ray fluorescence analysis (XRF), and energy-dispersive X-ray spectra (EDS). The transparency and coloration properties of the nanocomposite coated films were explored by CIE Lab parameters and photoluminescence spectra. The ultraviolet-induced luminescence properties of the transparent coated films demonstrated greenish phosphorescence at 518 nm upon excitation at 368 nm. Both hardness and hydrophobic activities were investigated. The anticorrosion activity of the nanocomposite films coated onto mild steel substrates immersed in NaCl(aq) (3.5%) was studied by the electrochemical impedance spectral (EIS) analysis. The silica-containing coatings were monitored to exhibit anticorrosion properties. Additionally, the nanocomposite films with LAN@SiO2 (25%) exhibited the optimized long-lasting luminescence properties in the dark for 90 minutes. The nanocomposite films showed highly reversible and durable long-lived phosphorescence.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan M Snari
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nada M Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Alhasani
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Saudi Arabia, Abha
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
5
|
Abumelha HM, Hameed A, Alkhamis KM, Alkabli J, Aljuhani E, Shah R, El-Metwaly NM. Development of Mechanically Reliable and Transparent Photochromic Film Using Solution Blowing Spinning Technology for Anti-Counterfeiting Applications. ACS OMEGA 2021; 6:27315-27324. [PMID: 34693152 PMCID: PMC8529685 DOI: 10.1021/acsomega.1c04127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 05/07/2023]
Abstract
Photochromic materials have attracted broad interest to enhance the anti-counterfeiting of commercial products. In order to develop anti-counterfeiting mechanically reliable composite materials, it is urgent to improve the engineering process of both the material and matrix. Herein, we report on the development of anti-counterfeiting mechanically reliable nanocomposites composed of rare-earth doped aluminate strontium oxide phosphor (RESA) nanoparticles (NPs) immobilized into the thermoplastic polyurethane-based nanofibrous film successfully fabricated via the simple solution blowing spinning technology. The generated photochromic film exhibits an ultraviolet-stimulated anti-counterfeiting property. Different films of different emissive properties were generated using different total contents of RESA. Transmission electron microscopy was utilized to investigate the morphological properties of RESA NPs to display a particle diameter of 3-17 nm. The morphologies, compositions, optical transmittance, and mechanical performance of the produced photochromic nanofibrous films were investigated. Several analytical methods were employed, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectrometry. The fibrous diameter of RESA-TPU was in the range of 200-250 nm. In order to ensure the development of transparent RESA-TPU film, RESA must be prepared in the nanosized form to allow better dispersion without agglomeration in the TPU matrix. The luminescent RESA-TPU film displayed an absorbance intensity at 367 nm and two emission intensities at 431 and 517 nm. The generated RESA-TPU films showed an enhanced hydrophobicity without negatively influencing their original appearance and mechanical properties. Upon irradiation with ultraviolet light, the transparent nanofibrous films displayed rapid and reversible photochromism to greenish-yellow without fatigue. The produced anti-counterfeiting films demonstrated stretchable, flexible, and translucent properties. As a simple sort of anti-counterfeiting substrates, the current novel photochromic film provides excellent anti-counterfeiting strength at low-cost as an efficient method to develop versatile materials with high mechanical strength to create an excellent market as well as adding economic and social values.
Collapse
Affiliation(s)
- Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, 11671 Riyadh, Saudi Arabia
| | - Ahmed Hameed
- Department
of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, 00966 Makkah, Saudi Arabia
| | - Kholood M. Alkhamis
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 47711, Saudi Arabia
| | - Jafar. Alkabli
- Department
of Chemistry, College of Science and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Enas Aljuhani
- Department
of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, 00966 Makkah, Saudi Arabia
| | - Reem Shah
- Department
of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, 00966 Makkah, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, 00966 Makkah, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, 35516 Mansoura, Egypt
| |
Collapse
|
6
|
El-Newehy MH, Kim HY, Khattab TA, Moydeen A M, El-Naggar ME. Synthesis of lanthanide-doped strontium aluminate nanoparticles encapsulated in polyacrylonitrile nanofibres: photoluminescence properties for anticounterfeiting applications. LUMINESCENCE 2021; 37:40-50. [PMID: 34551199 DOI: 10.1002/bio.4144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
Photochromism has been applied as an interesting technique in order to improve the anticounterfeiting of commercial commodities. To build up a mechanically reliable anticounterfeiting nanocomposite, it has been vital to enhance the engineering process of the anticounterfeiting material. In the current study, we developed mechanically reliable and highly photoluminescent lanthanide-doped strontium aluminate nanoparticles (LSAN)/polyacrylonitrile (PAN) hybrid nanofibres successfully fabricated using an electrospinning technique for anticounterfeiting applications. The produced nanocomposite films exhibited ultraviolet-induced photochromic anticounterfeiting properties. To guarantee the transparency of the LSAN-PAN film, LSAN must be immobilized onto the nanoparticle size to allow better dispersion without aggregation in the polyacrylonitrile matrix. The LSAN-PAN nanofibrous film demonstrated absorbance intensity that exhibited at 354 nm and associated with an emission intensity at 424 nm. The produced LSAN-PAN films demonstrated an enhanced hydrophobicity when increasing the ratio of LSAN, without adversely influencing their native appearance and mechanical performance. Upon excitation with ultraviolet light, the translucent nanofibrous substrates exhibited fast and reversible photochromic activity to greenish-yellow without exhaustion. The nanofibrous films exhibited stretchability, transparency, flexibility, and ultraviolet light-induced photochromism at low cost. The current strategy can be considered as an efficient technique towards the development of various anticounterfeiting materials for a better market with economic and social values.
Collapse
Affiliation(s)
- Mohamed H El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Hak Yong Kim
- Nano Convergence Engineering, Jeonbuk National University, Jeonju, Republic of Korea
| | - Tawfik A Khattab
- Textile Research Division, National Research Center, (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Meera Moydeen A
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Center, (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| |
Collapse
|
7
|
El-Naggar ME, Aldalbahi A, Khattab TA, Hossain M. Facile production of smart superhydrophobic nanocomposite for wood coating towards long-lasting glow-in-the-dark photoluminescence. LUMINESCENCE 2021; 36:2004-2013. [PMID: 34453772 DOI: 10.1002/bio.4137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023]
Abstract
A smart photoluminescent nanocomposite surface coating was prepared for simple industrial production of long-persisting phosphorescence and superhydrophobic wood. The photoluminescent nanocomposite coatings were capable of continuing to emit light in the dark for prolonged time periods that could reach 1.5 h. Lanthanide-doped aluminium strontium oxide (LASO) nanoparticles at different ratios were immobilized in polystyrene (PS) and developed as a nanocomposite coating for wood substrates. To produce transparency in the prepared nanocomposite coating, LASO was efficiently dispersed in the form of nanoscaled particles to ensure homogeneous dispersion without agglomeration in the PS matrix. The coated wood showed an absorption band at 374 nm and two emission bands at 434 nm and 518 nm. The luminescence spectra showed both long-persisting phosphorescence as well as photochromic fluorescence relying on the LASO ratio. The improved superhydrophobicity and resistance to scratching of the coated wood could be attributed to the LASO NPs incorporated in the polystyrene matrix. Compared with the uncoated wood substrate, the coated LASO-PS nanocomposite film also displayed photostability and high durability. The current study demonstrated the potential high-scale manufacturing of smart wood for some applications such as safety directional signs in buildings, household products, and smart windows.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tawfik A Khattab
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, UK
| |
Collapse
|
8
|
Mokhtar OM, Attia YA, Wassel AR, Khattab TA. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. LUMINESCENCE 2021; 36:1933-1944. [PMID: 34323370 DOI: 10.1002/bio.4127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
New photochromic film was developed toward the preparation of anti-counterfeiting documents utilizing inorganic/organic nanocomposite enclosing a photoluminescent inorganic pigment and a polyacrylic binder polymer. To generate a translucent film from pigment/polyacrylic nanocomposite, the phosphorescent strontium aluminum oxide pigment should be well-dispersed in the solution of the polyacrylic-based binder without agglomeration. The photochromic nanocomposite was applied efficiently onto commercial cellulose paper documents utilizing the effective and economical spray-coating technology followed with thermofixation. A homogeneous photochromic film was immobilized onto cellulose paper surface to introduce a transparent film changing to greenish-yellow upon exposure to ultraviolet light as depicted by CIE coloration measurements. The photochromic effect was monitored at lowest pigment concentration (0.25 wt%). The spray-coated paper documents exhibit two absorbance bands at 256 and 358 nm, and two fluorescence peaks at 433 and 511 nm. The morphologies of the spray-coated documents were explored. The spray-coated paper sheets showed a reversible photochromic effect without fatigue under ultraviolet irradiation. The rheology of the produced photochromic composites as well as the mechanical properties and photostability of the spray-coated documents were studied.
Collapse
Affiliation(s)
- Omnia M Mokhtar
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Yasser A Attia
- Department of Laser in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Ahmed R Wassel
- Electron Microscope and Thin Film Department, Physics Research Division National Research Centre, Giza, Egypt
| | - Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Hameed A, Aljuhani E, Bawazeer TM, Almehmadi SJ, Alfi AA, Abumelha HM, Mersal GAM, El-Metwaly N. Preparation of multifunctional long-persistent photoluminescence cellulose fibres. LUMINESCENCE 2021; 36:1781-1792. [PMID: 34309162 DOI: 10.1002/bio.4123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022]
Abstract
Simple preparation of flame-retardant, photoluminescent, and superhydrophobic smart nanocomposite coating was developed and applied onto cotton fibres using the simple pad-dry-cure technique. This novel strategy involved the immobilization of rare-earth-doped aluminium strontium oxide (ASO; SrAl2 O4 :Eu+2 ,Dy+3 ) nanoparticles, environmentally friendly room temperature vulcanizing silicone rubber (RTV) and environmentally friendly Exolet AP422 (Ex). The fabrics were also able to produce a char film in the fire-resistant assessment, providing fibres with a self-extinguishing characteristic. Furthermore, the fire-retardant performance of the coated cotton samples remained resistant to washing over 35 laundry cycles. The superhydrophobicity of the treated fabrics was monitored to improve by increasing the photoluminescent phosphor nanoparticles. The produced transparent photoluminescent film displayed an absorption at 360 nm and an emission at 526 nm. The photoluminescent fabrics were observed to generate different colorimetric shades, including white, green-yellow and bright white as monitored by Commission Internationale de l'Éclairage laboratory colorimetric coordinates. Slow emissions were detected for the treated cotton fabrics as monitored by emission, ultraviolet-visible light absorption, lifetime, and decay time spectral profiles to indicate glow in the dark phosphorescence effect. Both comfort and mechanical properties of the coated fibres were evaluated by measuring their bending length and air permeability.
Collapse
Affiliation(s)
- Ahmed Hameed
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Enas Aljuhani
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Tahani M Bawazeer
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Samar J Almehmadi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Hana M Abumelha
- Department of Chemistry, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, Saudi Arabia
| | - Nashwa El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah, Saudi Arabia.,Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Egypt
| |
Collapse
|
10
|
Khattab TA, Tolba E, Gaffer H, Kamel S. Development of Electrospun Nanofibrous-Walled Tubes for Potential Production of Photoluminescent Endoscopes. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01519] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Emad Tolba
- Polymers and Pigments Department, National Research Centre, Cairo 12622, Egypt
| | - Hatem Gaffer
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Samir Kamel
- Cellulose and Papers Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
11
|
Yao Y, Zhou D, Shen Y, Wu H, Wang H. Highly transparent, writable and photoluminescent foldable polymer film: When fluorescent dyes or pigments join cellulose-based microgel. Carbohydr Polym 2021; 263:117977. [PMID: 33858574 DOI: 10.1016/j.carbpol.2021.117977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/28/2022]
Abstract
We prepared a self-dispersed cellulose-based microgel via chemically bonding hydrophilic gelatin peptide chain onto cellulose glucose chain. Following, a variety of highly transparent, foldable, and writable photoluminescent polymer films was obtained through loading organic dyes and inorganic pigments onto cellulose-based microgel matrix, respectively. Benefiting from the coupling sites and network effect of microgel as well as the abundant hydroxyl, amino, and imino groups in its structure, the microgel containing organic dyes and inorganic pigments exhibit good dispersion and stability, and the resultant photoluminescent films emit bright yellow, orange, yellow-green, and blue-green fluorescence under UV light, respectively, especially the cellulose-based microgel stabilized inorganic alkaline earth aluminate hybrids exhibit continuous luminescence for a long time in the dark. Compared with the existing regenerated cellulose or CNCs-based fluorescent films, the cellulose-based microgel fluorescent films present higher transmittance and good biodegradability. This study can bring new ideas for the development of flexible luminescent devices.
Collapse
Affiliation(s)
- Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an, 710048, Shaanxi, China.
| | - Dan Zhou
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an, 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an, 710048, Shaanxi, China.
| | - Hongru Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, 710021, China
| |
Collapse
|
12
|
Al-Qahtani S, Aljuhani E, Felaly R, Alkhamis K, Alkabli J, Munshi A, El-Metwaly N. Development of Photoluminescent Translucent Wood toward Photochromic Smart Window Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01603] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Salhah Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Enas Aljuhani
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Rasha Felaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Kholood Alkhamis
- Department of Chemistry, College of Science, University of Tabuk, Tabuk 47711, Saudi Arabia
| | - Jafar Alkabli
- Department of Chemistry, College of Science and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Alaa Munshi
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa El-Metwaly
- Department of Chemistry, Faculty of Applied Science, Umm-Al-Qura University, Makkah 24230, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Abumelha HM. Simple production of photoluminescent polyester coating using lanthanide‐doped pigment. LUMINESCENCE 2021; 36:1024-1031. [DOI: 10.1002/bio.4030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Hanna M. Abumelha
- Chemistry Department, Faculty of Science Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| |
Collapse
|
14
|
Alzahrani HK, Munshi AM, Aldawsari AM, Keshk AA, Asghar BH, Osman HE, Khalifa ME, El‐Metwaly NM. Development of photoluminescent, superhydrophobic, and electrically conductive cotton fibres. LUMINESCENCE 2021; 36:964-976. [DOI: 10.1002/bio.4024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Hanan K. Alzahrani
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Alaa M. Munshi
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Afrah M. Aldawsari
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Petrochemical Research Institute King Abdulaziz City for Science and Technology P. O. Box 6086 Riyadh Saudi Arabia
| | - Ali A. Keshk
- Department of Chemistry, College of Science University of Tabuk Saudi Arabia
| | - Basim H. Asghar
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Hanan E. Osman
- Department of Biology, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
| | - Mohamed E. Khalifa
- Department of Chemistry, College of Science Taif University P.O. Box 11099 Taif Saudi Arabia
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm‐Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science Mansoura University El‐Gomhoria Street Egypt
| |
Collapse
|
15
|
Abdelhameed MM, Attia YA, Abdelrahman MS, Khattab TA. Photochromic and fluorescent ink using photoluminescent strontium aluminate pigment and screen printing towards anticounterfeiting documents. LUMINESCENCE 2020; 36:865-874. [DOI: 10.1002/bio.3987] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Marwa M. Abdelhameed
- Department of Laser in Meteorology, Photochemistry & Agriculture, National Institute of Laser Enhanced Sciences Cairo University Giza Egypt
| | - Yasser A. Attia
- Department of Laser in Meteorology, Photochemistry & Agriculture, National Institute of Laser Enhanced Sciences Cairo University Giza Egypt
| | - Meram S. Abdelrahman
- Dyeing, Printing and Auxiliaries Department, National Research Centre Cairo Egypt
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre Cairo Egypt
| |
Collapse
|
16
|
Rahman H. Analytical Applications of Permanganate as an Oxidant in the Determination of Pharmaceuticals Using Chemiluminescence and Spectrophotometry: A Review. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190617103833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Potassium permanganate is a green and versatile industrial oxidizing agent.
Due to its high oxidizing ability, it has received considerable attention and has been extensively used
for many years for the synthesis, identification, and determination of inorganic and organic compounds.
Objective:
Potassium permanganate is one of the most applicable oxidants, which has been applied in
a number of processes in several industries. Furthermore, it has been widely used in analytical pharmacy
to develop analytical methods for pharmaceutically active compounds using chemiluminescence
and spectrophotometric techniques.
Results:
This review covers the importance of potassium permanganate over other common oxidants
used in pharmaceuticals and reported its extensive use and analytical applications using direct, indirect
and kinetic spectrophotometric methods in different pharmaceutical formulations and biological
samples. Chemiluminescent applications of potassium permanganate in the analyses of pharmaceuticals
using flow and sequential injection techniques are also discussed.
Conclusion:
This review summarizes the extensive use of potassium permanganate as a chromogenic
and chemiluminescent reagent in the analyses of pharmaceutically active compounds to develop
spectrophotometric and chemiluminescence methods since 2000.
Collapse
Affiliation(s)
- Habibur Rahman
- Department of General Studies, Jubail Industrial College, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
17
|
Kamel S, A. Khattab T. Recent Advances in Cellulose-Based Biosensors for Medical Diagnosis. BIOSENSORS 2020; 10:E67. [PMID: 32560377 PMCID: PMC7345568 DOI: 10.3390/bios10060067] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Cellulose has attracted much interest, particularly in medical applications such as advanced biosensing devices. Cellulose could provide biosensors with enhanced biocompatibility, biodegradability and non-toxicity, which could be useful for biosensors. Thus, they play a significant role in environmental monitoring, medical diagnostic tools, forensic science, and foodstuff processing safety applications. This review summarizes the recent developments in cellulose-based biosensors targeting the molecular design principles toward medical detection purposes. The recognition/detection mechanisms of cellulose-based biosensors demonstrate two major classes of measurable signal generation, including optical and electrochemical cellulosic biosensors. As a result of their simplicity, high sensitivity, and low cost, cellulose-based optical biosensors are particularly of great interest for including label-free and label-driven (fluorescent and colorimetric) biosensors. There have been numerous types of cellulose substrates employed in biosensors, including several cellulose derivatives, nano-cellulose, bacterial cellulose, paper, gauzes, and hydrogels. These kinds of cellulose-based biosensors were discussed according to their preparation procedures and detection principle. Cellulose and its derivatives with their distinctive chemical structure have demonstrated to be versatile materials, affording a high-quality platform for accomplishing the immobilization process of biologically active molecules into biosensors. Cellulose-based biosensors exhibit a variety of desirable characteristics, such as sensitivity, accuracy, convenience, quick response, and low-cost. For instance, cellulose paper-based biosensors are characterized as being low-cost and easy to operate, while nano-cellulose biosensors are characterized as having a good dispersion, high absorbance capacity, and large surface area. Cellulose and its derivatives have been promising materials in biosensors which could be employed to monitor various bio-molecules, such as urea, glucose, cell, amino acid, protein, lactate, hydroquinone, gene, and cholesterol. The future interest will focus on the design and construction of multifunctional, miniaturized, low-cost, environmentally friendly, and integrated biosensors. Thus, the production of cellulose-based biosensors is very important.
Collapse
Affiliation(s)
- Samir Kamel
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt;
| | - Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
18
|
Adsorption and solidification of peppermint oil on microcrystalline cellulose surface: An experimental and DFT study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abdelrahman MS, Nassar SH, Mashaly H, Mahmoud S, Maamoun D, Khattab TA. Polymerization products of lactic acid as synthetic thickening agents for textile printing. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Khattab TA, Abdelrahman MS, Rehan M. Textile dyeing industry: environmental impacts and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3803-3818. [PMID: 31838699 DOI: 10.1007/s11356-019-07137-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Color is a major attraction component of any fabric regardless of how admirable its constitution. Industrial production and utilization of synthetic dyestuffs for textile dyeing have consequently become a gigantic industry today. Synthetic dyestuffs have introduced a broad range of colorfastness and bright hues. Nonetheless, their toxic character has become a reason of serious concern to the environment. Usage of synthetic dyestuffs has adverse impacts on all forms of life. Existence of naphthol, vat dyestuffs, nitrates, acetic acid, soaping chemicals, enzymatic substrates, chromium-based materials, and heavy metals as well as other dyeing auxiliaries, makes the textile dyeing water effluent extremely toxic. Other hazardous chemicals include formaldehyde-based color fixing auxiliaries, chlorine-based stain removers, hydrocarbon-based softeners, and other non-biodegradable dyeing auxiliaries. The colloidal material existing alongside commercial colorants and oily froth raises the turbidity resulting in bad appearance and unpleasant odor of water. Furthermore, such turbidity will block the diffusion of sunlight required for the process of photosynthesis which in turn is interfering with marine life. This effluent may also result in clogging the pores of the soil leading to loss of soil productivity. Therefore, it has been critical for innovations, environmentally friendly remediation technologies, and alternative eco-systems to be explored for textile dyeing industry. Different eco-systems have been explored such as biocolors, natural mordants, and supercritical carbon-dioxide assisted waterless dyeing. Herein, we explore the different types of dyeing processes, water consumption, pollution, treatment, and exploration of eco-systems in textile dyeing industry.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| | - Meram S Abdelrahman
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mohamed Rehan
- Textile Industries Research Division, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
21
|
Studies of Polylactic Acid and Metal Oxide Nanoparticles-Based Composites for Multifunctional Textile Prints. COATINGS 2020. [DOI: 10.3390/coatings10010058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel approach toward the production of multifunctional printed technical textiles is reported. Three different metal oxides nanoparticles including titanium dioxide, magnesium oxide, and zinc oxide were prepared and characterized. Both natural wool and synthetic acrylic fibers were pretreated with the prepared metal oxide nanoparticles followed by printing using polylactic acid based paste containing acid or basic dyestuffs. Another route was applied via post-treatment of the targeted fabrics with the metal oxide nanoparticles after running the printing process. The color strength (K/S) and colorfastness properties of pretreated and post-treated printed fabrics were evaluated and compared with untreated printed fabrics. The presence of nanoparticles on a fabric surface during the coating process was found to significantly increase the color strength value of the coated textile substrates. The increased K/S value depended mainly on the nature and concentration of the applied metal oxide, as well as the nature of colorant and fabric. In addition, the applied metal oxide nanoparticles imparted the printed fabrics with good antibacterial activity, high ultraviolet protection, photocatalytic self-cleaning, and improved colorfastness properties. Those results suggest that the applied metal oxide-based nanoparticles could introduce ideal multifunctional prints for garments.
Collapse
|
22
|
Khattab TA, Abd El‐Aziz M, Abdelrahman MS, El‐Zawahry M, Kamel S. Development of long‐persistent photoluminescent epoxy resin immobilized with europium (II)‐doped strontium aluminate. LUMINESCENCE 2019; 35:478-485. [DOI: 10.1002/bio.3752] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Tawfik A. Khattab
- Dyeing, Printing and Auxiliaries DepartmentNational Research Centre Giza Egypt
| | | | | | - Manal El‐Zawahry
- Dyeing, Printing and Auxiliaries DepartmentNational Research Centre Giza Egypt
| | - Samir Kamel
- Cellulose & Paper DepartmentNational Research Centre Giza Egypt
| |
Collapse
|
23
|
Khattab TA, Fouda MMG, Abdelrahman MS, Othman SI, Bin-Jumah M, Alqaraawi MA, Al Fassam H, Allam AA. Development of Illuminant Glow-in-the-Dark Cotton Fabric Coated by Luminescent Composite with Antimicrobial Activity and Ultraviolet Protection. J Fluoresc 2019; 29:703-710. [DOI: 10.1007/s10895-019-02384-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023]
|
24
|
Khattab TA, Dacrory S, Abou-Yousef H, Kamel S. Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydr Polym 2019; 210:196-203. [DOI: 10.1016/j.carbpol.2019.01.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022]
|
25
|
|
26
|
Dual-emitting film with cellulose nanocrystal-assisted carbon dots grafted SrAl2O4, Eu2+, Dy3+ phosphors for temperature sensing. Carbohydr Polym 2019; 206:767-777. [DOI: 10.1016/j.carbpol.2018.11.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/23/2018] [Accepted: 11/10/2018] [Indexed: 11/17/2022]
|
27
|
Selective “Turn-On” Fluorescent Sensor for Cyanide in Aqueous Environment and Test Strips. J Fluoresc 2019; 29:1-8. [DOI: 10.1007/s10895-018-2334-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
|
28
|
|