1
|
Gielens D, De Schepper C, Langenaeken N, Galant A, Courtin C. A global set of barley varieties shows a high diversity in starch structural properties and related gelatinisation characteristics. Heliyon 2024; 10:e29662. [PMID: 38694124 PMCID: PMC11058286 DOI: 10.1016/j.heliyon.2024.e29662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024] Open
Abstract
The gelatinisation temperature and bimodal granule size distribution of barley starch are important characteristics regarding resource efficiency and product quality in the brewing industry. In this work, the diversity in starch amylose content and granule proportions in a set of modern barley varieties (N = 23) was investigated and correlated with their starch gelatinisation behaviour. Milled barley samples had peak starch gelatinisation temperatures ranging from 60.1 to 66.5 °C. Upon separating the barley starch from the non-starch compounds, sample-dependent decreases in starch gelatinisation temperatures were observed, indicating the importance of differences in barley composition. The peak gelatinisation temperatures of milled barley and isolated barley starches were strongly correlated (r = 0.96), indicating that the behaviour of the starch population is strongly reflected in the measurements performed on milled barley. Therefore, we investigated whether amylose content or starch granule size distribution could predict the gelatinisation behaviour of the starches. Broad ranges in the small starch granule volumes (13.9-32.0 v/v%) and amylose contents (18.2-30.7 w/w%) of the barley starches were observed. For the barley samples collected in the north of the USA (N = 8), the small starch granule volumes correlated positively with the peak gelatinisation temperatures of barley starches (r = 0.90, p < 0.01). The considerable variation in starch properties described in this work highlights that, besides starch content, starch gelatinisation temperature or granule size distribution might provide brewers with useful information to optimise resource efficiency.
Collapse
Affiliation(s)
- D.R.S. Gielens
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - C.F. De Schepper
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - N.A. Langenaeken
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | - A. Galant
- Anheuser-Busch InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium
| | - C.M. Courtin
- KU Leuven, Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| |
Collapse
|
2
|
Martusevice P, Li X, Hengel MJ, Wang SC, Fox GP. A Review of N-Heterocycles: Mousy Off-Flavor in Sour Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7618-7628. [PMID: 38538519 DOI: 10.1021/acs.jafc.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/11/2024]
Abstract
Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.
Collapse
Affiliation(s)
- Paulina Martusevice
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas 58344, Lithuania
- Botanical Garden, Vytautas Magnus University, Kaunas 44248, Lithuania
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Matt J Hengel
- Department of Environmental Toxicology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Glen P Fox
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
3
|
Park J, Chung HJ, Park HY, Park HJ, Oh SK. Comparative analysis of malt quality and starch characteristics of three South Korean barley cultivars. Food Sci Biotechnol 2024; 33:1135-1145. [PMID: 38440675 PMCID: PMC10908982 DOI: 10.1007/s10068-023-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 03/06/2024] Open
Abstract
In this study, malt was produced in pilot-scale facilities and conditioned using three barley (Hordeum vulgare L.) cultivars in South Korea (Heugho, Hopum, and Kwangmaeg). Quality and starch characteristics were compared. The starch content was considerably reduced in all malts. Coleoptile elongation was higher in Heugho (HHM; 85.7% ± 12.6%) and Hopum (HPM; 83.9% ± 10.7%) than in Kwangmaeg (KMM; 78.1% ± 9.9%) malt. Malt yield ranged from 81.8 to 84.9%, with no significant difference. All samples presented type A crystallinity, and granules showed discoid shapes. After malting, the mono- and di-saccharide contents (not including sucrose) were increased. The fermentable sugar level was the highest in HHM, whereas non-fermentable sugar was the highest in KMM. These results suggest that HPM enables efficient scarification based on the rapid degradation of starch, while Heugho barley and HHM have a high potential for beer and malt production, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01419-6.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429 Republic of Korea
| | - Hyun-Jin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), 251 Chungyel-ro, Chuncheon, Gangwon 24219 Republic of Korea
| |
Collapse
|
4
|
Moreno Ravelo RC, Gastl M, Becker T. Characterization of molar mass and conformation of relevant (non-)starch polysaccharides in cereal-based beverages. Int J Biol Macromol 2024; 261:129942. [PMID: 38311131 DOI: 10.1016/j.ijbiomac.2024.129942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arabinoxylans, β-glucans, and dextrins influence the brewing industry's filtration process and product quality. Despite their relevance, only a maximum concentration of β-glucans is recommended. Nevertheless, filtration problems are still present, indicating that although the chemical concentration is essential, other parameters should be investigated. Molar mass and conformation are important polymer physical characteristics often neglected in this industry. Therefore, this research proposes an approach to physically characterize enzymatically isolated beer polysaccharides by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detector. Based on the obtained molar masses, root-mean-square radius (rrms from MALS), and hydrodynamic radius (rhyd), conformational properties such as apparent density (ρapp) and rrms/rhyd can be calculated based on their molar mass and size. Consequently, the ρapp and rrms/rhyd behavior hints at the different structures within each polysaccharide. The rrms/rhyd 1.2 and high ρapp values on low molar mass dextrins (1-2·105 g/mol) indicate branches, while aggregated structures at high molar masses on arabinoxylans and β-glucans (2·105 -6·106 g/mol) are due to an increase of ρapp and a rrms/rhyd (0.6-1). This methodology provides a new perspective to analyze starch and non-starch polysaccharides in cereal-based beverages since different physical characteristics could influence beer's filtration and sensory characteristics.
Collapse
Affiliation(s)
- Rolando César Moreno Ravelo
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Martina Gastl
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| | - Thomas Becker
- Technical University of Munich, TUM School of Life Sciences, Chair of Brewing and Beverage Technology, Group Raw Material Based Brewing and Beverage Technology, Weihenstephaner Steig 20, 85354 Freising, Germany.
| |
Collapse
|
5
|
Fox GP, Bettenhausen HM. Variation in quality of grains used in malting and brewing. FRONTIERS IN PLANT SCIENCE 2023; 14:1172028. [PMID: 37377804 PMCID: PMC10291334 DOI: 10.3389/fpls.2023.1172028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.
Collapse
Affiliation(s)
- Glen P. Fox
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Harmonie M. Bettenhausen
- Center for Craft Food and Beverage, Hartwick College Center for Craft Food and Beverage, Oneonta, NY, United States
| |
Collapse
|
6
|
Li M, Cai K, Zheng N, Zhang G, Ye L. Identification of the Key Transcription Factors Regulating the Expression of the Genes Associated with Barley Malt Quality during Malting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8241-8251. [PMID: 37192323 DOI: 10.1021/acs.jafc.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/18/2023]
Abstract
Barley malt is produced through a malting process; it begins with steeping followed by germination and kilning, in which dramatic changes happen for a large number of physiological and biochemical traits in barley seeds. The objectives of this study were to comprehensively investigate the phenotypic changes during malting, and identify the key regulators that modulate the expression of genes associated with malt quality traits. The results showed that there was a significant positive correlation between gibberellic acid (GA) content and the activities of some hydrolytic enzymes, including α-amylases, β-amylases, and limit dextrinase (LD), and a significant negative correlation between GA and β-glucan content. Starch content had little change, but starch granules were pitted severely during malting. Weighted gene coexpression analysis (WGCNA) identified the genes associated with the greatest changes of the examined malt traits during malting. The correlation analysis and protein-protein interaction (PPI) analysis detected several key transcriptional factor (TF) regulating genes associated with malt quality. These genes and TFs regulating malting traits are potentially useful in barley breeding for malt quality improvement.
Collapse
Affiliation(s)
- Mengdi Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310058, PR China
| | - Nannan Zheng
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| | - Lingzhen Ye
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China
| |
Collapse
|
7
|
Xu N, Ma F, Yin H, Yu W, Zhang C, Zhan S, Huang T. Impacts of malt protein removal on yeast fermentation efficiency. J Texture Stud 2023; 54:146-152. [PMID: 36175379 DOI: 10.1111/jtxs.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
The effects of malt protein removal by Neutrase using Canadian and French commercial malts (Malt 1 and Malt 2) on mashing efficiency, and production of violate compounds during fermentation were determined using high performance liquid chromatography (HPLC), headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis (HS-SMPE-GC-MS). HPLC results showed that for Malt 1 containing lower free- and total-β-amylase but higher α-amylase enzyme activity, Neutrase significantly increased the content of maltose, glucose and maltotriose, whereas for Malt 2, only glucose content increased. For Malt 1, the increased glucose/maltose ratio after Neutrase addition led to higher ethanol concentration than that with no Neutrase (4.06% vs. 2.09%), whereas for Malt 2, no significant differences were observed (2.92% vs. 3.09%). HS-SPME-GC-MS showed that for Malt 1 and Malt 2, Neutrase not influenced the violate compounds composition, whereas reduced their contents. This suggests that malt protein removal by Neutrase impairs the production of volatile compounds.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Fuhao Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou City, Guangdong, China
| | - Cui Zhang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Noskova E, Lisitsyn E, Shchennikova I, Svetlakova E. Top-dressing treatment of spring barley to modify its quality. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
New barley products can be developed by modifying the content of bioactive components in the grain through breeding, as well as improving its quality at lower fertilizer costs. We aimed to study the effects of the genotype, growth conditions, and top-dressing application of nitrogen and organo-mineral fertilizers on the chemical composition of barley grain.
The barley varieties Novichok, Rodnik Prikamya, and Pamyaty Rodinoy were grown under normal (2020) and dry (2021) field conditions. The plants were top-dressed with mineral (CAS; SpetsKhimAgro, Kirovo-Chepetsk, Russia) or organo-mineral (Amino Start and Alfastim; Polydon® Agro, Moscow, Russia) fertilizers in the tillering or heading phases. The contents of protein, starch, fat, and crude fiber in the grain were analyzed with an INFRAMATIC 8620 instrument (Perten Instruments, Stockholm, Sweden).
The CAS fertilizer reduced protein, fat, and fiber by 4.5–8.3% (Novichok) during the drought and increased starch by 2.1% (Novichok), fiber by 14.2% (Rodnik Prikamya), and fat by 18.9% (Pamyaty Rodinoy) under normal humidity. Amino Start applied under normal conditions increased starch by 2.9% and reduced protein and fat by 7.8–8.9% in Rodnik Prikamya, as well as increased protein and fat by 14.4 and 6.3%, respectively, but reduced starch by 5.1% in Pamyaty Rodinoy. Alfastim applied under normal conditions reduced the content of protein by 10.7% (Rodnik Prikamya), but increased it by 3.6–7.2% in the other cultivars. It also increased fiber by 22.8% in Rodnik Prikamya, but decreased it by 18.6% in Pamyaty Rodinoy. Finally, this fertilizer decreased fat by 12.7% in Rodnik Prikamya, but increased it by 9.8% in Pamyaty Rodinoy. In the drought, the fertilizers Alfastim and Amino Start increased the protein content by 5.2–12.2% in Rodnik Prikamya and Pamyaty Rodinoy.
Top-dressing barley plants with mineral or organo-mineral fertilizers can modify the grain composition (up to 10.4% of fiber, 3.6% of starch, and 7.5% of protein and fat), depending on the consumer’s requirements.
Collapse
Affiliation(s)
- Evgenia Noskova
- N.V. Rudnitsky Federal Agricultural Research Center of the North-East
| | - Eugene Lisitsyn
- N.V. Rudnitsky Federal Agricultural Research Center of the North-East
| | | | - Elena Svetlakova
- N.V. Rudnitsky Federal Agricultural Research Center of the North-East
| |
Collapse
|
9
|
Zhong Y, Herburger K, Xu J, Kirkensgaard JJK, Khakimov B, Hansen AR, Blennow A. Ethanol pretreatment increases the efficiency of maltogenic α-amylase and branching enzyme to modify the structure of granular native maize starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
10
|
Yin Tan W, Li M, Devkota L, Attenborough E, Dhital S. Mashing performance as a function of malt particle size in beer production. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34937436 DOI: 10.1080/10408398.2021.2018673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Significant innovations have occurred over the past 50 years in the malting and brewing industries, focused on optimization of the beer mashing, boiling and fermentation processes. One of the challenges faced in beer brewing has been in the malting process to obtain the desired malt and wort quality to produce high-quality beer products. The hydrolytic enzymes produced during grain germination are mostly entrapped inside the cellular matrices of the grain. The intra-grain diffusion of enzymes for in-situ hydrolysis, as well as diffusion of enzymes to wort, depends upon the malt size and malt size fractions obtained after milling. This review investigates the relationship between varying barley grain particle size distribution and the efficiency of the malting and mashing processes. Recommended ideal particle size of barley grain before and after milling are proposed based on the review of existing literature. Each brewing batch of grains with a proportion of >80% plump grains (>2.5 mm in size) is suggested to be the optimal size before milling, whereas the optimum grain particle size after milling ranged between 0.25 and 0.5 mm. The current review will summarize the theoretical aspects for malt milling and the particle size characteristics for optimizing the brewing process.
Collapse
Affiliation(s)
- Wan Yin Tan
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS, Beijing, China.,Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Edward Attenborough
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Hu S, Deng H, Liu R, Yu W. Molecular brewing: The molecular structural effects of starch adjuncts on barley malt brewing performances. Int J Biol Macromol 2021; 193:661-671. [PMID: 34717974 DOI: 10.1016/j.ijbiomac.2021.10.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
In this study, the effects of starch adjuncts with different fine molecular structures obtained by size-exclusion chromatography on the mashing and fermentation efficiencies of barley malts were investigated. Following fermentation, violate compounds of freshly-fermented beer samples were determined by headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis (HS-SMPE-GC-MS). High performance liquid chromatography results showed that depending on their molecular structures, starch adjuncts addition significantly increased wort maltose and maltotriose content, whereas reducing the glucose content and thus both the ratios of glucose and maltotriose to that of the maltose. The whole fermentation by dry beer yeast was finished within the first 48 h and reached to equilibrium for the rest 72 h, represented by the stable soluble protein content. Results also showed that the addition of starch adjuncts resulted into increased alcohol content, which was mainly attributed to the altered glucose/maltose ratio. The HS-SPME-GC-MS results showed that whether or not with starch adjuncts addition, the composition of violate compounds were not significantly influenced, their content, on the contrary, were altered, represented by different peak heights. This study provides important information concerning the molecular effects of starch adjuncts on brewing performances of barley malts, and also provides a new pathway for choosing suitable types of adjuncts for making beer with better quality.
Collapse
Affiliation(s)
- Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao, China
| | - Hutai Deng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Renhan Liu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| |
Collapse
|
12
|
|
13
|
Bahmani M, O’Lone CE, Juhász A, Nye-Wood M, Dunn H, Edwards IB, Colgrave ML. Application of Mass Spectrometry-Based Proteomics to Barley Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8591-8609. [PMID: 34319719 PMCID: PMC8389776 DOI: 10.1021/acs.jafc.1c01871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/09/2023]
Abstract
Barley (Hordeum vulgare) is the fourth most cultivated crop in the world in terms of production volume, and it is also the most important raw material of the malting and brewing industries. Barley belongs to the grass (Poaceae) family and plays an important role in food security and food safety for both humans and livestock. With the global population set to reach 9.7 billion by 2050, but with less available and/or suitable land for agriculture, the use of biotechnology tools in breeding programs are of considerable importance in the quest to meet the growing food gap. Proteomics as a member of the "omics" technologies has become popular for the investigation of proteins in cereal crops and particularly barley and its related products such as malt and beer. This technology has been applied to study how proteins in barley respond to adverse environmental conditions including abiotic and/or biotic stresses, how they are impacted during food processing including malting and brewing, and the presence of proteins implicated in celiac disease. Moreover, proteomics can be used in the future to inform breeding programs that aim to enhance the nutritional value and broaden the application of this crop in new food and beverage products. Mass spectrometry analysis is a valuable tool that, along with genomics and transcriptomics, can inform plant breeding strategies that aim to produce superior barley varieties. In this review, recent studies employing both qualitative and quantitative mass spectrometry approaches are explored with a focus on their application in cultivation, manufacturing, processing, quality, and the safety of barley and its related products.
Collapse
Affiliation(s)
- Mahya Bahmani
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Clare E. O’Lone
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Angéla Juhász
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Mitchell Nye-Wood
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Hugh Dunn
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
| | - Ian B. Edwards
- Edstar
Genetics Pty Ltd, SABC - Loneragan Building, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Michelle L. Colgrave
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Edith Cowan University, School of Science, 270 Joondalup
Drive, Joondalup, Western
Australia 6027, Australia
- CSIRO
Agriculture and Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
- Phone: +61-7-3214-2697. . Fax: +61-7-3214-2900
| |
Collapse
|
14
|
Rani H, Bhardwaj RD. Quality attributes for barley malt: "The backbone of beer". J Food Sci 2021; 86:3322-3340. [PMID: 34287897 DOI: 10.1111/1750-3841.15858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Malting is the process of preparing barley for brewing through partial germination followed by drying. This process softens the grain cell wall and stimulates the production of diastatic enzymes, which convert starch into malt extract. The suitability of a barley grain for malt production depends upon a large number of quality parameters that are crucial for the identification and release of high-quality malt varieties. Maintaining tight control of these quality attributes is essential to ensure high processing efficiency and final product quality in brewery and malt house. Therefore, we have summarized the basic malting process and various physiological and biochemical quality parameters that are desirable for better malt quality. This study may provide an understanding of the process, problems faced, and opportunities to maltsters and researchers to improve the malt efficiency by altering the malting process or malt varieties.
Collapse
Affiliation(s)
- Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rachana D Bhardwaj
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
15
|
Li E, Yang C, Wang J, Sun A, Lv P, Li C. Leached starch content and molecular size during sorghum steaming for baijiu production is not determined by starch fine molecular structures. Int J Biol Macromol 2021; 184:50-56. [PMID: 34116090 DOI: 10.1016/j.ijbiomac.2021.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
Sorghum steaming properties are important for both flavor and brewing efficiency of baijiu (Chinese alcohol liquor). However, it is currently unclear with respects to structural factors that affect sorghum steaming properties during baijiu production. In this study, starch fine molecular structures were characterized by size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis for 8 sorghum varieties used in baijiu production. Starch crystalline structures and ordering of double helices were characterized by the X-ray diffraction and differential scanning calorimetry. Results showed that only small differences were observed for starch molecular size distributions and chain-length distributions in the raw sorghum flour. Of significance, the leached starch content and molecular size during steaming was very different among these sorghum varieties. Furthermore, Spearman correlation analysis showed that there was no significant correlation between starch fine structural parameters with the leached starch content. On the other hand, the correlation analysis showed that leached starch molecular size was negatively correlated with starch crystallinity, while positively correlated with the onset and peak gelatinization temperatures. It is concluded that the sorghum steaming property is controlled by the starch crystalline structures instead of starch fine molecular structures. These results could help the baijiu industry to produce baijiu with more desirable properties.
Collapse
Affiliation(s)
- Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chuantian Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Andong Sun
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agricultural & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
16
|
Prystupa P, Peton A, Pagano E, Ferraris G, Ventimiglia L, Loewy T, Gómez F, Gutierrez‐Boem FH. Grain hordein content and malt quality as affected by foliar nitrogen fertilisation at heading. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pablo Prystupa
- Facultad de Agronomía, Cátedra de Fertilidad y Fertilizantes Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales‐INBA, Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
| | - Andrés Peton
- Facultad de Agronomía, Cátedra de Bioquímica Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
| | - Eduardo Pagano
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales‐INBA, Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
- Facultad de Agronomía, Cátedra de Bioquímica Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
| | - Gustavo Ferraris
- EEA Pergamino INTA Ruta 32 km 4.5 Pergamino Buenos Aires Argentina
| | - Luis Ventimiglia
- UEEA Nueve de Julio INTA Av. Bartolomé, Mitre 857 Nueve De Julio Argentina
| | - Tomás Loewy
- EEA Bordenave INTA Ruta Provincial 76 km 36.5 Bordenave Argentina
| | - Federico Gómez
- Facultad de Agronomía, Cátedra de Fertilidad y Fertilizantes Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales‐INBA, Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
| | - Flavio H. Gutierrez‐Boem
- Facultad de Agronomía, Cátedra de Fertilidad y Fertilizantes Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
- Consejo Nacional de investigaciones Científicas y Técnicas, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales‐INBA, Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 Buenos Aires Argentina
| |
Collapse
|
17
|
Osama SK, Kerr ED, Yousif AM, Phung TK, Kelly AM, Fox GP, Schulz BL. Proteomics reveals commitment to germination in barley seeds is marked by loss of stress response proteins and mobilisation of nutrient reservoirs. J Proteomics 2021; 242:104221. [PMID: 33866056 DOI: 10.1016/j.jprot.2021.104221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Germination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used Sequential Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We verified our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy. SIGNIFICANCE: Germination is critical to the reproduction and propagation of flowering plants, and in industrial malting. Dormancy, where seeds fail to germinate upon steeping, can result in inefficiencies in industrial malting. Our DIA/SWATH-MS proteomics analyses identified key changes during germination, including an initial loss of proteins involved in desiccation tolerance and germination inhibition, followed by decreases in lipid, protein and nutrient reservoir storage. These changes were consistent between laboratory and industrial malting scales, and therefore demonstrate the utility of laboratory-scale barley germination as a model system for industrial malt house processes. We also showed that dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, consistent with dormancy being an actively regulated state. Our results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy.
Collapse
Affiliation(s)
- Sarah K Osama
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Adel M Yousif
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Sandy Bay Campus, TAS, 7005, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia
| | - Alison M Kelly
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, Qld 4350, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Toowoomba, Qld 4350, Australia; Department of Food Science and Technology, University of California Davis, CA 95616, USA.
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
18
|
Starch hydrolysis during mashing: A study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase. Carbohydr Polym 2021; 255:117494. [PMID: 33436252 DOI: 10.1016/j.carbpol.2020.117494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Revised: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Hydrolysis of starch is key in several industrial processes, including brewing. Here, the activity and inactivation kinetics of amylases throughout barley malt mashing are investigated, as a prerequisite for rational optimisation of this process. Varietal differences were observed in the activity of α- and β-amylases as a function of temperature for six barley and malt varieties. These differences were not reflected in the resulting wort composition after mashing, using three isothermal phases of 30 min at 45 °C, 62 °C and 72 °C with intermediate heating by 1 °C/min. Thermal inactivation kinetics parameters determined for α- and β-amylases of an industrially relevant malt variety in a diluted system showed that enzymes were inactivated at lower temperatures than expected. The obtained kinetic parameters could predict α-amylase, but not β-amylase inactivation in real mashing conditions, suggesting that β-amylase stability is enhanced during mashing by components present or formed in the mash.
Collapse
|
19
|
Post-Anthesis Water-stressed Barley Maintains Grain Specific Weight Through Altered Grain Composition and Plant Architecture. PLANTS 2020; 9:plants9111564. [PMID: 33202786 PMCID: PMC7698198 DOI: 10.3390/plants9111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Specific weight (SW) is a long-established measure used as a malting quality specification in barley, with an increased SW thought to result in a higher malt output. Specific weight is a product of individual grain density as determined by grain composition and structure, and grain packing efficiency in a container as determined by grain dimensions. We investigated the effect of moderate but prolonged post-anthesis water stress on barley plant and grain development using pots of cultivars with a known range of SWs to explore how altering plant growth influence SW. Water stress was expected to influence these grain characteristics through decreased photosynthetic capacity. We demonstrated that SW was maintained under water stress conditions through compensatory mechanisms such as increased tiller mortality which preserved grain physical parameters on the main shoots. However, water stress significantly affected plant development by reducing not only ear number and yield, but also grain filling duration, plant biomass and ear length. Grain composition was also altered, with water-stressed plants having reduced carbon:nitrogen. Therefore, although SW can be conserved under water-stressed conditions, grain composition and plant development are altered, producing smaller harvests with higher grain nitrogen content. This would result in bulks of malting barley having different malt outputs despite having the same SW.
Collapse
|
20
|
Yu WW, Zhai HL, Xia GB, Tao KY, Li C, Yang XQ, Li LH. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
|
21
|
Zdaniewicz M, Pater A, Hrabia O, Duliński R, Cioch-Skoneczny M. Tritordeum malt: An innovative raw material for beer production. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
22
|
Li C, Hu Y, Huang T, Gong B, Yu WW. A combined action of amylose and amylopectin fine molecular structures in determining the starch pasting and retrogradation property. Int J Biol Macromol 2020; 164:2717-2725. [PMID: 32822732 DOI: 10.1016/j.ijbiomac.2020.08.123] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Starch fine molecular structures are of essentially important in determining its pasting and retrogradation properties. In this study, 10 different starches from various botanical sources were selected to investigate the combined action of amylose and amylopectin molecules in determining the starch physicochemical properties. Correlation between starch structural parameters with the pasting and retrogradation properties showed that amylose and amylopectin CLDs do not affect these properties in isolation. Such as, the amount of amylose long chains and amylopectin short chains are both positively correlated with the melting temperatures and enthalpy of retrograded starches. Furthermore, relatively longer amylose short to medium chains can result in higher trough and breakdown viscosity, while higher amount of amylopectin medium to long chains result in higher peak viscosity. The results help a better understanding of the importance of amylose and amylopectin fine molecular structures in determining starch functional properties.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, China
| | - Bo Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Wen-Wen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City, China.
| |
Collapse
|
23
|
Technological Assessment of Winter Cultivar of Common Wheat (Triticum aestivum L.) and Winter Barley (Hordeum vulgare L.) for Pale Malt Production. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2020. [DOI: 10.2478/aucft-2020-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The study was designed to assess technological quality of grains from two wheat cultivars (Elixer and Rockefeller), as well as one cultivar of winter (Joy) and one cultivar of spring barley (Irina), and to carry out the malting process at temperature of 15°C for 5 days. Malt analyses were carried out in accordance with the ECB Methods. The wheat malts were found with lower Kolbach index, and high viscosity was identified in wort obtained from wheat. The findings related to the wheat malts showed better quality parameters in Elixer variety compared to Rockefeller variety. Elixer wheat malt had higher diastatic power (427.03 WK) and lower extractivity (81.85%) compared to Joy barley malt (376.12 WK and 85.79%). Laboratory tests assessing the malts and wort showed that winter barley grain has high malting quality and can be used without modifications in the malting and mashing processes in brewing industry. It is necessary to conduct further research focusing on cultivation, agricultural techniques and technologies applied in wheat farming, in order to obtain cultivars which can be used to produce high quality malts.
Collapse
|
24
|
Tao K, Yu W, Prakash S, Gilbert RG. Investigating cooked rice textural properties by instrumental measurements. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
25
|
Li C, Wu A, Yu W, Hu Y, Li E, Zhang C, Liu Q. Parameterizing starch chain-length distributions for structure-property relations. Carbohydr Polym 2020; 241:116390. [PMID: 32507172 DOI: 10.1016/j.carbpol.2020.116390] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Understanding starch structure-property relationship is important for the development of new generation of starch-based foods with desirable functions. Recent developments of methodologies on the characterisation of starch molecular structures, especially how to parameterize the starch chain-length distribution (CLD) by few biologically meaningful parameters have brought new insights to explain starch physicochemical properties from molecular levels. Especially, it has shown that gelatinization temperatures are largely controlled by amylopectin short chains, while the retrogradation rate of starch molecules is controlled by amylose content, amylose short to medium chains, amylopectin external and internal chain length. Starch pasting and digestion properties are also controlled to a significant extent by its CLD. With extensive discussion of correlative and casual relations between starch CLD with its physicochemical properties, this review aims to establish a holistic starch structure-property relationship. It enables food producers to develop functional foods based on a precise understanding of starch structure-property relations.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200031, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Changquan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
26
|
Lekjing S, Venkatachalam K. Effects of germination time and kilning temperature on the malting characteristics, biochemical and structural properties of HomChaiya rice. RSC Adv 2020; 10:16254-16265. [PMID: 35498825 PMCID: PMC9052888 DOI: 10.1039/d0ra01165g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 01/30/2023] Open
Abstract
Effects of germination time (3, 5 and 7 days) and kilning temperature (40, 50 and 60 °C) on the malting characteristics, biochemical properties and structural properties of HomChaiya rice were examined. Malting potential in terms of germination rate and germination capacity increased as the germination period of rice was prolonged. Diastatic potential, hot water extract and malting loss of rice gradually increased with germination time and with kilning temperature; in contrast, malting yield and viscosity of the samples decreased. Germination time significantly increased the α-amylase activity, but β-amylase activities increased when kilned at different temperatures. Total starch decreased and reducing sugar increased in rice with prolonged germination, and furthermore, the kilning temperature significantly influenced these changes. Higher kilning temperature and prolonged germination period increased the protease activity in rice, and consequently, soluble protein and free amino acids also increased. Among the twelve identified amino acids in the HomChaiya rice, aspartic acid, glutamic acid, asparagine, serine, arginine, isoleucine, tyrosine, and phenylalanine increased with germination time and kilning temperature. FTIR results showed that increased germination time and kilning temperature unfolded the carbohydrates, which is consistent with the enzymatic (α- and β-amylase) activities. XRD results also found higher peak intensities for rice when germinated longer and kilned at a higher temperature. The crystallinity of malted rice decreased with germination time. Ultrastructural changes showed that starch granules are more vulnerable to enzymatic attack upon extended germination time and at higher kilning temperatures. Effects of germination time (3, 5 and 7 days) and kilning temperature (40, 50 and 60 °C) on the malting characteristics, biochemical properties and structural properties of HomChaiya rice were examined.![]()
Collapse
Affiliation(s)
- Somwang Lekjing
- Department of Food Technology, Faculty of Science and Industrial Technology, Prince of Songkla University (Surat Thani Campus) Makhamtia, Muang Surat Thani 84000 Thailand
| | - Karthikeyan Venkatachalam
- Department of Food Technology, Faculty of Science and Industrial Technology, Prince of Songkla University (Surat Thani Campus) Makhamtia, Muang Surat Thani 84000 Thailand
| |
Collapse
|
27
|
Yu W, Gilbert RG, Fox GP. Malt protein inhibition of β-amylase alters starch molecular structure during barley mashing. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023]
|
28
|
Balet S, Gous P, Fox G, Lloyd J, Manley M. Characterisation of starch quality from barley varieties grown in South Africa. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Balet
- Department of Food Science Stellenbosch University Private Bag X1 Matieland (Stellenbosch) 7602 South Africa
| | - Peter Gous
- Centre for Nutrition and Food Science Queensland Alliance for Agriculture and Food Sciences The University of Queensland Hartley Teakle Building Brisbane QLD 4072 Australia
| | - Glen Fox
- Department of Food Science Stellenbosch University Private Bag X1 Matieland (Stellenbosch) 7602 South Africa
- Centre for Nutrition and Food Science Queensland Alliance for Agriculture and Food Sciences The University of Queensland Hartley Teakle Building Brisbane QLD 4072 Australia
| | - James Lloyd
- Institute for Plant Biotechnology Department of Genetics Stellenbosch University Matieland Stellenbosch South Africa
| | - Marena Manley
- Department of Food Science Stellenbosch University Private Bag X1 Matieland (Stellenbosch) 7602 South Africa
| |
Collapse
|
29
|
Hoyle A, Brennan M, Jackson GE, Hoad S. Increased grain density of spring barley (Hordeum vulgare L.) is associated with an increase in grain nitrogen. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
30
|
Quek WP, Yu W, Tao K, Fox GP, Gilbert RG. Starch structure-property relations as a function of barley germination times. Int J Biol Macromol 2019; 136:1125-1132. [DOI: 10.1016/j.ijbiomac.2019.06.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2019] [Revised: 06/16/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
|
31
|
Quek WP, Yu W, Fox GP, Gilbert RG. Molecular structure-property relations controlling mashing performance of amylases as a function of barley grain size. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/amylase-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Abstract
In brewing, amylases are key enzymes in hydrolyzing barley starch to sugars, which are utilized in fermentation to produce ethanol. Starch fermentation depends on sugars produced by amylases and starch molecular structure, both of which vary with barley grain size. Grain size is a major industrial specification for selecting barley for brewing. An in-depth study is given of how enzyme activity and starch structure vary with grain size, the impact of these factors on fermentable sugar production, and the underlying mechanisms. Micro-malting and mashing experiments were based on commercial methodologies. Starch molecular structural parameters were obtained using size-exclusion chromatography, and fitted using biosynthesis-based models. Correlation analysis using the resulting parameters showed larger grain sizes contained fewer long amylopectin chains, higher amylase activities and soluble protein level. Medium grain sizes released most sugars during mashing, because of higher starch utilization from the action of amylases, and shorter amylose chains. As starch is the substrate for amylase-driven fermentable sugars production, measuring its structure should be a prime indication for mashing performance, and should be used as an industry specification when selecting barley grains for brewing.
Collapse
|
32
|
Abstract
Background: Achieving optimal fermentation is challenging when the variation within malt starch structure and enzyme activities are not part of the standard malting specifications. This study explores how the variation of starch and starch amylolytic enzymes in both malts and rice adjuncts affect the mashing and the subsequent yeast fermentation in the laboratory-scale production of beer. Results: The addition of rice adjuncts significantly increased the maltose content whilst reducing the glucose content during mashing. The maltotriose content, released during mashing, was significantly negatively correlated with the total amylose content (r = −0.64, p < 0.05), and significantly negatively correlated with the number of amylopectin longer chains (degree of polymerization 37–100) (r = −0.75, p < 0.01). During fermentation, while the content of maltotriose significantly and positively correlated with both the rate and amount of ethanol production (r = 0.70, p < 0.05; r = 0.70, p < 0.05, respectively), the content of soluble nitrogen in the wort was significantly and positively correlated with both the rate and the amount of ethanol production (r = 0.63, p< 0.05; r = 0.62, p < 0.05, respectively). The amount of amylopectin with longer chains was; however, significantly negatively correlated with the ethanol production (r = −0.06, p < 0.05). Small variations among the ethanol concentration and the rate of ethanol production during fermentation were found with the addition of different rice varieties. Conclusions: The effects of the rice adjuncts on the performance of fermentation depends on the properties of the malt, including the protein modification and malt enzyme activities. This study provides data to improve standard malt specifications in order for brewers to acquire more efficient fermentation, and includes useful molecular structural characterisation.
Collapse
|