1
|
Ithape D, Dalvi S, Srivastava AK. Chitosan-thiourea and their derivatives: Applications and action mechanisms for imparting drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154365. [PMID: 39383780 DOI: 10.1016/j.jplph.2024.154365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
The increasing abiotic stresses from changing global climatic conditions, including drought, extreme temperatures, salinity, storms, pollutants, and floods, impend crop cultivation and sustainability. To mitigate these effects, numerous synthetic and non-synthetic chemicals or plant growth regulators are in practice. Chitosan, a natural organic substance rich in nitrogen and carbon, and thiourea, a synthetic plant growth regulator containing sulfur and nitrogen, have garnered significant interest for their roles in enhancing plant stress tolerance. Despite extensive use, the precise mechanisms of their actions remain unclear. Towards this endeavor, the present review examines how chitosan and thiourea contribute to stress tolerance in crop plants, particularly under drought conditions, to improve production and sustainability. It also explores thiourea's potential as a hydrogen sulfide (H2S) donor and the possible applications of thiolated chitosan derivatives and chitosan-thiourea combinations, emphasizing their biological functions and benefits for sustainable agriculture.
Collapse
Affiliation(s)
- Dinesh Ithape
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India; Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sunil Dalvi
- Tissue Culture Section, Agri. Sci & Tech. Dept. Vasantdada Sugar Institute, Manjari(Bk), Pune, 412307, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha Atomic Research Center, Mumbai, 400094, India
| |
Collapse
|
2
|
Feng ZQ, Li T, Li XY, Luo LX, Li Z, Liu CL, Ge SF, Zhu ZL, Li YY, Jiang H, Jiang YM. Enhancement of Apple Stress Resistance via Proline Elevation by Sugar Substitutes. Int J Mol Sci 2024; 25:9548. [PMID: 39273495 PMCID: PMC11395137 DOI: 10.3390/ijms25179548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plants encounter numerous adversities during growth, necessitating the identification of common stress activators to bolster their resistance. However, the current understanding of these activators' mechanisms remains limited. This study identified three anti-stress activators applicable to apple trees, all of which elevate plant proline content to enhance resistance against various adversities. The results showed that the application of these sugar substitutes increased apple proline content by two to three times compared to the untreated group. Even at a lower concentration, these activators triggered plant stress resistance without compromising apple fruit quality. Therefore, these three sugar substitutes can be exogenously sprayed on apple trees to augment proline content and fortify stress resistance. Given their effectiveness and low production cost, these activators possess significant application value. Since they have been widely used in the food industry, they hold potential for broader application in plants, fostering apple industry development.
Collapse
Affiliation(s)
- Zi-Quan Feng
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Tong Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Xin-Yi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Long-Xin Luo
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chun-Ling Liu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shun-Feng Ge
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Zhan-Ling Zhu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Yuan Li
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Han Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuan-Mao Jiang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
3
|
Khatal M, Narute T, Sonawane R, Bhalerao V, Dalvi S. Combination of irradiated chitosan and microbial agent to reduce downy mildew on grapevine cv. Thompson seedless. Biopolymers 2024; 115:e23603. [PMID: 38888353 DOI: 10.1002/bip.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
Globally sustainable disease management ensuring high quality in grapes is in demand as it holds significant importance as a versatile fruit for consumption, winemaking, and production of various products such as grape juice, raisin, and grape-seed oil. The present paper reports a combination of nano-biotechnology as a promising strategy for enhancing plant health and fruit productivity in grapes combining Irradiated chitosan nanoparticles and bio-control agents. The Irradiated Chitosan with Bacillus subtilis and Trichoderma viridae and pesticides were evaluated for disease management. Percent disease index, percent disease control, and percent yield enhancement in Cymoxanil 8% + Mamcozeb 64% WP @ 0.2% treatment were as 17. 24%, 67.97% and 33.91% in 150 ppm Irradiated chitosan+B. subtilis were 19.83, 63.16, 30.41 and in Trichoderma 150 ppm Irradiated chitosan were 24.58, 54.33, and 27.40, respectively as compared to untreated crop with disease severity 53.84% PDI. Thus, irradiated chitosan and Bacillus subtilis elucidated a synergistic combination for residue-free efficient phytosanitary measures, which harnessed the strength of chitosan and bio-control agents for sustainable grape productivity. These findings will also pave the way for a deeper understanding of the synergistic interaction between Irradiated nanochitosan and bio-control agents for an eco-friendly and economically viable disease management strategy. The minimum temperature and morning relative humidity (RH I) had positive significance, with correlation coefficients of 0.484 and 0.485, respectively. The evening relative humidity (RH II) had a positive highly significant positive correlation coefficient of 0.664. Chitosan merits as a multiple stress tolerance enhancing agent that will further help in mitigating climate change adaptations in grapevines reducing reliance on chemical agro-inputs.
Collapse
Affiliation(s)
- Mahadev Khatal
- Department of Plant Pathology and Microbiology, Post Graduate Institute MPKV, Rahuri, Maharashtra, India
| | - Tanaji Narute
- Department of Plant Pathology and Microbiology, Post Graduate Institute MPKV, Rahuri, Maharashtra, India
| | - Rakesh Sonawane
- Onion and Grape Research Station Pimpalgaon Basawant, Nashik, Maharashtra, India
| | - Vikas Bhalerao
- All India Co-ordinated Research Project on Fruits, MPKV, Rahuri, Maharashtra, India
| | - Sunil Dalvi
- Agriculture Science and Technology Department, Vasantdada Sugar Institute, Pune, Maharashtra, India
| |
Collapse
|
4
|
Hernández-Parra H, Cortés H, Romero-Montero A, Borbolla-Jiménez FV, Magaña JJ, Del Prado-Audelo ML, Florán B, Leyva-Gómez G. Polymeric nanoparticles decorated with fragmented chitosan as modulation systems for neuronal drug uptake. Carbohydr Polym 2024; 336:122121. [PMID: 38670753 DOI: 10.1016/j.carbpol.2024.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
This study aimed to modify chitosan (CS) by gamma irradiation and use it as a surface coating of nanoparticles (NPs) fabricated of poly lactic-co-glycolic acid (PLGA) to create mostly biocompatible nanosystems that can transport drugs to neurons. Gamma irradiation produced irradiated CS (CSγ) with a very low molecular weight (15.2-19.2 kDa). Coating NPs-PLGA with CSγ caused significant changes in their Z potential, making it slightly positive (from -21.7 ± 2.8 mV to +7.1 ± 2.3 mV) and in their particle size (184.4 0.4 ± 7.9 nm to 211.9 ± 14.04 nm). However, these changes were more pronounced in NPs coated with non-irradiated CS (Z potential = +54.0 ± 1.43 mV, size = 348.1 ± 16.44 nm). NPs coated with CSγ presented lower cytotoxicity and similar internalization levels in SH-SY5Y neuronal cells than NPs coated with non-irradiated CS, suggesting higher biocompatibility. Highly biocompatible NPs are desirable as nanocarriers to deliver drugs to the brain, as they help maintain the structure and function of the blood-brain barrier. Therefore, the NPs developed in this study could be evaluated as drug-delivery systems for treating brain diseases.
Collapse
Affiliation(s)
- Hector Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico; Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Fabiola V Borbolla-Jiménez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, 14380, Mexico.
| | | | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
5
|
Steglińska A, Nowak A, Janas R, Grzesik M, Śmigielski K, Kręgiel D, Gutarowska B. Chitosan as an Antimicrobial, Anti-Insect, and Growth-Promoting Agent for Potato ( Solanum tuberosum L.) Plants. Molecules 2024; 29:3313. [PMID: 39064892 PMCID: PMC11280303 DOI: 10.3390/molecules29143313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
A growing trend in plant protection is replacing chemical preparations with environmentally friendly biological compositions. Chitosan, due to its biocompatibility, biodegradability, and bioactivity, is an effective agent against plant diseases. The purpose of the study was to evaluate chitosan as a potential biopesticide for potato plants. Three variants of chitosan were tested: high (310-375 kDa, >75% deacetylated), medium (190-310 kDa, 75-85% deacetylated), and low (50-190 kDa, 75-85% deacetylated) molecular weight. The chitosan variants were dissolved in lactic and succinic acids and tested for antibacterial and antifungal properties against eight strains of mould and two strains of bacteria responsible for potato diseases. The possible cytotoxicity of chitosan was evaluated against different cell lines: insect Sf-9, human keratinocyte HaCaT, and human colon carcinoma Caco-2. The bioprotective activities of the chitosan were also evaluated in situ on potato tubers. Chitosan inhibited the growth of almost all the selected phytopathogens. The most active was medium molecular chitosan in lactic acid. This formula was characterized by low toxicity towards human cells and high toxicity towards Sf-9 cells. It was also found to have positive effects on the growth of stems and roots, gas exchange, and chlorophyll index in potato plants. Selected chitosan formulation was proposed as a functional biopesticide for potato protection against phytopathogens.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Krzysztof Śmigielski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (A.N.); (K.Ś.); (D.K.)
| |
Collapse
|
6
|
Huertas V, Jiménez A, Diánez F, Chelhaoui R, Santos M. Importance of Dark Septate Endophytes in Agriculture in the Face of Climate Change. J Fungi (Basel) 2024; 10:329. [PMID: 38786684 PMCID: PMC11122602 DOI: 10.3390/jof10050329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Climate change is a notable challenge for agriculture as it affects crop productivity and yield. Increases in droughts, salinity, and soil degradation are some of the major consequences of climate change. The use of microorganisms has emerged as an alternative to mitigate the effects of climate change. Among these microorganisms, dark septate endophytes (DSEs) have garnered increasing attention in recent years. Dark septate endophytes have shown a capacity for mitigating and reducing the harmful effects of climate change in agriculture, such as salinity, drought, and the reduced nutrient availability in the soil. Various studies show that their association with plants helps to reduce the harmful effects of abiotic stresses and increases the nutrient availability, enabling the plants to thrive under adverse conditions. In this study, the effect of DSEs and the underlying mechanisms that help plants to develop a higher tolerance to climate change were reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (V.H.); (A.J.); (F.D.); (R.C.)
| |
Collapse
|
7
|
Riseh RS, Vazvani MG, Kennedy JF. The application of chitosan as a carrier for fertilizer: A review. Int J Biol Macromol 2023; 252:126483. [PMID: 37625747 DOI: 10.1016/j.ijbiomac.2023.126483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The smart combination of agriculture and other sciences can greatly reduce the limits of fertilizer use. Chitosan is a linear amino polysaccharide with a rigid structure which has hydrophilic and crystal properties. The formation of intermolecular hydrogen bonds the presence of reactive groups and cross-linking, the formation of salts with organic and inorganic acids with complexing and chelating properties ionic conductivity, film formation are the characteristics of chitosan. With the presence of amino groups, chitosan can form a complex with other compounds and also enter the vascular system of plants and lead to the activation of metabolic-physiological pathways of plants. This polymeric compound can bond with other natural polymers and in combination with fertilizers and nutritional elements, on the one hand, it can provide the nutritional needs of the plant and on the other hand, it also helps to improve the soil texture. Chitosan nanomaterials as a Next-generation fertilizers act as plant immune system enhancers through slow, controlled, and targeted delivery of nutrients to plants. Chitosan can assist agricultural researchers and has become an ideal and effective option with its many applications in various fields.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
8
|
Zhang M, An H, Zhang F, Jiang H, Wan T, Wen Y, Han N, Zhang P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int J Mol Sci 2023; 24:12956. [PMID: 37629137 PMCID: PMC10454829 DOI: 10.3390/ijms241612956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| |
Collapse
|
9
|
Yarullina L, Cherepanova EA, Burkhanova GF, Sorokan AV, Zaikina EA, Tsvetkov VO, Mardanshin IS, Fatkullin IY, Kalatskaja JN, Yalouskaya NA, Nikalaichuk VV. Stimulation of the Defense Mechanisms of Potatoes to a Late Blight Causative Agent When Treated with Bacillus subtilis Bacteria and Chitosan Composites with Hydroxycinnamic Acids. Microorganisms 2023; 11:1993. [PMID: 37630553 PMCID: PMC10458051 DOI: 10.3390/microorganisms11081993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Phytophthora infestans is, worldwide, one of the main causal agents of epiphytotics in potato plantings. Prevention strategies demand integrated pest management, including modeling of beneficial microbiomes of agroecosystems combining microorganisms and natural products. Chitooligosaccharides and their derivatives have great potential to be used by agrotechnology due to their ability to elicit plant immune reactions. The effect of combining Bacillus subtilis 26D and 11VM and conjugates of chitin with hydroxycinnamates on late blight pathogenesis was evaluated. Mechanisms for increasing the resistance of potato plants to Phytophthora infestans were associated with the activation of the antioxidant system of plants and an increase in the level of gene transcripts that encode PR proteins: basic protective protein (PR-1), thaumatin-like protein (PR-5), protease inhibitor (PR-6), and peroxidase (PR-9). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of the combined treatment of plants with B. subtilis and conjugates of chitin with hydroxycinnamates indicates that, in this case, the development of protective reactions in potato plants to late blight proceeds synergistically, where B. subtilis primes protective genes, and chitosan composites act as a trigger for their expression.
Collapse
Affiliation(s)
- Liubov Yarullina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
- Department of Biology, Ufa University of Science and Technology, 450076 Ufa, Russia;
| | - Ekaterina A. Cherepanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Antonina V. Sorokan
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Evgenia A. Zaikina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | | | - Ildar S. Mardanshin
- Bashkir Research Institute of Agriculture, Ufa Federal Research Center, Russian Academy of Sciences, 450054 Ufa, Russia;
| | - Ildus Y. Fatkullin
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, 450054 Ufa, Russia; (E.A.C.); (G.F.B.); (A.V.S.); (E.A.Z.); (I.Y.F.)
| | - Joanna N. Kalatskaja
- Institute of Experimental Botany Named after V. F. Kuprevich of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (J.N.K.); (N.A.Y.)
| | - Ninel A. Yalouskaya
- Institute of Experimental Botany Named after V. F. Kuprevich of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus; (J.N.K.); (N.A.Y.)
| | - Victoria V. Nikalaichuk
- Institute of New Materials Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus;
| |
Collapse
|
10
|
García-García AL, Matos AR, Feijão E, Cruz de Carvalho R, Boto A, Marques da Silva J, Jiménez-Arias D. The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1200898. [PMID: 37332721 PMCID: PMC10272596 DOI: 10.3389/fpls.2023.1200898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply. Furthermore, the cultivation of A. annua is being threatened by climate change. Specifically, drought stress is a major concern for plant development and productivity, but, on the other hand, moderate stress levels can elicit the production of secondary metabolites, with a putative synergistic interaction with elicitors such as chitosan oligosaccharides (COS). Therefore, the development of strategies to increase yield has prompted much interest. With this aim, the effects on artemisinin production under drought stress and treatment with COS, as well as physiological changes in A. annua plants are presented in this study. Methods Plants were separated into two groups, well-watered (WW) and drought-stressed (DS) plants, and in each group, four concentrations of COS were applied (0, 50,100 and 200 mg•L-1). Afterwards, water stress was imposed by withholding irrigation for 9 days. Results Therefore, when A. annua was well watered, COS did not improve plant growth, and the upregulation of antioxidant enzymes hindered the production of artemisinin. On the other hand, during drought stress, COS treatment did not alleviate the decline in growth at any concentration tested. However, higher doses improved the water status since leaf water potential (YL) improved by 50.64% and relative water content (RWC) by 33.84% compared to DS plants without COS treatment. Moreover, the combination of COS and drought stress caused damage to the plant's antioxidant enzyme defence, particularly APX and GR, and reduced the amount of phenols and flavonoids. This resulted in increased ROS production and enhanced artemisinin content by 34.40% in DS plants treated with 200 mg•L-1 COS, compared to control plants. Conclusion These findings underscore the critical role of ROS in artemisinin biosynthesis and suggest that COS treatment may boost artemisinin yield in crop production, even under drought conditions.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Jorge Marques da Silva
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - David Jiménez-Arias
- ISOPlexis—Center for Sustainable Agriculture and Food Technology, Madeira University, Funchal, Portugal
| |
Collapse
|
11
|
Mukarram M, Khan MMA, Kurjak D, Corpas FJ. Chitosan oligomers (COS) trigger a coordinated biochemical response of lemongrass (Cymbopogon flexuosus) plants to palliate salinity-induced oxidative stress. Sci Rep 2023; 13:8636. [PMID: 37244976 DOI: 10.1038/s41598-023-35931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
Plant susceptibility to salt depends on several factors from its genetic makeup to modifiable physiological and biochemical status. We used lemongrass (Cymbopogon flexuosus) plants as a relevant medicinal and aromatic cash crop to assess the potential benefits of chitosan oligomers (COS) on plant growth and essential oil productivity during salinity stress (160 and 240 mM NaCl). Five foliar sprays of 120 mg L-1 of COS were applied weekly. Several aspects of photosynthesis, gas exchange, cellular defence, and essential oil productivity of lemongrass were traced. The obtained data indicated that 120 mg L-1 COS alleviated photosynthetic constraints and raised the enzymatic antioxidant defence including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities that minimised salt-induced oxidative damage. Further, stomatal conductance (gs) and photosynthetic CO2 assimilation (A) were improved to support overall plant development. The same treatment increased geraniol dehydrogenase (GeDH) activity and lemongrass essential oil production. COS-induced salt resilience suggests that COS could become a useful biotechnological tool in reclaiming saline soil for improved crop productivity, especially when such soil is unfit for leading food crops. Considering its additional economic value in the essential oil industry, we propose COS-treated lemongrass as an excellent alternative crop for saline lands.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
12
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
13
|
Santra HK, Banerjee D. Drought alleviation efficacy of a galactose rich polysaccharide isolated from endophytic Mucor sp. HELF2: A case study on rice plant. Front Microbiol 2023; 13:1064055. [PMID: 36777025 PMCID: PMC9910089 DOI: 10.3389/fmicb.2022.1064055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Endophytes play a vital role in plant growth under biotic and abiotic stress conditions. In the present investigation, a Galactose-Rich Heteropolysaccharide (GRH) with a molecular weight of 2.98 × 105 Da was isolated from endophytic Mucor sp. HELF2, a symbiont of the East Indian screw tree Helicteres isora. OVAT (One Variable at A Time) experiment coupled with RSM (Response Surface Methodology) study exhibited 1.5-fold enhanced GRH production (20.10 g L-1) in supplemented potato dextrose broth at a pH of 7.05 after 7.5 days of fermentation in 26°C. GRH has alleviated drought stress (polyethylene glycol induced) in rice seedlings (Oryza sativa ssp. indica MTU 7093 swarna) by improving its physicochemical parameters. It has been revealed that spray with a 50-ppm dosage of GRH exhibited an improvement of 1.58, 2.38, 3, and 4 times in relative water contents and fresh weight of the tissues, root length, and shoot length of the rice seedlings, respectively "in comparison to the control". Moreover, the soluble sugars, prolines, and chlorophyll contents of the treated rice seedlings were increased upto 3.5 (0.7 ± 0.05 mg/g fresh weight), 3.89 (0.57 ± 0.03 mg/g fresh weight), and 2.32 (1,119 ± 70.8 μg/gm of fresh weight) fold respectively, whereas malondialdehyde contents decreased up to 6 times. The enzymatic antioxidant parameters like peroxidase and superoxide dismutase and catalase activity of the 50 ppm GRH treated seedlings were found to be elevated 1.8 (720 ± 53 unit/gm/min fresh weight), 1.34 (75.34 ± 4.8 unit/gm/min fresh weight), and up to 3 (100 ppm treatment for catalase - 54.78 ± 2.91 unit/gm/min fresh weight) fold, respectively. In this context, the present outcomes contribute to the development of novel strategies to ameliorate drought stress and could fortify the agro-economy of India.
Collapse
Affiliation(s)
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
14
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
15
|
Fabrication and immediate release characterization of UV responded oregano essential oil loaded microcapsules by chitosan-decorated titanium dioxide. Food Chem 2023; 400:133965. [DOI: 10.1016/j.foodchem.2022.133965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
|
16
|
Li B, Song D, Guo T, Xu X, Ai C, Zhou W. Combined physiological and metabolomic analysis reveals the effects of different biostimulants on maize production and reproduction. FRONTIERS IN PLANT SCIENCE 2022; 13:1062603. [PMID: 36507449 PMCID: PMC9727306 DOI: 10.3389/fpls.2022.1062603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Plant biostimulants (PBs) are a potential strategy to improve crop growth and grain quality. In the present study, 100 mg/L trehalose, chitosan, humic acid and gamma-aminobutyric acid treatments were applied to analyze the effects of maize production and reproductive characteristics. The contents of nitrogen, phosphorus and potassium and grain quality were significantly affected by the PBs, but not yield. The seed germination rate of all PB treatments was significantly reduced, but the drought resistance of progeny seedlings was significantly improved, with humic acid having the strongest effect. Liquid chromatography mass spectrometry analysis indicated that the disruption of the tricarboxylic acid cycle, probably due to the blockage of intermediate anabolism, reduced the supply of energy and nutrients in the early stages of germination, thus inhibiting seed germination, while the increased resistance of the offspring seedlings may be due to the up-regulation of the synthesis of unsaturated fatty acids and alkaloids by humic acid treatment. This study revealed the similarity and heterogeneity of the effects of different PBs on nutrient accumulation, yield characteristics and grain quality of maize, providing guidance for the application of PBs in intensive and sustainable agricultural production.
Collapse
Affiliation(s)
- Bingyan Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dali Song
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Guo
- Institution of Plant Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinpeng Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Ingle PU, Shende SS, Shingote PR, Mishra SS, Sarda V, Wasule DL, Rajput VD, Minkina T, Rai M, Sushkova S, Mandzhieva S, Gade A. Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon 2022; 8:e11893. [DOI: 10.1016/j.heliyon.2022.e11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
18
|
Rajabi M, Cabral J, Saunderson S, Ali MA. Green synthesis of chitooligosaccharide-PEGDA derivatives through aza-Michael reaction for biomedical applications. Carbohydr Polym 2022; 295:119884. [DOI: 10.1016/j.carbpol.2022.119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
|
19
|
Integrated Analysis of Transcriptome and Metabolome Reveals the Regulation of Chitooligosaccharide on Drought Tolerance in Sugarcane ( Saccharum spp. Hybrid) under Drought Stress. Int J Mol Sci 2022; 23:ijms23179737. [PMID: 36077135 PMCID: PMC9456405 DOI: 10.3390/ijms23179737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrid) is an important crop for sugar and biofuels, and often suffers from water shortages during growth. Currently, there is limited knowledge concerning the molecular mechanism involved in sugarcane response to drought stress (DS) and whether chitooligosaccharide could alleviate DS. Here, we carried out a combined transcriptome and metabolome of sugarcane in three different treatment groups: control group (CG), DS group, and DS + chitooligosaccharide group (COS). A total of 12,275 (6404 up-regulated and 5871 down-regulated) differentially expressed genes (DEGs) were identified when comparing the CG and DS transcriptomes (T_CG/DS), and 2525 (1261 up-regulated and 1264 down-regulated) DEGs were identified in comparing the DS and COS transcriptomes (T_DS/COS). GO and KEGG analysis showed that DEGs associated with photosynthesis were significantly enriched and had down-regulated expression. For T_DS/COS, photosynthesis DEGs were also significantly enriched but had up-regulated expression. Together, these results indicate that DS of sugarcane has a significantly negative influence on photosynthesis, and that COS can alleviate these negative effects. In metabolome analysis, lipids, others, amino acids and derivatives and alkaloids were the main significantly different metabolites (SDMs) observed in sugarcane response to DS, and COS treatment reduced the content of these metabolites. KEGG analysis of the metabolome showed that 2-oxocarboxylic acid metabolism, ABC transporters, biosynthesis of amino acids, glucosinolate biosynthesis and valine, leucine and isoleucine biosynthesis were the top-5 KEGG enriched pathways when comparing the CG and DS metabolome (M_CG/DS). Comparing DS with COS (M_DS/COS) showed that purine metabolism and phenylalanine metabolism were enriched. Combined transcriptome and metabolome analysis revealed that pyruvate and phenylalanine metabolism were KEGG-enriched pathways for CG/DS and DS/COS, respectively. For pyruvate metabolism, 87 DEGs (47 up-regulated and 40 down-regulated) and five SDMs (1 up-regulated and 4 down-regulated) were enriched. Pyruvate was closely related with 14 DEGs (|r| > 0.99) after Pearson’s correlation analysis, and only 1 DEG (Sspon.02G0043670-1B) was positively correlated. For phenylalanine metabolism, 13 DEGs (7 up-regulated and 6 down-regulated) and 6 SDMs (1 up-regulated and 5 down-regulated) were identified. Five PAL genes were closely related with 6 SDMs through Pearson’s correlation analysis, and the novel.31257 gene had significantly up-regulated expression. Collectively, our results showed that DS has significant adverse effects on the physiology, transcriptome, and metabolome of sugarcane, particularly genes involved in photosynthesis. We further show that COS treatment can alleviate these negative effects.
Collapse
|
20
|
Sun J, Li S, Fan C, Cui K, Tan H, Qiao L, Lu L. N-Acetylglucosamine Promotes Tomato Plant Growth by Shaping the Community Structure and Metabolism of the Rhizosphere Microbiome. Microbiol Spectr 2022; 10:e0035822. [PMID: 35665438 PMCID: PMC9241905 DOI: 10.1128/spectrum.00358-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
Communication between plants and microorganisms is vital because it influences their growth, development, defense, propagation, and metabolism in achieving maximal fitness. N-acetylglucosamine (N-GlcNAc), the building block of bacterial and fungal cell walls, was first reported to promote tomato plant growth via stimulation of microorganisms typically known to dominate the tomato root rhizosphere, such as members of Proteobacteria and Actinobacteria. Using KEGG pathway analysis of the rhizosphere microbial operational taxonomic units, the streptomycin biosynthesis pathway was enriched in the presence of N-GlcNAc. The biosynthesis of 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol, two foremost types of plant growth promotion-related volatile organic compounds, were activated in both Bacillus subtilis and Streptomyces thermocarboxydus strains when they were cocultured with N-GlcNAc. In addition, the application of N-GlcNAc increased indole-3-acetic acid production in a dose-dependent manner in strains of Bacillus cereus, Proteus mirabilis, Pseudomonas putida, and S. thermocarboxydus that were isolated from an N-GlcNAc-treated tomato rhizosphere. Overall, this study found that N-GlcNAc could function as microbial signaling molecules to shape the community structure and metabolism of the rhizosphere microbiome, thereby regulating plant growth and development and preventing plant disease through complementary plant-microbe interactions. IMPORTANCE While the benefits of using plant growth-promoting rhizobacteria (PGPRs) to enhance crop production have been recognized and studied extensively under laboratory conditions, the success of their application in the field varies immensely. More fundamentally explicit processes of positive, plant-PGPRs interactions are needed. The utilization of organic amendments, such as chitin and its derivatives, is one of the most economical and practical options for improving soil and substrate quality as well as plant growth and resilience. In this study, we observed that the chitin monomer N-GlcNAc, a key microbial signaling molecule produced through interactions between chitin, soil microbes, and the plants, positively shaped the community structure and metabolism of the rhizosphere microbiome of tomatoes. Our findings also provide a new direction for enhancing the benefits and stability of PGPRs in the field.
Collapse
Affiliation(s)
- Jiuyun Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Shuhua Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Chunyang Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Kangjia Cui
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Hongxiao Tan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Liping Qiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, People’s Republic of China
| |
Collapse
|
21
|
Krstić J, Radosavljević A, Spasojević J, Nikolić N, Jovanović U, Abazović N, Kačarević-Popović Z. Improvement of antibacterial activity of Ag-poly(vinyl-alcohol)/chitosan hydrogel by optimizing the procedure of radiolytic synthesis. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Effect of pH value and the distance between the electrodes on physicochemical properties of chitosan under SPP treatment. Carbohydr Polym 2022; 288:119348. [DOI: 10.1016/j.carbpol.2022.119348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/20/2022]
|
23
|
Karamchandani BM, Chakraborty S, Dalvi SG, Satpute SK. Chitosan and its derivatives: Promising biomaterial in averting fungal diseases of sugarcane and other crops. J Basic Microbiol 2022; 62:533-554. [DOI: 10.1002/jobm.202100613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 02/01/2023]
Affiliation(s)
| | - Saswata Chakraborty
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| | - Sunil G. Dalvi
- Tissue Culture Section Vasantdada Sugar Institute Pune Maharashtra India
| | - Surekha K. Satpute
- Department of Microbiology Savitribai Phule Pune University Pune Maharashtra India
| |
Collapse
|
24
|
Santra HK, Banerjee D. Production, Optimization, Characterization and Drought Stress Resistance by β-Glucan-Rich Heteropolysaccharide From an Endophytic Fungi Colletotrichum alatae LCS1 Isolated From Clubmoss ( Lycopodium clavatum). FRONTIERS IN FUNGAL BIOLOGY 2022; 2:796010. [PMID: 37744113 PMCID: PMC10512251 DOI: 10.3389/ffunb.2021.796010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 09/26/2023]
Abstract
Endophytic entities are ubiquitous in nature with all-square bioactivity ranging from therapeutic effects toward animals to growth promoting attributes and stress tolerance activities in case of green plants. In the present study, the club moss Lycopodium clavatum for the first time has been subjected for the isolation of endophytic fungi. An exopolysaccharide (EPS) extracted from Colletotrichum alatae LCS1, an endophytic fungi isolated from L. clavatum Linn., was characterized as a β-glucan heteropolymer (composed of mannose, rhamnose, arabinose, glucose, galactose, and fucose) which plays a pivotal role in obliterating the drought stress in rice seedlings (Oryza sativa) when applied at an amount of 20, 50, and 100 ppm. The fresh weight contents of rice tissue (39%), total chlorophyll (33%), proline (41%), soluble sugar content (26%) along with antioxidant enzymes such as catalase, peroxidase, and super-oxide dismutase increased (in comparison to control of non-EPS treated seedlings) while malondialdehyde content had reduced markedly after 30 days of regular treatment. The drought resistance of rice seedling was observed at peak when applied at 50 ppm dosage. Vital parameters for EPS production like fermentation duration (5 days), medium pH (6), nutrient (carbon (glucose-7 g%/l), nitrogen (yeast extract-0.4 g%/l), and mineral (NaCl-0.10 g%/l) sources, oxygen requirements (O2 vector or liquid alkane-n-hexane, n-heptane, n-hexadecane), and headspace volume (250 ml Erlenmeyer flask- 50 ml medium, 200 ml-headspace volume) were optimized to obtain an enhanced EPS yield of 17.38 g/L-59% higher than the preoptimized one. The present study, for the first time, reported the β-glucan rich heteropolysaccharide from Colletotrichum origin which is unique in structure and potent in its function of drought stress tolerance and could enhance the sustainable yield of rice cultivation in areas facing severe drought stress.
Collapse
Affiliation(s)
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| |
Collapse
|
25
|
Muniz GL, Borges AC, da Silva TCF, Batista RO, de Castro SR. Chemically enhanced primary treatment of dairy wastewater using chitosan obtained from shrimp wastes: optimization using a Doehlert matrix design. ENVIRONMENTAL TECHNOLOGY 2022; 43:237-254. [PMID: 32544037 DOI: 10.1080/09593330.2020.1783372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Dairy operations generate large volumes of polluted wastewater that require treatment prior to discharge. Chemically enhanced primary treatment (CEPT) is a widely utilized wastewater treatment strategy; but it requires the use of non-biodegradable coagulants that can lead to toxic-byproducts. In this study, chitin from shrimp shell waste is extracted and converted into chitosan. Chitosan was demonstrated to be a natural, low-cost alternative coagulant compatible with the CEPT. Following treatment, dissolved air flotation allowed for the removal of turbidity, COD, and UV254 from the synthetic dairy effluent (SDE). Doehlert matrix was used to optimize the chitosan dosage and pH of the CEPT; as well as to model the process. The mechanisms behind the coagulation-flocculation were revealed using zeta potential analysis. FTIR spectroscopy was utilized to confirm the functional groups present on the chitosan. Chitosan with a degree of deacetylation equal to 81% was obtained. A chitosan dose of 73.34 mg/L at pH 5.00 was found to be optimal for the removal of pollutants. Removals of COD, turbidity and UV254 were 77.5%, 97.6%, and 88.8%, respectively. The amount of dry sludge generated to treat 1 m³ of SDE was 0.041 kg. Coagulation-flocculation mechanisms involved in chitosan-mediated treatment of SDE involve the neutralization of electrostatic charges carried on the amine groups present in cationic chitosan at pH 5.00. Doehlert matrix proved to be a useful tool in optimizing parameters throughout the coagulation-flocculation process. Chitosan from shrimp waste is a low-cost, eco-friendly coagulant alternative for the removal pollutants from dairy effluent using the CEPT.
Collapse
Affiliation(s)
- Gustavo Lopes Muniz
- College of Agricultural Engineering, Campinas State University, São Paulo, Brazil
| | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, Minas Gerais, Brazil
| | | | - Rafael Oliveira Batista
- Department of Engineering and Environmental Sciences, Federal Rural University of the Semi-Arid., Rio Grande do Norte, Brazil
| | - Simone Ramos de Castro
- Department of Biochemistry and Tissue Biology, Campinas State University, São Paulo, Brazil
| |
Collapse
|
26
|
Mirajkar S, Rathod P, Pawar B, Penna S, Dalvi S. γ-Irradiated Chitosan Mediates Enhanced Synthesis and Antimicrobial Properties of Chitosan-Silver (Ag) Nanocomposites. ACS OMEGA 2021; 6:34812-34822. [PMID: 34963964 PMCID: PMC8697400 DOI: 10.1021/acsomega.1c05358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 05/10/2023]
Abstract
Chitosan (CSN) and its derivatives are being exploited for their potential role in agriculture in mitigating environmental stress factors. The present study was aimed to enhance the synthesis of chitosan (CSN)-based silver nanoparticles (Ag NPs) using γ-irradiated chitosan (IR-CSN) and to study the antimicrobial activity of IR-CSN-Ag NPs. The chitosan-silver nanocomposites (CSN-Ag NPs) were prepared by employing the green synthesis method using normal chitosan (high molecular weight (MW), NL-CSN) and oligochitosans (low MW, IR-CSN). The latter was derived by irradiation with γ rays (60Co) at 100 kGy dose to obtain a lower MW (approximately 25 kDa). NL-CSN and IR-CSN (0.0-2.5% w/v) were amalgamated with different concentrations of silver nitrate (0.0-2.5% w/v) and vice versa. The UV-visible spectra displayed a single peak in the range of 419-423 nm, which is the characteristic surface plasmon resonance (SPR) for Ag NPs. The physicochemical properties were assessed using different methods such as transmission electron microscopy (TEM), Fourier transform infrared (FTIR), zetasizer, elemental (CHNS) analysis, etc. The degree of Ag NP synthesis was more in IR-CSN than NL-CSN. The in vitro disc diffusion assay with IR-CSN-Ag NPs exhibited a significantly higher antimicrobial activity against Escherichia coli. Further evaluation of the antifungal activity of IR-CSN and Ag NPs showed a synergistic effect against chickpea wilt (Fusarium oxysporum f. sp. ciceris). The study has provided a novel approach for the improved synthesis of CSN-Ag nanoparticle composites using γ-irradiated chitosan. This study also opens up new options for the development and deployment of γ-irradiated chitosan-silver nanocomposites for the control of phytopathogens in sustainable agriculture.
Collapse
Affiliation(s)
- Shriram Mirajkar
- Plant
Tissue Culture Section, Vasantdada Sugar
Institute, Manjari (Bk.), Pune 412307, India
| | - Prakash Rathod
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Bharat Pawar
- Plant
Pathology Section, Vasantdada Sugar Institute, Manjari (Bk.), Pune 412307, India
| | - Suprasanna Penna
- Nuclear
Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sunil Dalvi
- Plant
Tissue Culture Section, Vasantdada Sugar
Institute, Manjari (Bk.), Pune 412307, India
| |
Collapse
|
27
|
Pandit A, Indurkar A, Deshpande C, Jain R, Dandekar P. A systematic review of physical techniques for chitosan degradation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Gaikwad HD, Dalvi SG, Hasabnis S, Suprasanna P. Electron Beam Irradiated Chitosan elicits enhanced antioxidant properties combating resistance to Purple Blotch Disease ( Alternaria porri) in Onion ( Allium cepa). Int J Radiat Biol 2021; 98:100-108. [PMID: 34587466 DOI: 10.1080/09553002.2021.1987569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study was carried out to assess the effect of irradiated chitosan as an elicitor on the biochemical traits associated with resistance to purple blotch disease in onion. MATERIALS AND METHODS Chitosan was electron beam irradiated at 100 kGy dose to obtain low molecular weight chitosan. Irradiated chitosan at 20 and 0.04% concentration and different time intervals was used as a biological elicitor cum antimicrobial agent against purple blotch disease in onion. Field grown onion (Variety Basanvant 780) plants were foliar sprayed with irradiated chitosan and the biochemical responses were monitored using parameters namely chlorophylls, carotenoids, antioxidant enzymes, phenols, and antifungal enzyme β-1,3 Glucanase using standard methods. RESULTS Compared to control treatment, a positive correlation with irradiated chitosan treatment was observed for an increase in β-1,3-glucanase, peroxidase activity, and contents of total phenolics, chlorophylls, and carotenoids, which cumulatively contributed to resistance response against the purple blotch disease. Irradiated chitosan (0.04%) treated onion plants at 30, 45, and 60 DAT showed a higher total phenolics, β-1,3-glucanase activity, and peroxidase activity besides enhanced antioxidant properties. CONCLUSION The results suggest that irradiated chitosan has elicited resistance responses against purple blotch disease in onion. The increased production of antioxidant metabolites may provide value addition to onion as a food commodity.
Collapse
Affiliation(s)
| | - Sunil Govind Dalvi
- Department of Agricultural Sciences and Technology Vasantdada Sugar Institute, Manjari (Bk), Pune, India
| | | | - Penna Suprasanna
- Nuclear Agricultural Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
29
|
Niazian M, Sabbatini P. Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. PLANTA 2021; 254:111. [PMID: 34718882 DOI: 10.1007/s00425-021-03771-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Precursor feeding, elicitation and culture medium parameters are traditional in vitro strategies to enhance bioactive compounds of medicinal, aromatic, and ornamental plants (MAOPs). Machine learning can help researchers find the best combination of these strategies to increase the secondary metabolites content of MAOPs. Many requirements for human life, from food, pharmaceuticals and cosmetics to clothes, fuel and building materials depend on plant-derived natural products. Essential oils, methanolic and ethanolic extracts of in vitro undifferentiated callus and organogenic cultures of medicinal, aromatic, and ornamental plants (MAOPs) contain bioactive compounds that have several applications for various industries, including food and pharmaceutical. In vitro culture systems provide opportunities to manipulate the metabolomic profile of MAOPs. Precursors feeding, elicitation and culture media optimization are the traditional strategies to enhance in vitro accumulation of favorable bioactive compounds. The stimulation of plant defense mechanisms through biotic and abiotic elicitors is a simple way to increase the production of secondary metabolites in different in vitro culture systems. Different elicitors have been applied to stimulate defense machinery and change the metabolomic profile of MAOPs in in vitro cultures. Plant growth regulators (PGRs), stress hormones, chitosan, microbial extracts and physical stresses are the most applied elicitors in this regard. Many other chemical tolerance-enhancer additives, such as melatonin and proline, have been applied along with stress response-inducing elicitors. The use of stress-inducing materials such as PEG and NaCl activates stress tolerance elicitors with the potential of increasing secondary metabolites content of MAOPs. The present study reviewed the state-of-the-art traditional in vitro strategies to manipulate bioactive compounds of MAOPs. The objective is to provide insights to researchers involved in in vitro production of plant-derived natural compounds. The present review provided a wide range of traditional strategies to increase the accumulation of valuable bioactive compounds of MAOPs in different in vitro systems. Traditional strategies are faster, simpler, and cost-effective than other biotechnology-based breeding methods such as genetic transformation, genome editing, metabolic pathways engineering, and synthetic biology. The integrate application of precursors and elicitors along with culture media optimization and the interpretation of their interactions through machine learning algorithms could provide an excellent opportunity for large-scale in vitro production of pharmaceutical bioactive compounds.
Collapse
Affiliation(s)
- Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Jam-e Jam Cross Way, P. O. Box 741, Sanandaj, Iran.
| | - Paolo Sabbatini
- Department of Horticulture, Michigan State University, Plant and Soil Sciences Building, East Lansing, MI, 48824, USA
| |
Collapse
|
30
|
Chaves-Gómez JL, Chávez-Arias CC, Prado AMC, Gómez-Caro S, Restrepo-Díaz H. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:2059. [PMID: 34685868 PMCID: PMC8537006 DOI: 10.3390/plants10102059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess the soil application of mixtures of biological control agents (BCAs) (Trichoderma virens and Bacillus velezensis) and organic additives (chitosan and burnt rice husk) on the physiological and biochemical behavior of cape gooseberry plants exposed to Fusarium oxysporum f. sp. physali (Foph) inoculum. The treatments with inoculated and non-inoculated plants were: (i) T. virens + B. velezensis (Mix), (ii) T. virens + B. velezensis + burnt rice husk (MixRh), (iii) T. virens + B. velezensis + chitosan (MixChi), and (iv) controls (plants without any mixtures). Plants inoculated and treated with Mix or MixChi reduced the area under the disease progress curve (AUDPC) (57.1) and disease severity index (DSI) (2.97) compared to inoculated plants without any treatment (69.3 for AUDPC and 3.2 for DSI). Additionally, these groups of plants (Mix or MixChi) obtained greater leaf water potential (~-0.5 Mpa) and a lower MDA production (~12.5 µmol g-2 FW) than plants with Foph and without mixtures (-0.61 Mpa and 18.2 µmol g-2 FW, respectively). The results suggest that MixChi treatments may be a promising alternative for vascular wilt management in cape gooseberry crops affected by this disease.
Collapse
Affiliation(s)
- José Luis Chaves-Gómez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Cristian Camilo Chávez-Arias
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Alba Marina Cotes Prado
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera 250047, Colombia;
| | - Sandra Gómez-Caro
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Hermann Restrepo-Díaz
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| |
Collapse
|
31
|
Jafari H, Delporte C, Bernaerts KV, De Leener G, Luhmer M, Nie L, Shavandi A. Development of marine oligosaccharides for potential wound healing biomaterials engineering. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
32
|
Gonçalves C, Ferreira N, Lourenço L. Production of Low Molecular Weight Chitosan and Chitooligosaccharides (COS): A Review. Polymers (Basel) 2021; 13:2466. [PMID: 34372068 PMCID: PMC8348454 DOI: 10.3390/polym13152466] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan is a biopolymer with high added value, and its properties are related to its molecular weight. Thus, high molecular weight values provide low solubility of chitosan, presenting limitations in its use. Based on this, several studies have developed different hydrolysis methods to reduce the molecular weight of chitosan. Acid hydrolysis is still the most used method to obtain low molecular weight chitosan and chitooligosaccharides. However, the use of acids can generate environmental impacts. When different methods are combined, gamma radiation and microwave power intensity are the variables that most influence acid hydrolysis. Otherwise, in oxidative hydrolysis with hydrogen peroxide, a long time is the limiting factor. Thus, it was observed that the most efficient method is the association between the different hydrolysis methods mentioned. However, this alternative can increase the cost of the process. Enzymatic hydrolysis is the most studied method due to its environmental advantages and high specificity. However, hydrolysis time and process cost are factors that still limit industrial application. In addition, the enzymatic method has a limited association with other hydrolysis methods due to the sensitivity of the enzymes. Therefore, this article seeks to extensively review the variables that influence the main methods of hydrolysis: acid concentration, radiation intensity, potency, time, temperature, pH, and enzyme/substrate ratio, observing their influence on molecular weight, yield, and characteristic of the product.
Collapse
Affiliation(s)
- Cleidiane Gonçalves
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
- Institute of Health and Animal Production, Amazon Rural Federal University, Belém 66077-830, Pará, Brazil
| | - Nelson Ferreira
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| | - Lúcia Lourenço
- Institute of Technology, Graduate Program in Food Science and Technology, Federal University of Pará, Belém 66075-110, Pará, Brazil;
| |
Collapse
|
33
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
34
|
Shahrajabian MH, Chaski C, Polyzos N, Tzortzakis N, Petropoulos SA. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021; 11:biom11060819. [PMID: 34072781 PMCID: PMC8226918 DOI: 10.3390/biom11060819] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Chitin and chitosan are natural compounds that are biodegradable and nontoxic and have gained noticeable attention due to their effective contribution to increased yield and agro-environmental sustainability. Several effects have been reported for chitosan application in plants. Particularly, it can be used in plant defense systems against biological and environmental stress conditions and as a plant growth promoter—it can increase stomatal conductance and reduce transpiration or be applied as a coating material in seeds. Moreover, it can be effective in promoting chitinolytic microorganisms and prolonging storage life through post-harvest treatments, or benefit nutrient delivery to plants since it may prevent leaching and improve slow release of nutrients in fertilizers. Finally, it can remediate polluted soils through the removal of cationic and anionic heavy metals and the improvement of soil properties. On the other hand, chitin also has many beneficial effects such as plant growth promotion, improved plant nutrition and ability to modulate and improve plants’ resistance to abiotic and biotic stressors. The present review presents a literature overview regarding the effects of chitin, chitosan and derivatives on horticultural crops, highlighting their important role in modern sustainable crop production; the main limitations as well as the future prospects of applications of this particular biostimulant category are also presented.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| | - Christina Chaski
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Polyzos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (C.C.); (N.P.)
- Correspondence: (M.H.S.); (S.A.P.); Tel.: +30-24210-93196 (S.A.P.)
| |
Collapse
|
35
|
Bhimrao Muley A, Bhalchandra Pandit A, Satishchandra Singhal R, Govind Dalvi S. Production of biologically active peptides by hydrolysis of whey protein isolates using hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2021; 71:105385. [PMID: 33271422 PMCID: PMC7786611 DOI: 10.1016/j.ultsonch.2020.105385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/27/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Whey protein isolate (WPI) hydrolysates have higher solubility in aqueous phase and enhanced biological properties. Hydrolysis of WPI was optimized using operating pressure (ΔP, bar), number of passes (N), and WPI concentration (C, %) as deciding parameters in hydrodynamic cavitation treatment. The optimum conditions for generation of WPI hydrolysate with full factorial design were 8 bar, 28 passes, and 4.5% WPI concentration yielding 32.69 ± 1.22 mg/mL soluble proteins. WPI hydrolysate showed alterations in binding capacity over WPI. SDS-PAGE and particle size analysis confirmed the hydrolysis of WPI. Spectroscopic, thermal and crystallinity analyses showed typical properties of proteins with slight variations after hydrodynamic cavitation treatment. ABTS, DPPH and FRAP assays of WPI hydrolysate showed 7-66, 9-149, and 0.038-0.272 µmol/mL GAE at 1-10, 0.25-4, and 3-30 mg/mL concentration, respectively. Further, a considerable enhancement in fresh weight, chlorophyll, carotenoids, reducing sugars, total soluble sugars, soluble proteins content and total phenolics content was noticed during in vitro growth of sugarcane in WPI hydrolysate supplemented medium at 50-200 mg/L concentration over the control. The process cost (INR/kg) to hydrolyze WPI was also calculated.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | | | | | - Sunil Govind Dalvi
- Tissue Culture Section, Vasantdada Sugar Institute, Manjari (Bk.), Pune 412307, India
| |
Collapse
|
36
|
Wang T, Wang P, Zhang K, Yang F, Huang Y, Huang C. Lumped kinetic model for degradation of chitosan by hydrodynamic cavitation. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Ma F, Zhang S, Li P, Sun B, Xu Y, Tao D, Zhao H, Cui S, Zhu R, Zhang B. Investigation on the role of the free radicals and the controlled degradation of chitosan under solution plasma process based on radical scavengers. Carbohydr Polym 2020; 257:117567. [PMID: 33541628 DOI: 10.1016/j.carbpol.2020.117567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
This study investigated the role of various active species (OH, O, and H2O2) under solution plasma process (SPP) degradation based on the influence of different radical scavengers on the degradation effect and ESR spectra. The structures of oligochitosan with different radical scavengers were characterized by FT-IR, 1H NMR, and XRD analysis. The results indicated that OH, O, and H2O2 played important roles in SPP degradation. The degradation effect of the O was even higher than that of the OH. The physical effects (e.g. UV light and shockwaves) of SPP method or Fenton's reaction might contribute to the degradation treatment. Furthermore, the different scavengers could adjust the degradation effect of the corresponding free radicals. FT-IR, 1H NMR, and XRD analysis revealed that the primary chemical structure of chitosan was not changed by the scavengers. This study found that the controlled degradation by addition of a radical scavenger is feasible. Therefore, this study provided a straightforward analysis of the role of the free radicals and the controlled degradation of chitosan under SPP treatment, which will be beneficial to further develop SPP techniques for chitosan degradation.
Collapse
Affiliation(s)
- Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shihao Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Pu Li
- College of Art Design and Architecture, Liaoning University of Technology, Jinzhou, 121001, China.
| | - Bingxin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yufeng Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shiwen Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ruiyin Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
38
|
Huang X, You Z, Luo Y, Yang C, Ren J, Liu Y, Wei G, Dong P, Ren M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int J Biol Macromol 2020; 166:1365-1376. [PMID: 33161079 DOI: 10.1016/j.ijbiomac.2020.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Phytophthora infestans, the pathogen of potato late blight which is a devastating disease of potatoes, causes stem and leaf rot, leading to significant economic losses. Chitosan is a naturally occurring polysaccharide with a broad spectrum of antimicrobial properties. However, the specific mechanism of chitosan on Phytophthora infestans has not been studied. In this study, we found that chitosan significantly inhibited the mycelial growth and spore germination of Phytophthora infestans in vitro, reduced the resistance of Phytophthora infestans to various adverse conditions, and it had synergistic effect with pesticides, making it a potential way to reduce the use of chemical pesticides. In addition, chitosan could induce resistance in potato pieces and leaves to Phytophthora infestans. Transcriptome analysis data showed that chitosan mainly affected cell growth of Phytophthora infestans, and most of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene ontology (GO) terms revolved in metabolic processes, cell membrane structure and function and ribosome biogenesis. Differentially expressed genes (DEGs) related to adverse stress and virulence were also discussed. On the whole, this study provided new ideas for the development of chitosan as an eco-friendly preparation for controlling potato late blight.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Ziyue You
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Yang Luo
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Chengji Yang
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Jie Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Yanlin Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Guangjing Wei
- Chongqing No.1 Secondary School, Chongqing 400044, China
| | - Pan Dong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China.
| | - Maozhi Ren
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| |
Collapse
|
39
|
Li K, Xing R, Liu S, Li P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12203-12211. [PMID: 33095004 DOI: 10.1021/acs.jafc.0c05316] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chitin and chitosan are natural polysaccharides with huge application potential in agriculture, such as promoting plant growth, eliciting plant resistance against biotic and abiotic stress, and activating symbiotic signaling between plants and beneficial microorganisms. Chitin and chitosan offer a sustainable alternative for future crop production. The bioactivities of chitin and chitosan closely depend on their structural factors, including molecular size, degree of acetylation, and pattern of acetylation. It is of great significance to identify the key fragments in chitin and chitosan chains that are responsible for these agricultural bioactivities. Herein, we review the recent progress in the structure-function relationship of chitin and chitosan in the field of agriculture application. The preparation of chitin and chitosan fragments and their action mode for plant protection and growth are also discussed.
Collapse
Affiliation(s)
- Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
40
|
Sun L, Yang Y, Wang R, Li S, Qiu Y, Lei P, Gao J, Xu H, Zhang F, Lv Y. Effects of exopolysaccharide derived from Pantoea alhagi NX-11 on drought resistance of rice and its efficient fermentation preparation. Int J Biol Macromol 2020; 162:946-955. [PMID: 32593756 DOI: 10.1016/j.ijbiomac.2020.06.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/03/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
Exopolysaccharide (EPS) plays an important role in plant growth-promoting bacteria (PGPB)-mediated enhancement of plant abiotic stress resistance. In this study, it is found that EPS from Pantoea alhagi NX-11 foliar sprayed at 20, 50, and 100 ppm could significantly enhance drought resistance of rice seedlings. The fresh weight and relative water content of EPS sprayed were increased. In addition, malondialdehyde content reduced while total chlorophyll, proline and soluble sugar content, prominent enhanced. Meanwhile, the antioxidant enzymes, CAT, POD and SOD, were also significantly increased. The drought resistance of rice was most pronounced at the 50 ppm EPS dose. For the sake of commercializing the gram-negative EPS-producing PGPB which were difficult to preserve, it is vital to improve the EPS yield. First, the carbon source, nitrogen source and inorganic salt were optimized. Subsequently, the effect of three oxygen vectors, which could increase the efficiency of oxygen mass transfer, on EPS yield was studied by response surface methodology. The maximum EPS yield (19.27 g/L) was obtained, which is 51.7% higher than the initial yield of 12.7 g/L. Overall, it may provide a new way for the industrialization of PGPB to increase the yield of EPS.
Collapse
Affiliation(s)
- Liang Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yanbo Yang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Lei
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Nanjing Institute for Comprehensive Utilization of Wild Plants, China Co-op, Nanjing 211111, China.
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute Of Technology, Yancheng 224051, China
| | - Hong Xu
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Fenglun Zhang
- Nanjing Institute for Comprehensive Utilization of Wild Plants, China Co-op, Nanjing 211111, China
| | - Yunfei Lv
- Agricultural and Rural Bureau of Yantai, Yantai 264000, China
| |
Collapse
|
41
|
Lemke P, Moerschbacher BM, Singh R. Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan. FRONTIERS IN PLANT SCIENCE 2020; 11:1193. [PMID: 32903855 PMCID: PMC7438930 DOI: 10.3389/fpls.2020.01193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated via RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles via redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.
Collapse
Affiliation(s)
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | - Ratna Singh
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| |
Collapse
|
42
|
Chitosan Oligosaccharide Addition to Buddhist Pine (Podocarpus macrophyllus (Thunb) Sweet) under Drought: Reponses in Ecophysiology and δ13C Abundance. FORESTS 2020. [DOI: 10.3390/f11050526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Climate warming induces the necessity to increase the drought resistance of shade-obligate juvenile trees in sub-tropical forests. Chitosan oligosaccharide (COS) is a biopolymer derived from the marine resource that has attracted accumulative attention to induce and promote a plant’s resistance to abiotic stress. Buddhist pine (Podocarpus mascrophyllus (Thunb)Sweet) seedlings were cultured as the model material whose natural distribution in sub-tropical areas of China has suffered severe summer drought events in the last 113 years. A split-block design was conducted with a simulated drought event (drought vs. irrigated control), the COS addition, and two samplings at the ends of drought and re-watered treatments. The COS addition increased the resistance to drought by inducing a starch allocation towards roots where δ13C abundance and antioxidant enzyme activities were upregulated. The COS addition can promote biomass allocation to roots and increase the number of new roots. The COS addition to drought-treated Buddhist pine seedlings resulted in robust diameter growth. Therefore, COS is an available polymer to promote the resistance of Buddhist pine to drought. More work is suggested to clarify the dose of COS addition that can induce a prominent response of biomass accumulation and carbohydrate metabolism.
Collapse
|
43
|
Shingote PR, Kawar PG, Pagariya MC, Muley AB, Babu KH. Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech 2020; 10:225. [PMID: 32373417 PMCID: PMC7196118 DOI: 10.1007/s13205-020-02197-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
MYB transcription factors are one of the most important mediators for the survival of plants under multiple stress responses. In the present study, EaMYB18, encoding a single R3 repeat MYB DNA binding domain was isolated from stress-tolerant wild relative species of sugarcane Erianthus arundinaceus. In silico analysis of 948 bp coding mRNA sequence of EaMYB18 exhibited the presence of four exons and three introns. Further, the EaMYB18 gene was transformed in tobacco and its stable inheritance was confirmed through antibiotic resistance screening, PCR amplification and Southern hybridization blotting. Results of the estimation of MDA, proline, total chlorophyll and antioxidant activities of EaMYB18 transgenic tobacco lines exhibited least oxidative damage under drought and cold stress over the untransformed ones, the over-expression of EaMYB18 has improved drought and cold stress tolerance ability in tobacco. The comparative physiological and biochemical analysis of transgenic tobacco plants overexpressing SoMYB18, SsMYB18 and EaMYB18, revealed that the EaMYB18 and SsMYB18 transgenic plants demonstrated effective tolerance to drought and cold stresses, while SoMYB18 showed improved tolerance to salt stress alone. Amongst these three genes, EaMYB18 displayed the highest potential for drought and cold stress tolerances as compared to SoMYB18 and SsMYB18 genes.
Collapse
Affiliation(s)
- Prashant Raghunath Shingote
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- Vasantrao Naik College of Agricultural Biotechnology, Waghapur Road, Yavatmal, Maharashtra 445001 India
- Department of Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Prashant Govindrao Kawar
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- ICAR-Directorate of Floriculture Research, College of Agricultural Campus, Shivaji Nagar, Pune, Maharashtra 411005 India
- Department of Biotechnology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Madhuri Chandrakant Pagariya
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
- Department of Botany, BJS Arts, Science and Commerce College, Bakori Phata, Wagholi, Pune, Maharashtra 412207 India
| | - Abhijeet Bhimrao Muley
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
| | - K. H. Babu
- Molecular Biology and Genetic Engineering Division, Vasantdada Sugar Institute, Manjari (Bk), Tal. Haveli, Pune, Maharashtra 412307 India
| |
Collapse
|
44
|
Xu D, Li H, Lin L, Liao M, Deng Q, Wang J, Lv X, Deng H, Liang D, Xia H. Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:661-668. [PMID: 32255930 PMCID: PMC7113348 DOI: 10.1007/s12298-020-00791-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 05/08/2023]
Abstract
To determine the effects of carboxymethyl chitosan on plant growth and nutrient uptake, Prunus davidiana seedlings were treated with various concentrations of carboxymethyl chitosan. The biomass, physiological characteristics, and nutrient uptake of the treated P. davidiana seedlings were then examined. Compared with the control seedlings, the carboxymethyl chitosan-treated seedlings had a higher biomass and a greater abundance of photosynthetic pigments (i.e., chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), with the best concentration as 2 g/L carboxymethyl chitosan, which increased the shoot biomass and total chlorophyll content by 26.75% and 24.64%, respectively. Moreover, the application of carboxymethyl chitosan enhanced superoxide dismutase and catalase activities, increased the soluble protein content, and decreased the malondialdehyde and proline contents of the P. davidiana seedlings to some extent. Additionally, the carboxymethyl chitosan treatments decreased the total nitrogen content, but increased the total phosphorus and potassium contents in P. davidiana seedlings to some extent. The minimum of total nitrogen content and the maximum of total phosphorus and potassium contents in shoots of P. davidiana seedlings were the concentration of 2 g/L carboxymethyl chitosan, which was decreased by 12.96% and increased by 15.45% and 22.53%, respectively, compared with the control. Therefore, the application of a carboxymethyl chitosan solution may promote the growth, enhance the stress resistance, and alter the nutrient uptake of P. davidiana seedlings, especially at 2 g/L carboxymethyl chitosan.
Collapse
Affiliation(s)
- Dandi Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Hongyan Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
45
|
Vassilev N, Vassileva M, Martos V, Garcia del Moral LF, Kowalska J, Tylkowski B, Malusá E. Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. FRONTIERS IN PLANT SCIENCE 2020; 11:270. [PMID: 32211014 PMCID: PMC7077505 DOI: 10.3389/fpls.2020.00270] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/20/2020] [Indexed: 05/23/2023]
Abstract
In the last 10-15 years, the wide application of bioformulated plant beneficial microorganisms is accepted as an effective alternative of chemical agro-products. Two main problems can be distinguished in their production and application: (a) economical competiveness based on the overall up-stream and down-stream operational costs, and (b) development of commercial products with a high soil-plant colonization potential in controlled conditions but not able to effectively mobilize soil nutrients and/or combat plant pathogens in the field. To solve the above problems, microbe-based formulations produced by immobilization methods are gaining attention as they demonstrate a large number of advantages compared to other solid and liquid formulations. This mini-review summarizes the knowledge of additional compounds that form part of the bioformulations. The additives can exert economical, price-decreasing effects as bulking agents or direct effects improving microbial survival during storage and after introduction into soil with simultaneous beneficial effects on soil and plants. In some studies, combinations of additives are used with a complex impact, which improves the overall characteristics of the final products. Special attention is paid to polysaccharide carriers and their derivates, which play stimulatory role on plants but are less studied. The mini-review also focuses on the potential difficulty in evaluating the effects of complex bio-formulations.
Collapse
Affiliation(s)
- Nikolay Vassilev
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Maria Vassileva
- Department of Chemical Engineering, Institute of Biotechnology, University of Granada, Granada, Spain
| | - Vanessa Martos
- Department of Plant Physiology, University of Granada, Granada, Spain
| | | | - Jolanta Kowalska
- Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Bartosz Tylkowski
- Chemical Technology Unit, Technology Centre of Catalonia, Tarragona, Spain
| | - Eligio Malusá
- Research Institute of Horticulture, Skierniewice, Poland
| |
Collapse
|
46
|
Li DD, Tao Y, Shi YN, Han YB, Yang N, Xu XM. Effect of re-acetylation on the acid hydrolysis of chitosan under an induced electric field. Food Chem 2020; 309:125767. [DOI: 10.1016/j.foodchem.2019.125767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
|
47
|
Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int J Biol Macromol 2019; 156:1584-1599. [PMID: 31790741 DOI: 10.1016/j.ijbiomac.2019.11.210] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The novelty of the present work looks in the synthesis of aqueous dispersed selenium nanoparticles (Se NPs) using gamma rays with the aid of various natural macromolecules such as citrus pectin (CP), sodium alginate (Alg), chitosan (CS) and aqueous extract of fermented fenugreek powder (AEFFP) using Pleurotus ostreatus for investigating their impact in vitro toward carcinoma cell. The synthesized Se NPs were characterized by XRD, UV-Vis., DLS, HRTEM, SEM, EDX and FTIR. Nucleation and growth mechanisms were also discussed. The factorial design was applied to examine the importance of multiple parameters on Se NPs production with a special focus on temperature and gamma rays influences. FTIR spectrum exhibited the existence of several functional groups in Se NPs-capping macromolecules. Results revealed that Se NPs' size was dramatically-influenced by the type of stabilizer, precursors concentration, pH and the absorbed gamma rays dose. The current research reported the promising antitumor application of Se NPs against Ehrlich Ascites Carcinoma (EAC) and human Colon Adenocarcinoma (CACO) in vitro. The proliferation of EAC was significantly-hindered by Se NPs-CS (38.0 μg/ml) at 60 kGy (IC50 = 23.12%) and Se NPs-AEFFP (19.00 μg/ml) at 15 kGy (IC50 = 7.21%). Also, Se NPs control the generation of CACO cells, IC50 was recorded as 25.32% for Se NPs-CS (38.0 μg/ml) and 8.57% for Se NPs-AEFFP (19.00 μg/ml).
Collapse
|
48
|
Abdel Ghaffar AM, Ali HE, Maziad NA. Modification of Low Density Polyethylene Films by Blending with Natural Polymers and Curing by Gamma Radiation. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090420010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Effects of Gellan Oligosaccharide and NaCl Stress on Growth, Photosynthetic Pigments, Mineral Composition, Antioxidant Capacity and Antimicrobial Activity in Red Perilla. Molecules 2019; 24:molecules24213925. [PMID: 31671710 PMCID: PMC6864638 DOI: 10.3390/molecules24213925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/04/2022] Open
Abstract
The growing market demand for plant raw materials with improved biological value promotes the extensive search for new elicitors and biostimulants. Gellan gum derivatives may enhance plant growth and development, but have never been used under stress conditions. Perilla (Perilla frutescens, Lamiaceae) is a source of valuable bioproducts for the pharmaceutical, cosmetic, and food industries. However, there is not much information on the use of biostimulators in perilla cultivation. In this work we investigated the effects of oligo-gellan and salt (100 mM NaCl) on the yield and quality of red perilla (P. frutescens var. crispa f. purpurea) leaves. Plants grown under stress showed inhibited growth, smaller biomass, their leaves contained less nitrogen, phosphorus, potassium, total polyphenol and total anthocyanins, and accumulated considerably more sodium than control plants. Treatment with oligo-gellan under non-saline conditions stimulated plant growth and the fresh weight content of the above-ground parts, enhanced the accumulation of nitrogen, potassium, magnesium and total polyphenols, and increased antioxidant activity as assessed by DPPH and ABTS assays. Oligo-gellan applied under saline conditions clearly alleviated the stress effects by limiting the loss of biomass, macronutrients, and total polyphenols. Additionally, plants pretreated with oligo-gellan and then exposed to 100 mM NaCl accumulated less sodium, produced greater amounts of photosynthetic pigments, and had greater antioxidant activity than NaCl-stressed plants. Irrespective of the experimental treatment, 50% extract effectively inhibited growth of Escherichia coli and Staphylococcus aureus. Both microorganisms were the least affected by 25% extract obtained from plants untreated with either NaCl or oligo-gellan. In conclusion, oligo-gellan promoted plant growth and enhanced the quality of red perilla leaves and efficiently alleviated the negative effects of salt stress.
Collapse
|
50
|
Liu J, Zhang X, Kennedy JF, Jiang M, Cai Q, Wu X. Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissima. Int J Biol Macromol 2019; 140:851-857. [PMID: 31470051 DOI: 10.1016/j.ijbiomac.2019.08.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/16/2023]
Abstract
Alternaria tenuissima infects stored potatoes, and causes tuber rot, resulting in significant economic losses. As a naturally-occurring polysaccharide (poly-β-(1 → 4) N-acetyl-D-glucosamine), chitosan has been reported to be an eco-friendly alternative to synthetic fungicides for the control of postharvest diseases on agricultural commodities. In this study, application of 0.25-1.25 g/L chitosan significantly inhibited spore germination and mycelial growth of A. tenuissima in vitro, with the greatest inhibitory effect observed at the highest concentration. Cytological and biochemical analysis of A. tenuissima spores indicated that exposure to 1.25 g/L chitosan significantly damaged the plasma membrane and increased the level of lipid oxidation. Gene expression analysis in potato tuber revealed that an application of 1.25 g/L chitosan induced the expression of defense-related genes, including catalase, peroxidase, polyphenol oxidase, chitinase and β-1,3-glucanase, and the level of flavonoids and lignin. Chitosan effectively controlled tuber rot caused by A. tenuissima. Collectively, results of the current study indicate that the ability of chitosan to reduce Alternaria rot in stored potato tubers is due to its direct antifungal activity and its ability to induce defense responses in potato tuber tissues. Chitosan may have the potential as a substitute for synthetic fungicides to reduce postharvest losses in potato.
Collapse
Affiliation(s)
- Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Xiaofang Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House Tenbury Wells, Worcestershire WR15 8SG, UK
| | - Mingguo Jiang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|