1
|
Qi X, Liu Y, Zhou Y, Li H, Yang J, Liu S, He X, Li L, Zhang C, Yu H. A pectic polysaccharide from Typhonii Rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism. Carbohydr Polym 2025; 348:122897. [PMID: 39567133 DOI: 10.1016/j.carbpol.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
The pectic polysaccharide WTRP-A0.2b (43 kDa) has been isolated from Typhonii rhizoma and analyzed in terms of its structural features, anti-tumor activities and mechanism of action. NMR, FT-IR, monosaccharide composition, and enzymology demonstrate that WTRP-A0.2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 3.7:1:1.7, respectively. The RG-I domains contain a highly branched structure that is substituted primarily with β-D-1,4-galactan, α-L-1,5-arabinan, and AG-II. The HG domains contain un-esterified and methyl-esterified and/or acetyl-esterified oligogalacturonides with a degree of polymerization of 1-8. In vitro experiments demonstrate that WTRP-A0.2b inhibits proliferation of K562 cells by inducing mitochondrial damage and suppressing glycolysis. This activity promotes mitochondrial permeability, increases production of reactive oxygen species (ROS), boosts extracellular oxygen consumption and adenosine triphosphate (ATP) content, while it decreases uncoupling protein-2 (UCP2) expression and lactic acid content. Our results provide valuable insight for screening natural polysaccharide-based anti-tumor effects of polysaccharides from Typhonii rhizoma.
Collapse
Affiliation(s)
- Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Ying Liu
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Ying Zhou
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Heqi Li
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Jingyi Yang
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Senyang Liu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Xinyi He
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Lei Li
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Chunjing Zhang
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
da Silva VRF, da Silva GB, Manica D, Deolindo CTP, Bagatini MD, Kempka AP. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells-a study on leaf and fruit infusions. In Silico Pharmacol 2024; 12:105. [PMID: 39569036 PMCID: PMC11574240 DOI: 10.1007/s40203-024-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The study investigated the efficacy of Campomanesia xanthocarpa infusions on human melanoma cells (SK-MEL-28). The phytochemical profile revealed 18 phenolic compounds in the leaf infusion and 9 in the fruit infusion. After 24 h of treatment, the infusions demonstrated antineoplastic effects, reducing cell viability at all tested concentrations for the leaf infusion. For the fruit infusion, a significant reduction in cell viability was observed specifically at the 800 μg/mL concentration. Fluorescence microscopy and mitochondrial membrane potential results indicated that the leaf infusion was more effective in reducing cell viability and mitochondrial function in SK-MEL-28 cells, possibly due to its greater variety of phenolic compounds compared to the fruit infusion. The leaf infusion also induced higher production of intracellular reactive oxygen species compared to the fruit infusion. Protein sulfhydryl levels were reduced for the leaf infusion. Epigallocatechin gallate, Isoquercitrin, Rutin, Kaempferol-3-O-rutinoside, Chlorogenic acid, and Ellagic acid were identified as the main compounds with activity against SK-MEL-28 cells. Molecular docking analysis underscored factors such as affinity, cavity size, binding mode, and contact residues with specific compounds chosen for their favorable properties in targeting BRAF, CDK4, CDK6, MEK1, and MEK2. The variability in binding affinities may directly influence the compounds' ability to inhibit different signaling pathways related to cancer cell growth and proliferation. The results suggest that phenolic compounds from C. xanthocarpa extracts have therapeutic potential and could contribute to melanoma therapies. Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00286-1.
Collapse
Affiliation(s)
- Vanessa Ruana Ferreira da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Carolina Turnes Pasini Deolindo
- Ministry of AgricultureLivestock, and Food Supply, Federal Agricultural Defense Laboratory, São José, SC Brazil
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC 89870-000 Brazil
| |
Collapse
|
3
|
Ktari N, Gargouri W, Jlaiel L, Trabelsi I, Ben Slima S, Bardaa S, Bendali F, Ben Salah R. Extraction, Purification, Characterization, and Wound Healing Effects of Novel Prickly Pear ( Opuntiaficus-indica (L.) Mill.) Heteropolysaccharides. Pharmaceuticals (Basel) 2024; 17:1410. [PMID: 39459048 PMCID: PMC11510737 DOI: 10.3390/ph17101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The present study undertakes the purification of a novel polysaccharide from Tunisian prickly pear (Opuntiaficus-indica (L.) Mill.) rackets (PPPRs) and the determination of its physicochemical properties, structure, antibacterial and antioxidant properties, as well as its in vitro and in vivo wound healing potential. Methods: The PPPR was structurally analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and UV/Visible Spectroscopy, revealing characteristic bands of polysaccharides. According to thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. Results: The crude PPPR is an heteropolysaccharide composed of glucose (62.4%), galactose (19.37%), mannose (10.24%), and rhamnose (7.98%), with an average molecular weight of 90.94 kDa. This novel polysaccharide exhibited notable antioxidant potential assessed by four different in vitro assays: the 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, ferric reducing power, ferrous chelating activity, and scavenging activity against 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS). In addition, the PPPR displayed high antibacterial activities with a MIC of 2.5 mg/mL against Salmonella Typhimurium and Pseudomonas aeruginosa, cytocompatibility properties, and non-cytotoxicity. Subsequently, the effect of the PPPR on skin wound healing was studied in a diabetic rat model induced by alloxan, revealing a significant acceleration in the wound healing process. This acceleration was evidenced by the expedited recovery of the dermis, increased formation of blood vessels, and enhanced tissue granulation. Conclusion: Therefore, the findings offer fresh perspectives on the creation of a potentially efficient and promising racket polysaccharide-based therapy for the treatment of persistent diabetic wounds.
Collapse
Affiliation(s)
- Naourez Ktari
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
- Department of Life Sciences, Faculty of Science of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia
| | - Wafa Gargouri
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Lobna Jlaiel
- Analytical Service, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Imen Trabelsi
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Sirine Ben Slima
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Sana Bardaa
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Riadh Ben Salah
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| |
Collapse
|
4
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Daneshmehr M, Pazhang M, Mollaei S, Ebadi M, Pazhang Y. Targeted delivery of 5-fluorouracil and shikonin by blended and coated chitosan/pectin nanoparticles for treatment of colon cancer. Int J Biol Macromol 2024; 270:132413. [PMID: 38761911 DOI: 10.1016/j.ijbiomac.2024.132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Herein, 5-fluorouracil and shikonin (extracted from Fusarium tricinctum) were loaded in chitosan/pectin nanoparticle (CS/PEC-NPs), prepared by blending (B-CS/PEC-NPs) and coating (C-CS/PEC-NPs) methods. The nanoparticles characterized by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Differential Light Scattering (DLS). Then, some properties of the nanoparticles such as drug release rate and the nanoparticles cytotoxicity were studied. The FTIR, XRD, EDX, SEM and DLS results showed that the nanoparticles synthesized properly with an almost spherical morphology, an average size of 82-93 nm for B-CS/PEC-NPs, an average diameter of below 100 nm (mostly 66-89 nm) for C-CS/PEC-NPs, and hydrodynamic diameter of 310-817 nm. The drug release results indicated the lower release rate of drugs for B-CS/PEC-NPs relative to C-CS/PEC-NPs at different pHs, high release rate of drugs for the nanoparticles in the simulated large intestinal fluids containing pectinase, and Korsmeyer-Peppas model for release of the drugs. The results showed more cytotoxicity of B-CS/PEC-NPs containing drugs, especially B-CS/PEC-NPs containing both drugs (B-CS/PEC/5-FU/SHK-NPs) after treating with pectinase (IC50 of 18.6 μg/mL). In conclusion, despite the limitation of C-CS/PEC-NPs for simultaneous loading of hydrophilic and hydrophobic drugs, B-CS/PEC-NPs showed suitable potency for loading and targeted delivery of the drugs.
Collapse
Affiliation(s)
- Maryam Daneshmehr
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Saeed Mollaei
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Vaz da Luz KT, Gonçalves JP, de Lima Bellan D, Visnheski BRC, Schneider VS, Cortes Cordeiro LM, Vargas JE, Puga R, da Silva Trindade E, de Oliveira CC, Simas FF. Molecular weight-dependent antitumor effects of prunes-derived type I arabinogalactan on human and murine triple wild-type melanomas. Carbohydr Res 2024; 535:108986. [PMID: 38042036 DOI: 10.1016/j.carres.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
The regulation of metastasis-related cellular aspects of two structurally similar AGIs from prunes tea infusion, with different molar masses, was studied in vitro against Triple Wild-Type metastatic melanoma (TWM) from murine and human origin. The higher molar mass AGI (AGI-78KDa) induced TWMs cells death and, in murine cell line, it decreased some metastasis-related cellular processes: invasiveness capacity, cell-extracellular matrix interaction, and colonies sizes. The lower molar mass AGI (AGI-12KDa) did not induce cell death but decreased TWMs proliferation rate and, in murine cell line, it decreased cell adhesion and colonies sizes. Both AGIs alter the clonogenic capacity of human cell line. In spite to understand why we saw so many differences between AGIs effects on murine and human cell lines we performed in silico analysis that demonstrated differential gene expression profiles between them. Complementary network topological predictions suggested that AGIs can modulate multiple pathways in a specie-dependent manner, which explain differential results obtained in vitro between cell lines. Our results pointed to therapeutic potential of AGIs from prunes tea against TWMs and showed that molecular weight of AGIs may influence their antitumor effects.
Collapse
Affiliation(s)
- Keila Taiana Vaz da Luz
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Jenifer Pendiuk Gonçalves
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Daniel de Lima Bellan
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Bruna Renata Caitano Visnheski
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Vanessa Suzane Schneider
- Biochemistry and Molecular Biology Department, Section of Biological Sciences, UFPR, Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Lucimara Mach Cortes Cordeiro
- Biochemistry and Molecular Biology Department, Section of Biological Sciences, UFPR, Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - José Eduardo Vargas
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Renato Puga
- Hermes Pardini Institute, CEP 04038-030, São Paulo, SP, Brazil
| | - Edvaldo da Silva Trindade
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil
| | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplastic Cells, Laboratory of Sulfated Polysaccharides Investigation, Cell Biology Department, Section of Biological Sciences, Universidade Federal Do Paraná (UFPR), Av Cel Francisco H Dos Santos, s/n, CEP 81530-980, Curitiba, PR, Brazil.
| |
Collapse
|
7
|
Picot-Allain MCN, Neergheen VS. Pectin a multifaceted biopolymer in the management of cancer: A review. Heliyon 2023; 9:e22236. [PMID: 38058641 PMCID: PMC10696011 DOI: 10.1016/j.heliyon.2023.e22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
This review article focuses on the multifaceted roles of pectin in cancer management, namely as an oncotherapeutic delivery vehicle and a pharmacological agent. Over the past decades, the potential of pectin as a novel therapeutical agent for the prevention and/or management of cancer has gained increasing interest. Pectin has been found to modulate different mechanisms involved in the onset and progression of carcinogenesis, such as galectin-3 inhibition, caspase-3-induced apoptosis, and autophagy. Elucidating the structure-activity relationship provides insight into the relationship between the structure of pectin and different mechanism/s. The bioactivity of pectin, with respect to its structure, was critically discussed to give a better insight of the relationship between the structure of the extracted pectin and the observed bioactive effects. The rhamnogalacturonan I part of the pectin chain was found to bind to galectin-3, associated with several cancer hallmarks. The anti-inflammatory and antioxidant potential of pectin were also described. The roles of pectin as a treatment enhancer and a drug delivery vehicle for oncotherapeutics were critically defined. The scientific findings presented in this paper are expected to highlight the potential and role of pectin recovered from various plant sources in preventing and managing cancer.
Collapse
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
- Future Africa, University of Pretoria, South Africa
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
8
|
Patlay AA, Belousov AS, Silant’ev VE, Shatilov RA, Shmelev ME, Kovalev VV, Perminova IV, Baklanov IN, Kumeiko VV. Preparation and Characterization of Hydrogel Films and Nanoparticles Based on Low-Esterified Pectin for Anticancer Applications. Polymers (Basel) 2023; 15:3280. [PMID: 37571174 PMCID: PMC10422365 DOI: 10.3390/polym15153280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prospective adjuvant anticancer therapy development includes the establishing of drug delivery systems based on biocompatible and biodegradable carriers. We have designed films and nanoparticles (NPs) based on low-esterified pectin hydrogel using the ionic gelation method. We investigated morphology, nanomechanical properties, biocompatibility and anticancer activity. Hydrogel films are characterized by tunable viscoelastic properties and surface nanoarchitectonics through pectin concentration and esterification degree (DE), expressed in variable pore frequency and diameter. An in vitro study showed a significant reduction in metabolic activity and the proliferation of the U87MG human glioblastoma cell line, probably affected via the adhesion mechanism. Glioma cells formed neurosphere-like conglomerates with a small number of neurites when cultured on fully de-esterified pectin films and they did not produce neurites on the films prepared on 50% esterified pectin. Pectin NPs were examined in terms of size distribution and nanomechanical properties. The NPs' shapes were proved spherical with a mean diameter varying in the range of 90-115 nm, and a negative zeta potential from -8.30 to -7.86 mV, which indicated their stability. The NPs did not demonstrate toxic effect on cells or metabolism inhibition, indicating good biocompatibility. Nanostructured biomaterials prepared on low-esterified pectins could be of interest for biomedical applications in adjuvant anticancer therapy and for designing drug delivery systems.
Collapse
Affiliation(s)
- Aleksandra A. Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Andrei S. Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Vladimir E. Silant’ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Roman A. Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Mikhail E. Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
| | - Valeri V. Kovalev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia;
| | - Ivan N. Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vadim V. Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok 690922, Russia; (A.A.P.); (A.S.B.); (R.A.S.); (M.E.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
9
|
Ferrero RL, Weinstein-Oppenheimer CR, Cabrera-Muñoz Z, Zúñiga-Hansen ME. The Antiproliferative Activity of a Mixture of Peptide and Oligosaccharide Extracts Obtained from Defatted Rapeseed Meal on Breast Cancer Cells and Human Fibroblasts. Foods 2023; 12:foods12020253. [PMID: 36673345 PMCID: PMC9858037 DOI: 10.3390/foods12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Oligosaccharide and peptide extracts obtained separately from defatted rapeseed meal (DRM) have shown antiproliferative activities on the MCF-7 breast cancer cell line. However, oligosaccharide extracts were not tested on human fibroblasts and have low yields. The objective of the present study was to combine two antiproliferative extracts, the peptides and oligosaccharides, that were obtained independently with commercial enzymes from DRM, allowing improvement of the mass yield and antiproliferative activity. The DRM was solubilized in an alkaline medium to obtain an insoluble meal residue (IMR) and an alkaline extract (RAE). To produce the oligosaccharide extract from IMR, three enzymes and different enzyme/substrate ratios were used. The oligosaccharide extract (molecular weight <30 kDa) recovered with the commercial enzyme. Endogalacturonase showed an 80% inhibition on MCF-7 cells at 20 mg/mL. The combination of this oligosaccharide extract with the peptide extract (obtained with Alkalase 2.4 L from a RAE at 10 mg/mL) inhibited 84.3% of MCF-7 cells proliferation at a concentration of 20 mg/mL, exhibiting no cytotoxic effects on fibroblasts. The mass yield of the extract pool was 27.07% (based on initial DRM). It can be concluded that a mixture of antiproliferative extracts was produced from DRM which was selective against MCF-7 cells.
Collapse
Affiliation(s)
- Romina Lis Ferrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
- Correspondence:
| | - Caroline Ruth Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso 2360134, Chile
- Centro de Investigación Farmacopea Chilena, Santa Marta 183, Playa Ancha, Valparaíso 2360134, Chile
| | - Zaida Cabrera-Muñoz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
- Centro Regional de Estudio en Alimentos Saludables, R17A10001, Av. Universidad 330, Curauma, Valparaíso 2360134, Chile
| |
Collapse
|
10
|
Emran TB, Islam F, Mitra S, Paul S, Nath N, Khan Z, Das R, Chandran D, Sharma R, Lima CMG, Awadh AAA, Almazni IA, Alhasaniah AH, Guiné RPF. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022; 27:7405. [PMID: 36364232 PMCID: PMC9657392 DOI: 10.3390/molecules27217405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | | | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
11
|
Ferreira-Gonçalves T, Iglesias-Mejuto A, Linhares T, Coelho JMP, Vieira P, Faísca P, Catarino J, Pinto P, Ferreira D, Ferreira HA, Gaspar MM, Durães L, García-González CA, Reis CP. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy. Gels 2022; 8:gels8080485. [PMID: 36005086 PMCID: PMC9407269 DOI: 10.3390/gels8080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Aerogels are materials with unique properties, among which are low density and thermal conductivity. They are also known for their exquisite biocompatibility and biodegradability. All these features make them attractive for biomedical applications, such as their potential use in photothermal therapy (PTT). This technique is, yet, still associated with undesirable effects on surrounding tissues which emphasizes the need to minimize the exposure of healthy regions. One way to do so relies on the use of materials able to block the radiation and the heat generated. Aerogels might be potentially useful for this purpose by acting as insulators. Silica- and pectin-based aerogels are reported as the best inorganic and organic thermal insulators, respectively; thus, the aim of this work relies on assessing the possibility of using these materials as light and thermal insulators and delimiters for PTT. Silica- and pectin-based aerogels were prepared and fully characterized. The thermal protection efficacy of the aerogels when irradiated with a near-infrared laser was assessed using phantoms and ex vivo grafts. Lastly, safety was assessed in human volunteers. Both types presented good textural properties and safe profiles. Moreover, thermal activation unveils the better performance of silica-based aerogels, confirming the potential of this material for PTT.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Ana Iglesias-Mejuto
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (A.I.-M.); (C.A.G.-G.)
| | - Teresa Linhares
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (T.L.); (L.D.)
- 2C2T-Centre for Textile Science and Technology, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Pedro Vieira
- Physics Department, NOVA School of Science and Technology (Campus de Caparica), 2829-516 Caparica, Portugal;
| | - Pedro Faísca
- CBIOS-Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Pedro Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, 7004-516 Évora, Portugal;
| | - Hugo A. Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
| | - Luísa Durães
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal; (T.L.); (L.D.)
| | - Carlos A. García-González
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; (A.I.-M.); (C.A.G.-G.)
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; (T.F.-G.); (P.P.); (M.M.G.)
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.M.P.C.); (H.A.F.)
- Correspondence: ; Tel.: +351-217-946-429 (ext. 14244); Fax: +351-217-946-470
| |
Collapse
|
12
|
The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals (Basel) 2022; 15:ph15060732. [PMID: 35745651 PMCID: PMC9229824 DOI: 10.3390/ph15060732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Pectin constitutes an essential component of dietary fiber. Modified pectins from various sources possess potent anticancer and immunomodulatory activities. In this study, two pectins isolated from apple pomace by Trichoderma enzyme treatment, PX (with endo-xylanase) and PCX (with both endo-cellulase and endo-xylanase), were studied in colon cancer cell lines (HCT 116, Caco-2, and HT-29). Both pectins reduced colon cancer cell viability, induced apoptosis, and increased intracellular amounts of reactive oxygen species. Additionally, synergy between pectin and an active form of irinotecan, SN-38, in all aspects mentioned above, was discovered. This drug is a common component of cytotoxic combinations recommended as treatment for colon cancer patients. PX and PCX demonstrated significant anti-inflammatory activity in lipopolysaccharide-stimulated cells. Interaction of apple pectins with galectin-3 and Toll-like Receptor 4 (TLR4) was suggested to be responsible for their anticancer and anti-inflammatory effect. Since PCX was more active than PX in almost all experiments, the role of the enzyme used to obtain the pectin for its biological activity was discussed. It was concluded that co-operation between both enzymes was needed to obtain the molecule of the most beneficial properties. The low molecular mass of PCX together with a high proportion of rhamnogalacturonan I (RG I) regions seemed to be crucial for its superior activity.
Collapse
|
13
|
Barbieri SF, da Costa Amaral S, Mazepa E, Filho APS, Sassaki GL, Silveira JLM. Isolation, NMR characterization and bioactivity of a (4-O-methyl-α-D-glucurono)-β-D-xylan from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 2022; 207:893-904. [PMID: 35358579 DOI: 10.1016/j.ijbiomac.2022.03.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Hemicellulose-type polysaccharides were isolated from Campomanesia xanthocarpa fruits by alkaline extraction and submitted to fractionation processes giving rise to eluted (GE-300) and retained (GR-300) fractions. GE-300 presented a mixture of galactoglucomannans (GGM) and glucuronoxylans (MGX), while the GR-300 fraction is composed only of MGX. In this way, the chemical structure of MGX, investigated by 1D 1H, 13C and 2D 1H-13C HSQC, 1H-1H COSY and 1H-13C HMBC NMR spectroscopy, revealed that the chemical structure of polysaccharide is a (4-O-methyl-α-D-glucurono)-D-xylan. Deep and precise NMR chemical shift determination of clean and specific 1H NMR glycosyl units were developed by 1D TOCSY and 1D NOESY analysis. This approach demonstrated unequivocally that 4-O-methyl-α-D-glucopyranosyl uronic acid group is linked to O-2 of a (1 → 4)-β-D-xylan in the main chain. Furthermore, MGX scavenged DPPH radical (0.5 to 1.0 mg mL-1) and was not cytotoxic to human dermal fibroblasts at concentrations up to 1.0 mg mL-1, as demonstrated by neutral red and crystal violet assays, evidencing in vitro biocompatibility. The structure elucidation of GR-300 together with its bioactivity assessment contributed to better understand the chemical characteristics of C. xanthocarpa hemicelluloses and may provide structural basis for future structure-property studies.
Collapse
Affiliation(s)
- Shayla Fernanda Barbieri
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | - Sarah da Costa Amaral
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | - Ester Mazepa
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil
| | | | - Guilherme Lanzi Sassaki
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980 Curitiba, PR, Brazil
| | - Joana Léa Meira Silveira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR 81.531-980, Brazil.
| |
Collapse
|
14
|
Ornelas AC, Ferguson S, DePlaza M, Adekunle T, Basha R. Anti-Cancer Pectins and Their Role in Colorectal Cancer Treatment. ONCO THERAPEUTICS 2022; 9:43-55. [PMID: 37309487 PMCID: PMC10259824 DOI: 10.1615/oncotherap.v9.i2.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A class of plant polysaccharides, pectin is known to display several medicinal properties including in cancer. There is some evidence that pectin from some fruits can reduce the severity of colorectal cancer (CRC) due to its antiproliferative, anti-inflammatory, antimetastatic and pro-apoptotic properties. Pectin fermentation in the colon induces antiproliferative activity via butyrate. Research also showed that pectin acts as a potent inducer of programmed cell death and cell-cycle arrest, thereby selectively targeting cancer cells. Pectin can limit oxidative stress to maintain cellular homeostasis while increasing reactive oxygen species damage to activate cancer cell death. Pectin regulates various signaling cascades, e.g., signal transduction and transcriptional activator and mitogen-activated protein kinase signaling, that contribute to its anticancer activity. By curbing inflammation-activated signaling and bolstering immune-protective mechanisms pectin can eradicate CRC. Due to its chemical structure, pectin can also inhibit galectin-3 and suppress tumor growth and metastasis. Prior reports also suggested that pectin is beneficial to use alongside the CRC standard care. Pectin can increase sensitivity to conventional CRC drugs, alleviate unwanted side effects and reduce drug resistance. Although some preclinical studies are promising, early clinical trials are showing some evidence for pectin's efficacy in tumor growth inhibition and preventing metastasis in some cancers; however, the clinical use of pectin in CRC therapy is not yet well established. Further studies are needed to confirm the efficacy of pectin treatment as a valid clinical therapy for CRC in humans.
Collapse
Affiliation(s)
| | - Sam Ferguson
- Department of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Maya DePlaza
- Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | - Tkai Adekunle
- Department of Biology, Savannah State University, Savannah, GA 31404, USA
| | - Riyaz Basha
- Department of Pediatrics and Women’s Health, Texas College of Osteopathic Medicine, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
15
|
Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Petry VS, Stefenon VM, Machado LO, Costa NCFDA, Klabunde GHF, Nodari RO. Patterns of genetic diversity, spatial genetic structure and gene flow in Campomanesia xanthocarpa: insights from SSR markers of different genomic origins. AN ACAD BRAS CIENC 2021; 93:e20210134. [PMID: 34787172 DOI: 10.1590/0001-3765202120210134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022] Open
Abstract
Campomanesia xanthocarpa (Mart.) O. Berg is a South American fruit tree species with important ecological and medicinal properties, which remnants are currently found mainly in isolated forest fragments. In this study, SSR markers from three different genomic origins (gene-linked, nuclear neutral, and organellar) were used to evaluate the patterns of genetic diversity, fine-scale spatial genetic structure and historical gene flow in fragmented forest formations of C. xanthocarpa from the Atlantic Forest in southern Brazil. Our results show that the forest fragments present moderate to high levels of genetic diversity in comparison to species presenting similar life traits, although a trend opposite to expected was observed concerning gene-linked and neutral SSR markers. The fine-scale spatial genetic structure revealed different patterns in short and large distance classes, with a distinct influence of gene-linked and neutral markers in driving the genetic structure in each distance class. The presence of an isolation-by-adaptation pattern implies the need for maintenance of the current remnants to assure the conservation of the private alleles. Finally, as the genetic diversity is found predominantly within forest fragments, programs of seed collection and/or genetic rescue should prioritize a larger number of individuals within each fragment, to increase the sampled diversity.
Collapse
Affiliation(s)
- Vanessa S Petry
- Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Departamento de Fitotecnia, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, SC, Brazil
| | - Valdir M Stefenon
- Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Departamento de Fitotecnia, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, SC, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, Rodovia Osvaldo Aranha, BR 290, Km 423, 97307-020 São Gabriel, RS, Brazil
| | - Lilian O Machado
- Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Departamento de Fitotecnia, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, SC, Brazil
| | - Newton C F DA Costa
- Universidade do Estado de Santa Catarina, Centro de Ciências Agrárias, Av. Luiz de Camões, 2090, 88520-000 Lages, SC, Brazil
| | - Gustavo H F Klabunde
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), Rod. Antônio Heil, 6800, 88318-112 Itajaí, SC, Brazil
| | - Rubens O Nodari
- Programa de Pós-Graduação em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Departamento de Fitotecnia, Rod. Admar Gonzaga 1346, 88034-000 Florianópolis, SC, Brazil
| |
Collapse
|
17
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
18
|
Enzymatically Extracted Apple Pectin Possesses Antioxidant and Antitumor Activity. Molecules 2021; 26:molecules26051434. [PMID: 33800895 PMCID: PMC7961577 DOI: 10.3390/molecules26051434] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
The biological activity of apple pectin extracted conventionally or enzymatically using endo-xylanase and endo-cellulase, was tested in vitro. The analyses were performerd in tetraplicates and the statistical significance of the differences were assessed using ANOVA, Tukey post hoc and LSD (the least significant difference) tests. Multivariate regression analysis was applied to determine the structural components that have a crucial importance for antioxidant and antitumor properties of pectins. The pectins extracted by enzymes contained up to four times more ferulic acid and showed twice as great ability to neutralize free radicals and Fe(III) reduction. The antiradical potential positively correlated with phenols, fucose and rhamnose content. In the assays performed on HT-29 human adenocarcinoma and B16F10 melanoma cell cultures, the “green” pectins, contrary to acid isolated ones, exhibited remarkable anti-neoplastic potential while being nontoxic to nontransformed L929 cell line. The pectins in the dose of 1 mg/mL were capable of inhibiting adhesion (max 23.1%), proliferation (max 40.4%), invasion (max 76.9%) and anchorage-independent growth (max 90%) of HT-29 cells (significance level p < 0.001). These pectin preparations were slightly less active towards B16F10 cells. The enzyme-isolated apple pectins may be useful as a functional food additive and an ingredient of the ointment formulas for post-surgical melanoma treatment.
Collapse
|
19
|
Xiong B, Zhang W, Wu Z, Liu R, Yang C, Hui A, Huang X, Xian Z. Okra pectin relieves inflammatory response and protects damaged intestinal barrier in caerulein-induced acute pancreatic model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:863-870. [PMID: 33433910 DOI: 10.1002/jsfa.10693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Protecting the intestinal mucosa from being destroyed helps reduce the inflammation caused by acute pancreatitis (AP). In this study, whether okra pectin (OP) could attenuate the inflammation of AP through protecting the intestinal barrier was investigated. RESULTS OP was obtained from crude okra pectin (COP) through the purification by DEAE cellulose 52 column. Supplementation with OP or COP in advance reduced the severity of AP, as revealed by lower serum amylase and lipase levels, abated pancreatic edema, attenuated myeloperoxidase activity and pancreas histology. OP or COP inhibited the production of pancreatic proinflammatory cytokines, including tumor necrosis factor-α and interleukin-6. In addition, the upregulation of AP-related proteins including ZO-1, occludin, the antibacterial peptide-defensin-1 (DEFB1) and cathelicidin-related antimicrobial peptide (CRAMP), as well as the histological examination of colon injuries, demonstrated that OP or COP provision could effectively maintain intestinal barrier function. Ultimately, dietary OP or COP supplementation could inhibit AP-induced intestinal inflammation. For the above, the effect of OP was better than COP. CONCLUSION Dietary OP supplementation could be considered as a preventive method that effectively interferes with intestinal damage and attenuates inflammatory responses trigged by AP. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoyi Xiong
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | | | | | | |
Collapse
|
20
|
Picot-Allain MCN, Ramasawmy B, Emmambux MN. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
21
|
Dias IP, Barbieri SF, Fetzer DEL, Corazza ML, Silveira JLM. Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 2020; 146:431-443. [DOI: 10.1016/j.ijbiomac.2019.12.261] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023]
|