1
|
Li QQ, Xu D, Dong QW, Song XJ, Chen YB, Cui YL. Biomedical potentials of alginate via physical, chemical, and biological modifications. Int J Biol Macromol 2024; 277:134409. [PMID: 39097042 DOI: 10.1016/j.ijbiomac.2024.134409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Alginate is a linear polysaccharide with a modifiable structure and abundant functional groups, offers immense potential for tailoring diverse alginate-based materials to meet the demands of biomedical applications. Given the advancements in modification techniques, it is significant to analyze and summarize the modification of alginate by physical, chemical and biological methods. These approaches provide plentiful information on the preparation, characterization and application of alginate-based materials. Physical modification generally involves blending and physical crosslinking, while chemical modification relies on chemical reactions, mainly including acylation, sulfation, phosphorylation, carbodiimide coupling, nucleophilic substitution, graft copolymerization, terminal modification, and degradation. Chemical modified alginate contains chemically crosslinked alginate, grafted alginate and oligo-alginate. Biological modification associated with various enzymes to realize the hydrolysis or grafting. These diverse modifications hold great promise in fully harnessing the potential of alginate for its burgeoning biomedical applications in the future. In summary, this review provides a comprehensive discussion and summary of different modification methods applied to improve the properties of alginate while expanding its biomedical potentials.
Collapse
Affiliation(s)
- Qiao-Qiao Li
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Qin-Wei Dong
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Yi-Bing Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Ajam A, Huang Y, Islam MS, Kilian KA, Kruzic JJ. Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum. J Mech Behav Biomed Mater 2024; 157:106642. [PMID: 38963998 DOI: 10.1016/j.jmbbm.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.
Collapse
Affiliation(s)
- Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yuwan Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Xie X, Cui M, Wang T, Yang J, Li W, Wang K, Lin M. Constructing Stiff β-Sheet for Self-Reinforced Alginate Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3047. [PMID: 38998130 PMCID: PMC11242387 DOI: 10.3390/ma17133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
The application of alginate fibers is limited by relatively low mechanical properties. Herein, a self-reinforcing strategy inspired by nature is proposed to fabricate alginate fibers with minimal changes in the wet-spinning process. By adapting a coagulation bath composing of CaCl2 and ethanol, the secondary structure of sodium alginate (SA) was regulated during the fibrous formation. Ethanol mainly increased the content of β-sheet in SA. Rheological analysis revealed a reinforcing mechanism of stiff β-sheet for enhanced modulus and strength. In combination with Ca2+ crosslinking, the self-reinforced alginate fibers exhibited an increment of 39.0% in tensile strength and 71.9% in toughness. This work provides fundamental understanding for β-sheet structures in polysaccharides and a subsequent self-reinforcing mechanism. It is significant for synthesizing strong and tough materials. The self-reinforcing strategy involved no extra additives and preserved the degradability of the alginate. The reinforced alginate fibers exhibited promising potentials for biological applications.
Collapse
Affiliation(s)
- Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Min Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Wenli Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Kai Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Boumegnane A, Douhi S, Batine A, Dormois T, Cochrane C, Nadi A, Cherkaoui O, Tahiri M. Rheological Properties and Inkjet Printability of a Green Silver-Based Conductive Ink for Wearable Flexible Textile Antennas. SENSORS (BASEL, SWITZERLAND) 2024; 24:2938. [PMID: 38733045 PMCID: PMC11086166 DOI: 10.3390/s24092938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The development of e-textiles necessitates the creation of highly conductive inks that are compatible with precise inkjet printing, which remains a key challenge. This work presents an innovative, syringe-based method to optimize a novel bio-sourced silver ink for inkjet printing on textiles. We investigate the relationships between inks' composition, rheological properties, and printing behavior, ultimately assessing the electrical performance of the fabricated circuits. Using Na-alginate and polyethylene glycol (PEG) as the suspension matrix, we demonstrate their viscosity depends on the component ratios. Rheological control of the silver nanoparticle-laden ink has become paramount for uniform printing on textiles. A specific formulation (3 wt.% AgNPs, 20 wt.% Na-alginate, 40 wt.% PEG, and 40 wt.% solvent) exhibits the optimal rheology, enabling the printing of 0.1 mm thick conductive lines with a low resistivity (8 × 10-3 Ω/cm). Our findings pave the way for designing eco-friendly ink formulations that are suitable for inkjet printing flexible antennas and other electronic circuits onto textiles, opening up exciting possibilities for the next generation of E-textiles.
Collapse
Affiliation(s)
- Abdelkrim Boumegnane
- Organic Synthesis and Extraction Laboratory (OSEV), Ain Chock’s Faculty of Sciences, Hassan II University, Casablanca B.P 5366, Morocco; (A.B.); (M.T.)
- Textile Materials Research Laboratory (REMTEX), Higher School of Textile and Clothing Industries (ESITH), Casablanca 20230, Morocco; (S.D.); (A.N.); (O.C.)
| | - Said Douhi
- Textile Materials Research Laboratory (REMTEX), Higher School of Textile and Clothing Industries (ESITH), Casablanca 20230, Morocco; (S.D.); (A.N.); (O.C.)
- Laboratory of Physics of Condensed Matter (LPMC), Faculty of Sciences Ben M’Sik, Hassan II University, Casablanca 2000, Morocco
| | - Assia Batine
- Organic Synthesis and Extraction Laboratory (OSEV), Ain Chock’s Faculty of Sciences, Hassan II University, Casablanca B.P 5366, Morocco; (A.B.); (M.T.)
- Textile Materials Research Laboratory (REMTEX), Higher School of Textile and Clothing Industries (ESITH), Casablanca 20230, Morocco; (S.D.); (A.N.); (O.C.)
| | - Thibault Dormois
- École Nationale Supérieure des Arts et Industries Textiles—ENSAIT, ULR 2461—GEMTEX—Génie et Matériaux Textiles, University of Lille, F-59000 Lille, France;
| | - Cédric Cochrane
- École Nationale Supérieure des Arts et Industries Textiles—ENSAIT, ULR 2461—GEMTEX—Génie et Matériaux Textiles, University of Lille, F-59000 Lille, France;
| | - Ayoub Nadi
- Textile Materials Research Laboratory (REMTEX), Higher School of Textile and Clothing Industries (ESITH), Casablanca 20230, Morocco; (S.D.); (A.N.); (O.C.)
| | - Omar Cherkaoui
- Textile Materials Research Laboratory (REMTEX), Higher School of Textile and Clothing Industries (ESITH), Casablanca 20230, Morocco; (S.D.); (A.N.); (O.C.)
| | - Mohamed Tahiri
- Organic Synthesis and Extraction Laboratory (OSEV), Ain Chock’s Faculty of Sciences, Hassan II University, Casablanca B.P 5366, Morocco; (A.B.); (M.T.)
| |
Collapse
|
6
|
Gong L, Zhu J, Yang Y, Qiao S, Ma L, Wang H, Zhang Y. Effect of polyethylene glycol on polysaccharides: From molecular modification, composite matrixes, synergetic properties to embeddable application in food fields. Carbohydr Polym 2024; 327:121647. [PMID: 38171672 DOI: 10.1016/j.carbpol.2023.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Polyethylene glycol (PEG) is a flexible, water-soluble, non-immunogenic, as well as biocompatible polymer, and it could synergize with polysaccharides for food applications. The molecular modification strategies, including covalent bond interactions (amino groups, carboxyl groups, aldehyde groups, tosylate groups, etc.), and non-covalent bond interactions (hydrogen bonding, electrostatic interactions, etc.) on PEG molecular chains are discussed. Its versatile structure, group modifiability, and amphiphilic block buildability could improve the functions of polysaccharides (e.g., chitosan, cellulose, starch, alginate, etc.) and adjust the properties of combined PEG/polysaccharides with outstanding chain tunability and matrix processability owing to plasticizing effects, compatibilizing effects, steric stabilizing effects and excluded volume effects by PEG, for achieving the diverse performance targets. The synergetic properties of PEG/polysaccharides with remarkable architecture were summarized, including mechanical properties, antibacterial activity, antioxidant performance, self-healing properties, carrier and delivery characteristics. The PEG/polysaccharides with excellent combined properties and embeddable merits illustrate potential applications including food packaging, food intelligent indication/detection, food 3D printing and nutraceutical food absorption. Additionally, prospects (like food innovation and preferable nutrient utilization) and key challenges (like structure-effectiveness-applicability relationship) for PEG/polysaccharides are proposed and addressed for food fields.
Collapse
Affiliation(s)
- Linshan Gong
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 401121, PR China.
| |
Collapse
|
7
|
Zhang C, Hua W, Mitchell K, Raymond L, Delzendehrooy F, Wen L, Do C, Chen J, Yang Y, Linke G, Zhang Z, Krishnan MA, Kuss M, Coulter R, Bandala E, Liao Y, Duan B, Zhao D, Chai G, Jin Y. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc Natl Acad Sci U S A 2024; 121:e2313464121. [PMID: 38346211 PMCID: PMC10907305 DOI: 10.1073/pnas.2313464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Fatemeh Delzendehrooy
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, NV89557
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6475
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN37830
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, NV89557
| | - Gabe Linke
- Three-Dimensional Advanced Visualization Laboratory, Department of Pediatric Radiology, Children’s Hospital & Medical Center, Omaha, NE68114
| | - Zhengyi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Ryan Coulter
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Erick Bandala
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Yiliang Liao
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guangrui Chai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| |
Collapse
|
8
|
Jicsinszky L, Bucciol F, Chaji S, Cravotto G. Mechanochemical Degradation of Biopolymers. Molecules 2023; 28:8031. [PMID: 38138521 PMCID: PMC10745761 DOI: 10.3390/molecules28248031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mechanochemical treatment of various organic molecules is an emerging technology of green processes in biofuel, fine chemicals, or food production. Many biopolymers are involved in isolating, derivating, or modifying molecules of natural origin. Mechanochemistry provides a powerful tool to achieve these goals, but the unintentional modification of biopolymers by mechanochemical manipulation is not always obvious or even detectable. Although modeling molecular changes caused by mechanical stresses in cavitation and grinding processes is feasible in small model compounds, simulation of extrusion processes primarily relies on phenomenological approaches that allow only tool- and material-specific conclusions. The development of analytical and computational techniques allows for the inline and real-time control of parameters in various mechanochemical processes. Using artificial intelligence to analyze process parameters and product characteristics can significantly improve production optimization. We aim to review the processes and consequences of possible chemical, physicochemical, and structural changes.
Collapse
Affiliation(s)
- László Jicsinszky
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| | | | | | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (F.B.); (S.C.)
| |
Collapse
|
9
|
Cheung KM, Jiang Z, Ngai T. Edible, strong, and low-hygroscopic bacterial cellulose derived from biosynthesis and physical modification for food packaging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6625-6639. [PMID: 37259602 DOI: 10.1002/jsfa.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND The pervasive presence of plastic packaging has led to significant environmental contamination due to excessive reliance on petrochemicals and the inherent non-biodegradability of these materials. Bacterial cellulose (BC) films present a viable alternative for food packaging applications, owing to their environmentally friendly synthesis process, non-toxic nature, robust mechanical strength, and biodegradability. However, the high hygroscopicity of such bio-based materials has limited their widespread adoption, as it results in diminished strength and barrier properties. In this study, a novel approach for creating edible, transparent, robust, and high-barrier BC-based composite packaging was proposed through biosynthesis with the incorporation of soy protein isolate and the physical interpenetration of calcium alginate-polyethylene glycol as a composite coating. RESULTS The finding demonstrated that the synthesized bio-based composite material exhibits stability in water, high optical transparency, complete oil resistance, and full degradability within 1 to 2 months. Furthermore, the composite material displayed enhanced mechanical properties in both dry and wet conditions, with a tensile strength of approximately 84 MPa, outperforming commercially available kraft paper and low-density polyethylene. CONCLUSIONS Soy protein isolate established a rigid, coherent, and homogeneous network with BC fibrils, thereby augmenting mechanical properties. Calcium alginate can be effectively combined with BC, utilizing polyethylene glycol as a binder and plasticizer, to generate a densely packed structure with reduced hygroscopicity. This bio-based composite material demonstrated considerable potential for application in food packaging and other value-added sectors as a substitute for non-degradable plastics. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ka Man Cheung
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - Zhuolun Jiang
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| |
Collapse
|
10
|
Wang Z, Huang C, Liu H, Shi Z, Han X, Li S, Huang J, Wang Z, Yan Y, Chen Z. Two-step method fabricating a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures via coaxial printing. Colloids Surf B Biointerfaces 2023; 224:113202. [PMID: 36801526 DOI: 10.1016/j.colsurfb.2023.113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Three-dimensional (3D) nerve cell models have been widely developed to understand the mechanisms and discover treatment methods of ischemic stroke and neurodegenerative disease. However, there is a contradiction in the production of 3D models that they should possess high modulus to ensure mechanical stability while low modulus to provide mechanical stimuli for nerve cells. In addition, it is challenging to maintain the long-term viability of 3D models when lacking vascular structures. Here, a 3D nerve cell model with brain-like mechanical properties and tunable porosity vascular structures has been fabricated. The matrix materials with brain-like low mechanical properties were favorable for promoting HT22 proliferation. The nerve cells could exchange nutrients and waste with the cultural environment through vascular structures. The vascular structures also played a supporting role, and model stability was enhanced by combining matrix materials with vascular structures. Furthermore, the porosity of vascular structure walls was adjusted by adding sacrificial materials to the tube walls during 3D coaxial printing and removing them after preparation, resulting in tunable porosity vascular structures. Finally, HT22 cells showed better cell viability and proliferation performance after culturing 7 days in the 3D models with vascular structures than in the 3D models with solid structures. All these results suggest that this 3D nerve cell model possesses good mechanical stability and long-term viability, which is expected to be used in pathological studies and drug screening for ischemic stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China; School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhenyu Shi
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yonggan Yan
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
11
|
Matsumoto Y, Enomoto Y, Kabe T, Iwata T. Static and in situ small-angle X-ray scattering analyses of the effect of molecular structure on the tensile properties of cross-linked curdlan hydrogels and stretched, dried gel-films. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
13
|
Yu Y, Wan L, Cheng W, Shi S, Yuan M, Luo Y, Mei L, Xu T, Wang S, Zhao D, Xiao W, Ai F, Fang Q, Chen C. Self-Stirring Microcatalysts: Large-Scale, High-Throughput, and Controllable Preparation and Application. Inorg Chem 2022; 61:11757-11765. [PMID: 35863066 DOI: 10.1021/acs.inorgchem.2c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we introduce a strategy to develop a kind of unprecedented microcatalyst, which owns self-stirring and catalytic performance based on pneumatic printing and magnetic field induction technology. A spindle-shaped microcatalyst based on metal-organic frameworks (MOFs) with a certain aspect ratio and size can be obtained by tuning the printing parameters and the intensity of the magnetic field. One nozzle can print 18 000 microcatalysts per hour, which provides a prerequisite for the realization of large-scale production in the industrial field. Furthermore, this strategy can be widely applied to a variety of other heterogeneous catalysts, such as mesoporous SiO2, zeolite, metallic oxide, and so on. To demonstrate the superiority of the printed catalyst, the series of printed microcatalysts were evaluated by various catalytic reactions including liquid-phase hydrogenation, microdroplet dye-fading, and photocatalytic degradation in microreactor, all of which exhibited excellent catalytic performance.
Collapse
Affiliation(s)
- Ying Yu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Li Wan
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Wenqian Cheng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yanping Luo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Liren Mei
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Tong Xu
- School of Marxism, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Dan Zhao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
14
|
Magalhães LSSM, Andrade DB, Bezerra RDS, Morais AIS, Oliveira FC, Rizzo MS, Silva-Filho EC, Lobo AO. Nanocomposite Hydrogel Produced from PEGDA and Laponite for Bone Regeneration. J Funct Biomater 2022; 13:53. [PMID: 35645261 PMCID: PMC9149996 DOI: 10.3390/jfb13020053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/03/2023] Open
Abstract
Herein, a nanocomposite hydrogel was produced using laponite and polyethylene-glycol diacrylate (PEGDA), with or without Irgacure (IG), for application in bone tissue regeneration. The nanocomposites were characterized by X-ray diffraction (XRD), Fourier-Transform infrared spectroscopy (FTIR), and thermal analysis (TG/DTG). The XRD results showed that the crystallographic structure of laponite was preserved in the nanocomposite hydrogels after the incorporation of PEGDA and IG. The FTIR results indicated that PEGDA polymer chains were entangled on laponite in hydrogels. The TG/DTG found that the presence of laponite (Lap) improved the thermal stability of nanocomposite hydrogel. The toxicity tests by Artemia salina indicated that the nanocomposite hydrogels were not toxic, because the amount of live nauplii was 80.0%. In addition, in vivo tests demonstrated that the hydrogels had the ability to regenerate bone in a bone defect model of the tibiae of osteopenic rats. For the nanocomposite hydrogel (PEGDA + Lap nanocomposites + UV light), the formation of intramembranous bone in the soft callus was more intense in 66.7% of the animals. Thus, the results presented in this study evidence that nanocomposite hydrogels obtained from laponite and PEGDA have the potential for use in bone regeneration.
Collapse
Affiliation(s)
- Leila S. S. M. Magalhães
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Danielle B. Andrade
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Roosevelt D. S. Bezerra
- Federal Institute of Education, Science and Technology of Piauí, Teresina-Central Campus, IFPI, Teresina 64000-040, Brazil;
| | - Alan I. S. Morais
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | | | - Márcia S. Rizzo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| | - Anderson O. Lobo
- LIMAV—Interdisciplinary Advanced Materials Laboratory, PPGCM—Materials Science and Engineering Graduate Program, UFPI—Federal University of Piaui, Teresina 64049-550, Brazil; (L.S.S.M.M.); (D.B.A.); (A.I.S.M.); (M.S.R.); (E.C.S.-F.)
| |
Collapse
|
15
|
Evaluation of physicochemical properties of film-based alginate for food packing applications. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The indiscriminate use of films as synthetic primary packaging, for the conservation and transport of fruit and vegetable products in postharvest, causes disposal problems. In the present work, films based on sodium alginate were synthesized and characterized, with alginate as a biopolymer matrix, glycerol (plasticizer), oleic acid (control of hydrophilicity), and calcium chloride (cross-linking agent). The dynamic mechanical, thermal, structural, and hydrophobicity properties were studied. In the case of dynamic mechanical properties, they were analyzed at a temperature of −50°C, because food packaging goes through storage during its cold chain, showing biofilm stability under these conditions. On the other hand, infrared spectroscopy analysis showed that the carboxylate and carboxy functional groups serve as a link for all the components, and oleic acid is also serving as a plasticizer and, to a lesser degree, as a hydrophilicity controller.
Collapse
|
16
|
Yan M, Shi J, Tang S, Liu L, Zhu H, Zhou G, Zeng J, Zhang H, Yu Y, Guo J. Strengthening and toughening sodium alginate fibers using a dynamically cross-linked network of inorganic nanoparticles and sodium alginate through the hydrogen bonding strategy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01423d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanoparticles were introduced to strengthen and toughen sodium alginate fibers through a dynamically cross-linked network by hydrogen bonding.
Collapse
Affiliation(s)
- Ming Yan
- Dalian Polytechnic University
- Dalian
- China
| | | | - Song Tang
- Dalian Polytechnic University
- Dalian
- China
| | | | | | | | | | - Hong Zhang
- Dalian Polytechnic University
- Dalian
- China
| | - Yue Yu
- Dalian Polytechnic University
- Dalian
- China
| | - Jing Guo
- Dalian Polytechnic University
- Dalian
- China
| |
Collapse
|
17
|
Yan M, Shi J, Liu L, Zhu H, Tang S, Zhou G, Zeng J, Zhang H, Yu Y, Guo J. Preparation of high-strength and high-toughness sodium alginate fibers based on the study of multi-ion diffusion kinetics in a low temperature dissolution system. NEW J CHEM 2021. [DOI: 10.1039/d1nj00747e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diffusion kinetics under different coagulation conditions of high-strength and high-toughness sodium alginate fibers obtained through a low temperature dissolution method.
Collapse
Affiliation(s)
- Ming Yan
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Junfeng Shi
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Lingwei Liu
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Haotong Zhu
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Song Tang
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Guohang Zhou
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jiexiang Zeng
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hong Zhang
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yue Yu
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jing Guo
- School of Textile and Material Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
18
|
Gong L, Kong Y, Wu H, Ge Y, Li Z. Sodium Alginate Microspheres Interspersed with Modified Lignin and Bentonite (SA/ML-BT) as a Green and Highly Effective Adsorbent for Batch and Fixed-Bed Column Adsorption of Hg (II). J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01757-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Shi J, Zhang H, Yu Y, Yan M, Liu L, Zhu H, Ye Y, Zhao Y, Wang Y, Xia Y, Guo J. Dynamic formation of calcium alginate/polyethylene glycol acrylate dual network fibers enhanced by polyvinyl alcohol microcrystalline cross-linking. NEW J CHEM 2020. [DOI: 10.1039/d0nj03538f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The dual network fiber was prepared by the freeze–thaw low-temperature melting method, the “one-pot method” and the dynamic forming method.
Collapse
|