1
|
Li S, Zhang X, Wang J, Lu J, Li M, Zhang M, Panichayupakaranant P, Chen H. Double-crosslinked hydrogels and hydrogel beads formed by garlic protein hydrolysates for bioactive encapsulation and gastrointestinal delivery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2643-2654. [PMID: 39548671 DOI: 10.1002/jsfa.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Garlic protein is one of the main components of garlic. It has several beneficial characteristics. This study aimed to characterize a double crosslinked hydrogel formed with alginate, calcium ions (Ca2+), and garlic protein hydrolysates (GPH), and to develop hydrogel beads for targeted delivery of bioactive constituents to the gastrointestinal tract. RESULTS The results indicated that the degree of GPH hydrolysis was approximately 3% following trypsin treatment. The inner structure of the double crosslinked hydrogel showed a honeycomb pattern, with solid-like gel rheology and improved texture properties at a 4% (w/v) GPH concentration. The GPH-based hydrogel beads demonstrated pH sensitivity, swelling in near-neutral and alkaline environments, and the encapsulated paclitaxel (PTX) exhibited an amorphous phase with preferential release in intestinal conditions. The GPH group also achieved greater drug encapsulation efficiency than a soy protein hydrolysate (SPH) group, and proteomic analysis suggested that lower molecular weight and peptide charge favored the formation of peptide-integrated double crosslinking hydrogels. CONCLUSION This work indicated that GPH was helpful and could inspire the development of drug delivery systems involving GPH with the required mechanical strength and target-release properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
- College of Basic Science, Tianjin Agricultural University, Tianjin, P. R. China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, P. R. China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, , Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
2
|
Zhao X, An JJ. Improvement of yoghurt gel syneresis by trehalose: Effect on rheological properties, water distribution, and microstructure. J Food Sci 2024; 89:8746-8757. [PMID: 39667950 DOI: 10.1111/1750-3841.17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Three low molecular weight (LMW) sweeteners (D-tagatose, erythritol, and trehalose) were studied in yoghurt formulations to investigate their effects on syneresis, rheological properties, water distribution, and microstructural characteristics. The results indicated that trehalose improved syneresis, the fermentation process, and rheological properties compared to yoghurt fortified with sucrose, while D-tagatose and erythritol demonstrated the opposite effects on fermentation. With the addition of LMW sweeteners, the apparent viscosity and frequency sweep of yoghurt increased, with trehalose showing a better effect than sucrose or the other two LMW sweeteners. The water distribution, as indicated by T2 relaxation time, was also significantly improved with trehalose. Electron microscopy results showed that the three LMW sweeteners decreased the porous structure of the yoghurt gel and enhanced protein aggregation, leading to a denser network. Fourier-transform infrared spectroscopy results demonstrated that trehalose increased the disorder of hydrocarbon chains, the vibrations of N-H and C-N groups, and the C-O stretching, promoting the formation of casein/trehalose complexes, which improved the gel syneresis of yoghurt containing trehalose. Those results suggest that trehalose could be used as a novel sweetener to replace sucrose in dairy products. PRACTICAL APPLICATION: This study investigated the rheological, gel syneresis, water distribution, and microstructural properties of yoghurt with three LMW sweeteners and found that yoghurt supplemented with trehalose significantly improved syneresis and the structure of casein micelles through increased hydroxyl groups. Trehalose can potentially be used trehalose as a yoghurt stabilizer for dairy production, enhancing gel syneresis properties.
Collapse
Affiliation(s)
- Xiao Zhao
- College of Equipment Management and Support, Engineering University of PAP, Xi'an, China
| | - Jing-Jing An
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| |
Collapse
|
3
|
Li W, Bie Q, Zhang K, Linli F, Yang W, Chen X, Chen P, Qi Q. Regulated anthocyanin release through novel pH-responsive peptide hydrogels in simulated digestive environment. Food Chem X 2024; 23:101645. [PMID: 39113736 PMCID: PMC11304862 DOI: 10.1016/j.fochx.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The instability of anthocyanins significantly reduces their bioavailability as food nutrients. This proof-of-concept study aimed to develop efficient carriers for anthocyanins to overcome this challenge. Characterization of the hydrogels via SEM (scanning electron microscope) and rheological analysis revealed the formation of typical gel structures. MTT (methyl thiazolyl tetrazolium) and hemolysis assays confirmed that their high biocompatibility. Encapsulation efficiency analysis and fluorescence microscopy images demonstrated successful and efficient encapsulation of anthocyanins by pH-responsive hydrogels. Stability studies further validated the effect of peptide hydrogels in helping anthocyanin molecules withstand factors such as gastric acid, high temperatures, and heavy metals. Subsequently, responsive studies in simulated gastric (intestinal) fluid demonstrated that the pH-responsive peptide hydrogels could protect anthocyanin molecules from gastric acid while achieving rapid and complete release in intestinal fluid environments. These results indicate that these peptide hydrogels could stabilize anthocyanins and facilitate their controlled release, potentially leading to personalized delivery systems.
Collapse
Affiliation(s)
- Wenjun Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Qianqian Bie
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Kaihui Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Fangzhou Linli
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Wenyu Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Xianggui Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Pengfei Chen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| | - Qi Qi
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 611130, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chengdu, 611130, China
| |
Collapse
|
4
|
Fasamanesh M, Assadpour E, Rostamabadi H, Zhang F, Jafari SM. Encapsulation of iron within whey protein-pectin nanocomplexes: Fabrication, characterization, and optimization. Food Chem 2024; 451:139290. [PMID: 38653105 DOI: 10.1016/j.foodchem.2024.139290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Iron is an important micronutrient that cannot be added directly into food products due to potential reactions with the food matrix, impact on color, and taste. Complexed biopolymeric nanocarriers can overcome these challenges particularly for oral delivery of iron, but selecting appropriate biopolymers, their ratio and pH of complexation is very important. In this study, whey protein concentrate (WPC)-pectin nanocomplexes were prepared at different concentrations (WPC 4, 6 and 8%; pectin 0.5, 0.75 and 1%), and pH (3, 6 and 9) to encapsulate iron. The smallest carriers were observed at pH 3; higher pH led to higher zeta potential (zero to -32.5 mV). Encapsulation efficiency of iron in nanocarriers formulated at pH = 3, 6 and 9 were 87.83, 75.92 and 20%, respectively. Scanning electron microscopy revealed the spherical particles at pH 3. To conclude, a WPC to pectin ratio of 4: 1 at pH 3 was the best conditions for loading iron.
Collapse
Affiliation(s)
- Mahdis Fasamanesh
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Food Industry Research Co., Gorgan, Iran.
| | - Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
5
|
Torp Nielsen M, Roman L, Corredig M. In vitro gastric digestion of polysaccharides in mixed dispersions: Evaluating the contribution of human salivary α-amylase on starch molecular breakdown. Curr Res Food Sci 2024; 8:100759. [PMID: 38764978 PMCID: PMC11101712 DOI: 10.1016/j.crfs.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
The aim of this work was to investigate the impact of the addition of salivary α-amylase on starch hydrolysis in protein-containing dispersions during an in vitro digestion process. In vitro digestion provides useful insights on the fate of nutrients during gastro-intestinal transit in complex food matrices, an important aspect to consider when developing highly nutritious foods. Many foods contain polysaccharides, and as their disruption in the gastric stage is limited, salivary α-amylase is often neglected in in vitro studies. A reference study on the effect of salivary α-amylase using one of the most advanced and complex in vitro digestion models (INFOGEST) is, however, not available. Hence, this work reports the gastrointestinal breakdown of three mixed dispersions containing whey protein isolate with different polysaccharides: potato starch, pectin from citrus peel and maize starch. The latter was also studied after heating. No polysaccharide or salivary α-amylase-dependent effect on protein digestion was found, based on the free NH2 and SDS-PAGE. However, in the heat-treated samples, the addition of salivary α-amylase showed a significantly higher starch hydrolysis compared to the sample without α-amylase, due to the gelatinization of the starch granules, which improved the accessibility of the starch molecules to the enzyme. This work demonstrated that the presence of different types of polysaccharides does not affect protein digestion, but also it emphasizes the importance of considering the influence of processing on food structure and its digestibility, even in the simplest model systems.
Collapse
Affiliation(s)
- M. Torp Nielsen
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| | | | - M. Corredig
- Aarhus University, Department of Food Science, CiFOOD Center for Innovative Foods, Agro Food Park 48, 8200, Aarhus N, Denmark
| |
Collapse
|
6
|
Wang Y, Zhu S, Zhang T, Gao M, Zhan X. New Horizons in Probiotics: Unraveling the Potential of Edible Microbial Polysaccharides through In Vitro Digestion Models. Foods 2024; 13:713. [PMID: 38472826 DOI: 10.3390/foods13050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
In vitro digestion models, as innovative assessment tools, possess advantages such as speed, high throughput, low cost, and high repeatability. They have been widely applied to the investigation of food digestion behavior and its potential impact on health. In recent years, research on edible polysaccharides in the field of intestinal health has been increasing. However, there is still a lack of systematic reviews on the application of microbial-derived edible polysaccharides in in vitro intestinal models. This review thoroughly discusses the limitations and challenges of static and dynamic in vitro digestion experiments, while providing an in-depth introduction to several typical in vitro digestion models. In light of this, we focus on the degradability of microbial polysaccharides and oligosaccharides, with a particular emphasis on edible microbial polysaccharides typically utilized in the food industry, such as xanthan gum and gellan gum, and their potential impacts on intestinal health. Through this review, a more comprehensive understanding of the latest developments in microbial polysaccharides, regarding probiotic delivery, immobilization, and probiotic potential, is expected, thus providing an expanded and deepened perspective for their application in functional foods.
Collapse
Affiliation(s)
- Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Basak S, Singhal RS. Inclusion of konjac glucomannan in pea protein hydrogels improved the rheological and in vitro release properties of the composite hydrogels. Int J Biol Macromol 2024; 257:128689. [PMID: 38092100 DOI: 10.1016/j.ijbiomac.2023.128689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
In this study, a composite hydrogel consisting of pea protein and konjac glucomannan (KG) was fabricated using three approaches, namely neutral, salt-set, and alkaline gelation. Hydrogels made from pea protein were brittle and weak. The addition of KG improved the elasticity and water holding capacity of the pea protein hydrogels. Concomitantly, a decrease in syneresis rate and swelling of the composite hydrogels was observed. The alkaline-set hydrogels exhibited the highest resilience to strain. Thixotropicity was found to be less pronounced for salt-set hydrogels. Sulphate had a greater positive effect on the structural recovery and negative effect on hysteresis area than chloride due to the greater salting-out effect of the sulphates. The addition of KG facilitated the formation of an interconnected structure with limited mobility of biopolymer chains. A sharp increase in G' and G" during the temperature ramp indicated the predominance of hydrophobic interactions towards the aggregation of biopolymers. The infrared spectra of the hydrogels revealed a change in secondary structure of proteins on addition of KG. A controlled in vitro release of riboflavin was observed in neutral and salt-set hydrogels. The alkaline-set hydrogels exhibited a prolonged gastric retention time, thereby establishing in vitro antacid activity in the gastric environment.
Collapse
Affiliation(s)
- Somnath Basak
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
8
|
Chen P, Cheng H, Tian J, Pan H, Chen S, Ye X, Chen J. Photo-crosslinking modified sodium alginate hydrogel for targeting delivery potential by NO response. Int J Biol Macromol 2023; 253:126454. [PMID: 37619688 DOI: 10.1016/j.ijbiomac.2023.126454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
In recent years, the incidence of inflammatory bowel disease has gradually increased. Traditional drugs can reduce inflammation, but cannot be targeting released and often require the coordination with delivery systems. However, a good targeting performance delivery system is still scarce currently. Inflammation can trigger oxidative stress, producing large amounts of oxides such as nitric oxide (NO). Based on this, the present experiment innovatively designed a hydrogel delivery system with NO response that could be inflammation targeting. The hydrogel is composed of sodium alginate modified with glycerol methacrylate, crosslinked with NO response agent by photo-crosslinking method, which have low swelling (37 %) and good mechanical properties with a stable structure even at 55 °C. The results of in vitro digestion also indicated that the hydrogel had a certain tolerance to gastrointestinal digestion. And in the NO environment, it was interestingly found that the structure and mechanical properties of the hydrogels changed significantly. Moreover, hydrogels have good biocompatibility, which ensures their safe use in vivo. In conclusion, this NO-responsive-based delivery system is feasible and provides a new approach for drugs and active factors targeting delivery in the future.
Collapse
Affiliation(s)
- Pin Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China.
| |
Collapse
|
9
|
Chen L, Lin S, Sun N. Food gel-based systems for efficient delivery of bioactive ingredients: design to application. Crit Rev Food Sci Nutr 2023; 64:13193-13211. [PMID: 37753779 DOI: 10.1080/10408398.2023.2262578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Food gels derived from natural biopolymers are valuable materials with significant scientific merit in the food industry because of their biocompatibility, safety, and environmental friendliness compared to synthetic gels. These gels serve as crucial delivery systems for bioactive ingredients. This review focuses on the selection, formulation, characterization, and behavior in gastrointestinal of hydrogels, oleogels, and bigels as delivery systems for bioactive ingredients. These three gel delivery systems exhibit certain differences in composition and can achieve the delivery of different bioactive ingredients. Hydrogels are suitable for delivering hydrophilic ingredients. Oleogels are an excellent choice for delivering lipophilic ingredients. Bigels contain both aqueous and oil phases, whose gelation makes their structure more stable, demonstrating the advantages of the above two types of gels. Besides, the formation and properties of the gel system are confirmed using different characterization methods. Furthermore, the changing behavior (e.g., swelling, disintegration, collapse, erosion) of the gel structure in the gastrointestinal is also analyzed, providing an opportunity to formulate soft substances that offer better protection or controlled release of bioactive components. This can further improve the transmissibility and utilization of bioactive substances, which is of great significance.
Collapse
Affiliation(s)
- Lei Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
10
|
Cikrikci Erunsal S. Evaluation of multicomplex systems on pomegranate concentrate loaded alginate hydrogels by low-field NMR relaxometry: physicochemical characterization and controlled release study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1960-1969. [PMID: 37206427 PMCID: PMC10188785 DOI: 10.1007/s13197-023-05730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
Alginate (ALG) and various gums are potential biomaterials to be employed in hydrogel designs for both food and biomedical applications. This study evaluated a multicomplex design by combining food grade polymers to examine their polymer-polymer interactions and design an oral delivery system for pomegranate concentrate (PC). ALG was replaced with gum tragacanth (GT), xanthan (XN) and their equal combinations (GT:XN) at 50% ratio in hydrogel fabrication. In addition to CaCI2 in binding solution, honey (H) and chitosan (CH) were also used during physical crosslinking. Relaxation time constants in NMR indicated poor ability of GT for water entrapment especially in the presence of honey (S2H). They also confirmed FTIR results indicating similar trends. Strong negative correlations were observed between T2 and texture results. GT replacement of ALG especially in the use of single CaCI2 (S2) promoted higher PC release up to 80% in digestive media compared to XN substitution (S3). This study promoted use of LF NMR as an indicator for polymer mixture characterization in complex gels. ALG based gels could be modified by replacing ALG with different kinds of gums and with use of different binding solutions to regulate target compound release in food and pharmaceutical fields. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05730-2.
Collapse
Affiliation(s)
- Sevil Cikrikci Erunsal
- Department of Food Engineering, Konya Food and Agriculture University, 42080 Konya, Turkey
| |
Collapse
|
11
|
Li L, Zhang F, Zhu L, Yang Y, Xu Y, Wang L, Li T. Carboxymethylation modification, characterization of dandelion root polysaccharide and its effects on gel properties and microstructure of whey protein isolate. Int J Biol Macromol 2023; 242:124781. [PMID: 37172707 DOI: 10.1016/j.ijbiomac.2023.124781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/16/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In the present study, a native polysaccharide (DP) with sugar content of 87.54 ± 2.01 % was isolated from dandelion roots. DP was chemically modified to obtain a carboxymethylated polysaccharide (CMDP) with DS of 0.42 ± 0.07. DP and CMDP were composed of the same six monosaccharides including mannose, rhamnose, galacturonic acid, glucose, galactose, and arabinose. The molecular weights of DP and CMDP were 108,200 and 69,800 Da, respectively. CMDP exhibited more stable thermal performance and better gelling properties than DP. The effects of DP and CMDP on the strength, water holding capacity (WHC), microstructure, and rheological properties of whey protein isolate (WPI) gels were investigated. Results showed that CMDP-WPI gels had higher strength and WHC than DP-WPI gels. With the addition of 1.5 % CMDP, WPI gel had a good three-dimensional network structure. The apparent viscosities, loss modulus (G"), and storage modulus (G') of WPI gels were increased with the polysaccharide addition, the influence of CMDP was remarkable compared to DP at the same concentration. These findings suggest that CMDP may be used as a functional ingredient in protein-containing food products.
Collapse
Affiliation(s)
- Lianyu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fengjie Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ling Zhu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yu Yang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Libo Wang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Tong Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
12
|
Effects of Different pH on Properties of Heat-induced Auricularia auricula-judae polysaccharide-whey protein isolate Composite Gels. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
13
|
Pocan P, Grunin L, Oztop MH. Effect of Different Syrup Types on Turkish Delights ( Lokum): A TD-NMR Relaxometry Study. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1819-1831. [PMID: 36570038 PMCID: PMC9775206 DOI: 10.1021/acsfoodscitech.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Turkish delights were formulated by using sucrose (control) and different types of corn syrups (having varying glucose/fructose ratios) and allulose syrup. 30% allulose syrup and 30% sucrose-containing Turkish delights were found to exhibit an amorphous structure. Time-domain NMR relaxometry experiments were also conducted on delights by measuring T 2 relaxation times, and two distinct proton populations were observed in all formulations. The use of different syrup types at different substitution levels led to significant changes in the relaxation times (T 2a and T 2b) of the samples, indicating that the relaxation spectrum might be used as a fingerprint for Turkish delights containing different types and amounts of syrup types. Second moment (M 2) values which were measured from the signal acquired using a magic sandwich echo pulse sequence were also found to be an effective and promising indicator to detect the crystallinity of Turkish delights.
Collapse
Affiliation(s)
- Pelin Pocan
- Department
of Food Engineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey,Department
of Food Engineering, Middle East Technical
University, 06800 Ankara, Turkey
| | - Leonid Grunin
- Resonance
Systems GmbH, D-73230 Kirchheim unter Teck, Germany
| | - Mecit Halil Oztop
- Department
of Food Engineering, Middle East Technical
University, 06800 Ankara, Turkey,. Phone: +90 312 210 5634. Fax: +90 312 210 27
| |
Collapse
|
14
|
Yu J, Wang XY, Li D, Wang LJ, Wang Y. Development of soy protein isolate emulsion gels as extrusion-based 3D food printing inks: Effect of polysaccharides incorporation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Pascuta MS, Varvara RA, Teleky BE, Szabo K, Plamada D, Nemeş SA, Mitrea L, Martău GA, Ciont C, Călinoiu LF, Barta G, Vodnar DC. Polysaccharide-Based Edible Gels as Functional Ingredients: Characterization, Applicability, and Human Health Benefits. Gels 2022; 8:524. [PMID: 36005125 PMCID: PMC9407509 DOI: 10.3390/gels8080524] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/16/2022] Open
Abstract
Nowadays, edible materials such as polysaccharides have gained attention due to their valuable attributes, especially gelling property. Polysaccharide-based edible gels (PEGs) can be classified as (i) hydrogels, (ii) oleogels and bigels, (iii) and aerogels, cryogels and xerogels, respectively. PEGs have different characteristics and benefits depending on the functional groups of polysaccharide chains (e.g., carboxylic, sulphonic, amino, methoxyl) and on the preparation method. However, PEGs are found in the incipient phase of research and most studies are related to their preparation, characterization, sustainable raw materials, and applicability. Furthermore, all these aspects are treated separately for each class of PEG, without offering an overview of those already obtained PEGs. The novelty of this manuscript is to offer an overview of the classification, definition, formulation, and characterization of PEGs. Furthermore, the applicability of PEGs in the food sector (e.g., food packaging, improving food profile agent, delivery systems) and in the medical/pharmaceutical sector is also critically discussed. Ultimately, the correlation between PEG consumption and polysaccharides properties for human health (e.g., intestinal microecology, "bridge effect" in obesity, gut microbiota) are critically discussed for the first time. Bigels may be valuable for use as ink for 3D food printing in personalized diets for human health treatment. PEGs have a significant role in developing smart materials as both ingredients and coatings and methods, and techniques for exploring PEGs are essential. PEGs as carriers of bioactive compounds have a demonstrated effect on obesity. All the physical, chemical, and biological interactions among PEGs and other organic and inorganic structures should be investigated.
Collapse
Affiliation(s)
- Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Călina Ciont
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gabriel Barta
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Effect of pH and protein-polysaccharide ratio on the intermolecular interactions between amaranth proteins and xanthan gum to produce electrostatic hydrogels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
18
|
Curcumin-loaded composite hydrogel based on scallop (Patinopecten yessoensis) male gonad hydrolysates and κ-carrageenan: Characterization and in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Purcea Lopes PM, Moldovan D, Moldovan M, Carpa R, Saroşi C, Păşcuţă P, Mazilu Moldovan A, Fechete R, Popescu V. New Composite Hydrogel Based on Whey and Gelatin Crosslinked with Copper Sulphate. MATERIALS 2022; 15:ma15072611. [PMID: 35407945 PMCID: PMC9000359 DOI: 10.3390/ma15072611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/15/2023]
Abstract
By-products from the meat and dairy industries are important sources of high biological value proteins. This paper explores possibilities for improving the swelling and integrity of a cross-linked whey and gelatin hydrogel with different amounts of CuSO4 × 5H2O. Overall, swelling tests demonstrate that cross-linked samples show a better hydration capacity and stability in the hydration medium, but different copper concentrations lead to different swelling behavior. At concentrations smaller than 0.39%, the sample lasts for 75 h in a water environment before beginning to disintegrate. At a concentration of copper sulphate higher than 0.55%, the stability of the sample increased substantially. The swelling kinetics has been investigated. The diffusion constant values increased with the increase in copper concentration, but, at the highest concentration of copper (0.86%), its value has decreased. Spectroscopy analyses such as Fourier transform infrared (FT-IR), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-VIS), and nuclear magnetic resonance (NMR) relaxometry analyses revealed changes in the secondary and tertiary structure of proteins as a result of the interaction of Cu2+ ions with functional groups of protein chains. In addition to its cross-linking ability, CuSO4 × 5H2O has also shown excellent antibacterial properties over common bacterial strains responsible for food spoilage. The result of this research demonstrates the potential of this hydrogel system as a unique material for food packaging.
Collapse
Affiliation(s)
- Pompilia Mioara Purcea Lopes
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Dumitriţa Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Marioara Moldovan
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș Bolyai University, M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania;
| | - Codruţa Saroşi
- Polymeric Composite Laboratory, Institute of Chemistry Raluca Ripan, Babeş-Bolyai University, 30 Fȃntȃnele Str., 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Petru Păşcuţă
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Amalia Mazilu Moldovan
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Radu Fechete
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
| | - Violeta Popescu
- Physics and Chemistry Department, Technical University of Cluj-Napoca, 28 Memorandumului Str., 400114 Cluj-Napoca, Romania; (P.M.P.L.); (D.M.); (P.P.); (A.M.M.); (R.F.)
- Correspondence: ; Tel.: +40-74-317-41-95
| |
Collapse
|
20
|
Liu J, Chai J, Yuan Y, Zhang T, Saini RK, Yang M, Shang X. Dextran sulfate facilitates egg white protein to form transparent hydrogel at neutral pH: Structural, functional, and degradation properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
A quick look to the use of time domain nuclear magnetic resonance relaxometry and magnetic resonance imaging for food quality applications. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Liu K, Chen YY, Zha XQ, Li QM, Pan LH, Luo JP. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 2021; 147:110542. [PMID: 34399519 DOI: 10.1016/j.foodres.2021.110542] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Some bioactive ingredients in foods are unstable and easily degraded during processing, storage, transportation and digestion. To enhance the stability and bioavailability, some food hydrogels have been developed to encapsulate these unstable compounds. In this paper, the preparation methods, formation mechanisms, physicochemical and functional properties of some protein hydrogels, polysaccharide hydrogels and protein-polysaccharide composite hydrogels were comprehensively summarized. Since the hydrogels have the ability to control the release and enhance the bioavailability of bioactive ingredients, the encapsulation and release mechanisms of polyphenols, flavonoids, carotenoids, vitamins and probiotics by hydrogels were further discussed. This review will provide a comprehensive reference for the deep application of polysaccharide/protein hydrogels in food industry.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
23
|
Compositional and structural aspects of hydro- and oleogels: Similarities and specificities from the perspective of digestibility. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ozel B, Zhang Z, He L, McClements DJ. Digestion of animal- and plant-based proteins encapsulated in κ-carrageenan/protein beads under simulated gastrointestinal conditions. Food Res Int 2020; 137:109662. [DOI: 10.1016/j.foodres.2020.109662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022]
|
25
|
Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Food Chem 2020; 336:127707. [PMID: 32763737 DOI: 10.1016/j.foodchem.2020.127707] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 01/11/2023]
Abstract
Anthocyanins (ACNs) are naturally derived colorants and antioxidants added to manufactured foods. ACNs were encapsulated in nanocomplexes with chitosan hydrochloride (CHC), carboxymethyl chitosan (CMC) and whey protein isolate (WPI). The ACN-loaded CHC/CMC-WPI nanocomplexes (ACN-CHC/CMC-WPI) showed a preferred particle size (332.20 nm) and zeta potential (+23.65 mV) and a high encapsulation efficiency (60.70%). ACN-CHC/CMC-WPI nanocomplexes exhibited a smooth spherical shape by transmission electron microscopy. Fourier transform infrared (FT-IR) and Raman spectroscopy confirmed interactions between the ACNs and the encapsulation materials (CHC/CMC-WPI). The nanocomplexes or the nanocomplexes incorporated into coffee beverage better protected ACNs at high temperature compared to the unencapsulated ACNs. In simulated gastrointestinal fluids, the ACNs in the ACN-CHC/CMC-WPI were more stable and more slower released over time. The nanocomplexes maintained high DPPH and hydroxyl free radical scavenging activities. This study indicated that CHC/CMC-WPI nanocomplexes can improve the thermal stability and slow the release of ACNs added to food products.
Collapse
|
26
|
Zang Z, Chou S, Tian J, Lang Y, Shen Y, Ran X, Gao N, Li B. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chem 2020; 336:127700. [PMID: 32768906 DOI: 10.1016/j.foodchem.2020.127700] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023]
Abstract
The processing stability and antioxidant capacity of blueberry anthocyanins (ANs) in the presence of whey protein isolate (WPI) were examined. WPI was found to enhance both the stability and antioxidant activity of ANs during processing and simulated in vitro digestion, especially at a concentration of 0.15 mg·mL-1. Fluorescence and ultraviolet-visible absorption spectroscopy showed that ANs were primarily stabilized by hydrophobic forces between WPI and malvidin-3-O-galactoside (M3G), the major anthocyanin monomer. Circular dichroism and Fourier-transform infrared spectroscopy confirmed that the structure of WPI changed and the microenvironments of certain amino acid residues were modulated by non-covalent binding to M3G; furthermore, fewer α-helices and more β-sheets were formed. Molecular docking studies revealed that WPI, especially immunoglobulin (IgG), contributed the most to ANs stability via hydrogen bonds and hydrophobic forces according to molecular docking scores (-141.30 kcal/mol). These results provided an important fundamental basis for improving the stabilities of ANs in milk systems.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xulong Ran
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|