1
|
Li H, He W, Wang Z, Zhang Q, Hu D, Ding K, Xie Q, Xu Y, Shan Y, Ding S. Improving the prebiotic activity and oxidative stability of carboxymethyl curdlan - quercetin conjugates stabilized Pickering emulsions for the colonic targeting delivery of curcumin. Food Res Int 2025; 201:115641. [PMID: 39849769 DOI: 10.1016/j.foodres.2024.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The carboxymethyl curdlan-quercetin conjugate (CMCD-QUE) was synthesized to stabilize curcumin (CUR) -loaded Pickering emulsions. The physicochemical properties, antioxidant activity, and prebiotic activity of CMCD-QUE were investigated. The effects of different concentrations of CMCD-QUE on CUR-loaded emulsions were also explored. CMCD-QUE exhibited excellent antioxidant activity throughout in vitro simulated gastrointestinal digestion. The particle size and electrostatic repulsion of CMCD-QUE gradually increased with rising pH, indicating that CMCD-QUE was pH-responsive. CMCD-QUE exhibited prebiotic activity and specifically promoted the enrichment of Akkermansia. The droplet size of the CMCD-QUE stabilized emulsions became smaller and more uniform as the carrier concentration increased. A concentration of 5% CMCD-QUE could be stably adsorbed at the oil-water interface of the emulsion, which exhibited a maximum encapsulated efficiency (95.85%) of CUR. CMCD-QUE showed excellent antioxidant capacity, pH responsiveness, and prebiotic activity, making it a promising multifunctional emulsifier for colon-targeted delivery of functional ingredients.
Collapse
Affiliation(s)
- Huan Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Wenjiang He
- R&D Centre, Infinitus (China) Company Ltd., Guangzhou 510520, China
| | - Zijun Wang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qun Zhang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Die Hu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Shan
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Shenghua Ding
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China.
| |
Collapse
|
2
|
Mukherjee S, Khanam J. Exploring the Effectiveness of Carboxymethylated and Crosslinked Albizia Procera Gum in Diltiazem Hydrochloride Matrix Tablets: A Comparative Analysis. Chem Pharm Bull (Tokyo) 2024:c23-00652. [PMID: 38644216 DOI: 10.1248/cpb.c23-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
This study investigates the efficacy of modified Albizia procera gum as a release-retardant polymer in Diltiazem hydrochloride (DIL) matrix tablets. Carboxymethylated Albizia procera gum (CAP) and ionically crosslinked carboxymethylated Albizia procera gum (Ca-CAP) were utilized, with Ca-CAP synthesized via crosslinking CAP with calcium ions (Ca2+) using calcium chloride (CaCl2). FTIR analysis affirmed polymer compatibility, while Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) assessed thermal behavior and crystallinity, respectively. Zeta potential analysis explored surface charge and electrostatic interactions, while rheology examined flow and viscoelastic properties. Swelling and erosion kinetics provided insights into water penetration and stability. CAP's carboxymethyl groups (-CH2-COO-) heightened divalent cation reactivity, and crosslinking with CaCl2 produced Ca-CAP through -CH2-COO- and Ca2+ interactions. Structural similarities between the polymers were revealed by FTIR, with slight differences. DSC indicated modified thermal behavior in Ca-CAP, while Zeta potential analysis showcased negative charges, with Ca-CAP exhibiting lower negativity. XRD highlighted increased crystallinity in Ca-CAP due to calcium crosslinking. Minimal impact on RBC properties was observed with both polymers compared to the positive control as water for injection (WFI). Ca-CAP exhibited improved viscosity, strength, controlled swelling, and erosion, allowing prolonged drug release compared to CAP. Stability studies confirmed consistent six-month drug release, emphasizing Ca-CAP's potential as a stable, sustained drug delivery system over CAP. Robustness and accelerated stability tests supported these findings, underscoring the promise of Ca-CAP in controlled drug release applications.
Collapse
Affiliation(s)
| | - Jasmina Khanam
- Department of Pharmaceutical Technology, Jadavpur University
| |
Collapse
|
3
|
Zhang G, Yin ZZ, Zuo X, Chen H, Chen G, Gao J, Kong Y. Carboxymethyl potato starch hydrogels encapsulated cyclodextrin metal-organic frameworks for enantioselective loading of S-naproxen and its programmed release. Int J Biol Macromol 2024; 262:130013. [PMID: 38340930 DOI: 10.1016/j.ijbiomac.2024.130013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
A natural polysaccharide-based vehicle is facilely prepared for enantioselective loading of S-naproxen (S-NPX) and its programmed release. Cyclodextrin metal-organic frameworks (CD-MOF) are synthesized through the coordination of K+ with γ-cyclodextrin (γ-CD). Compared with R-NPX, the CD-MOF preferably combines with S-NPX, which can be confirmed by the thermodynamic calculations. The S-NPX loaded CD-MOF (CD-MOF-S-NPX) is grafted with disulfide bond (-S-S-) to improve its hydrophobicity, and the loaded S-NPX is further encapsulated in the chiral cavity of γ-CD by carboxymethyl potato starch (CPS) hydrogels. The intermolecular hydrogen bonding of the CPS hydrogels is prone to be destroyed in mildly basic media (∼pH 8.0), resulting in the swelling of the hydrogels; the -S-S- linkage in the vehicle can be cleaved in the presence of glutathione (GSH), leading to the collapse of the CD-MOF. Therefore, the programmed release of S-NPX can be achieved. Also in this work, the release kinetics is investigated, and the results indicate that the release of S-NPX is controlled by the Higuchi model.
Collapse
Affiliation(s)
- Guodong Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoming Zuo
- Department of Pharmacy, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Haiying Chen
- Department of Pharmacy, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Guochun Chen
- Department of Infection, Changzhou No.3 People's Hospital, Changzhou 213001, China
| | - Jun Gao
- Department of Orthopedics, Changzhou Municipal Hospital of Traditional Chinese Medicine, Changzhou 213003, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
5
|
Chen L, Zhao N, McClements DJ, Hamaker BR, Miao M. Advanced dendritic glucan-derived biomaterials: From molecular structure to versatile applications. Compr Rev Food Sci Food Saf 2023; 22:4107-4146. [PMID: 37350042 DOI: 10.1111/1541-4337.13201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
There is considerable interest in the development of advanced biomaterials with improved or novel functionality for diversified applications. Dendritic glucans, such as phytoglycogen and glycogen, are abundant biomaterials with highly branched three-dimensional globular architectures, which endow them with unique structural and functional attributes, including small size, large specific surface area, high water solubility, low viscosity, high water retention, and the availability of numerous modifiable surface groups. Dendritic glucans can be synthesized by in vivo biocatalysis reactions using glucosyl-1-phosphate as a substrate, which can be obtained from plant, animal, or microbial sources. They can also be synthesized by in vitro methods using sucrose or starch as a substrate, which may be more suitable for large-scale industrial production. The large numbers of hydroxyl groups on the surfaces of dendritic glucan provide a platform for diverse derivatizations, including nonreducing end, hydroxyl functionalization, molecular degradation, and conjugation modifications. Due to their unique physicochemical and functional attributes, dendritic glucans have been widely applied in the food, pharmaceutical, biomedical, cosmetic, and chemical industries. For instance, they have been used as delivery systems, adsorbents, tissue engineering scaffolds, biosensors, and bioelectronic components. This article reviews progress in the design, synthesis, and application of dendritic glucans over the past several decades.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ningjing Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - David J McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Wang Z, Hu X, Hamaker BR, Zhang T, Miao M. Development of phytoglycogen-derived core-shell-corona nanoparticles complexed with conjugated linoleic acid. Food Funct 2023; 14:6376-6384. [PMID: 37335179 DOI: 10.1039/d3fo00281k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Phytoglycogen-derived self-assembled nanoparticles (SMPG/CLA) and enzymatic-assembled nanoparticles (EMPG/CLA) were fabricated for delivery of conjugated linoleic acid (CLA). After measuring the loading rate and yield, the optimal ratio for both assembled host-guest complexes was 1 : 10, and the maximum loading rate and yield for EMPG/CLA were 1.6% and 88.1%, respectively, higher than those of SMPG/CLA. Structural characterization studies showed that the assembled inclusion complexes were successfully constructed, and had a specific spatial architecture with inner-core amorphous and external-shell crystalline parts. A higher protective effect against oxidation of EMPG/CLA was observed than that of SMPG/CLA, supporting efficient complexation for a higher order crystalline structure. After 1 h of gastrointestinal digestion under the simulated conditions, 58.7% of CLA was released from EMPG/CLA, which was lower than that released from SMPG/CLA (73.8%). These results indicated that in situ enzymatic-assembled phytoglycogen-derived nanoparticles might be a promising carrier platform for protection and targeted delivery of hydrophobic bioactive ingredients.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Xiuting Hu
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Bruce R Hamaker
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
| |
Collapse
|
7
|
Feng W, Wang Z, Campanella OH, Zhang T, Miao M. Fabrication of phytoglycogen-derived core-shell nanoparticles: Structure and characterizations. Food Chem 2023; 423:136317. [PMID: 37182493 DOI: 10.1016/j.foodchem.2023.136317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The objective of this work was to investigate the fabrication of core-shell nanoparticles using phosphorylase-catalyzed chain extension of phytoglycogen, and to analyze the changes of structure and characterizations in detail. During the glucosylation reaction, the inorganic phosphate increased substantially up to 2.3 mg/mL in the initial 12 h, and then increased incrementally to 2.5 mg/mL at 24 h. The similar to trends was observed for increasing Mw and Rz over time, due to glucosyl transfers on the surface chain to form a corona around the phytoglycogen core with a larger size. Phosphorylase modification increases the percentages of longer chain fractions and the average chain length increased from degree of polymerization (DP) 11.6 to DP 48.2. The modified phytoglycogen exhibited the characteristic of B-type crystalline structure, indicating that the specific core-shell nanoparticle with inner amorphous nature and outer crystalline layer. The above results revealed that the potentiality of enzymatic chain elongation of phytoglycogen to design novel core-shell nanoparticle with tailor-made structure and functionality.
Collapse
Affiliation(s)
- Wenjuan Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ziqi Wang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States
| | - Tao Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Ming Miao
- State Key Laboratory of Food Science & Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
8
|
A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: Synthesis, characterization, swelling behavior and controlled drug release. Int J Biol Macromol 2023; 232:123392. [PMID: 36702219 DOI: 10.1016/j.ijbiomac.2023.123392] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The pH-sensitive hydrogel consisting of carboxymethylated konjac glucomannan (CMKGM) and sodium trimetaphosphate (STMP) was prepared for a potential intestinal targeted delivery system. Both the CMKGM and the CMKGM hydrogel were characterized by FT-IR spectra, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The Congo red and atomic force microscope (AFM) results showed a coil-to-helix transition of CMKGM in alkaline conditions with the degree of substitution (DS) increased from 0.20 to 0.49. Rheological measurements indicated that the DS and the STMP content collectively influence the mechanical stiffness and swelling properties of the obtained hydrogels. In addition, the swelling behavior of the hydrogels revealed that they were sensitive to pH value changes and were following a Korsmeyer-Peppas gastrointestinal release behavior, indicating that the release was controlled by non-Fickian diffusion. Furthermore, all the results suggested that the prepared pH-sensitive hydrogel may serve as a potential biomaterial for the intestine-targeted delivery system.
Collapse
|
9
|
Effect of amylose content on the preparation for carboxymethyl starch/pullulan electrospun nanofibers and their properties as encapsulants of thymol. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Fabrication and characterizations of cyclic amylopectin-based delivery system incorporated with β-carotene. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Qi B, Yang S, Zhao Y, Wang Y, Yang X, Chen S, Wu Y, Pan C, Hu X, Li C, Wang L. Comparison of the Physicochemical Properties of Carboxymethyl Agar Synthesized by Microwave-Assisted and Conventional Methods. Gels 2022; 8:gels8030162. [PMID: 35323275 PMCID: PMC8951826 DOI: 10.3390/gels8030162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The microwave-assisted carboxymethylation of agar to improve its physicochemical properties was investigated. Microwave power, reaction time, and temperature, ethanol concentration, and amounts of chloroacetic acid and sodium hydroxide were assessed for their effects on synthetic yield and degree of substitution (DS). All factors were positively correlated with DS within a certain range. Using optimized conditions, samples with different DS were prepared, and the physicochemical properties of unmodified and carboxymethyl agars prepared by microwave and conventional methods were compared. Carboxymethylation significantly changed the physicochemical properties of the agar, improving gel transparency and reducing dissolution temperature, gel strength, gel hardness, molecular weight, and molecular size; DS was the key factor. Specifically, higher DS values resulted in greater changes. The microwave-assisted method significantly shortened the reaction time and preserved molecular weight, gel strength, and texture hardness of the agar. Therefore, as an environmentally friendly method, microwave-assisted synthesis shows great promise for producing carboxymethyl agar.
Collapse
Affiliation(s)
- Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shaoling Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China
- Correspondence: (S.Y.); (Y.Z.)
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
- Correspondence: (S.Y.); (Y.Z.)
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
| | - Lunan Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (B.Q.); (Y.W.); (X.Y.); (S.C.); (Y.W.); (C.P.); (X.H.); (C.L.); (L.W.)
- Hangzhou PuYu Technology Development Co., Ltd., Hangzhou 311300, China
| |
Collapse
|
12
|
Shi Y, Ye F, Zhu Y, Miao M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem 2022; 385:132626. [PMID: 35305435 DOI: 10.1016/j.foodchem.2022.132626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
Abstract
The impact of sugary maize dendrimer-like glucan octenyl succinate (OSA-SMDG) on the storage stability and antioxidant activity of β-carotene (BC)-loaded emulsions as well as bioaccessibility were investigated. The encapsulation efficiency of β-carotene in emulsions containing 3% OSA-SMDG (3OSA-SMDG-BC) or 5% OSA-SMDG (5OSA-SMDG-BC) was 89.6% and 94.9%, respectively. The antioxidant activity of both emulsions was higher than that of pure β-carotene. During simulated digestion, the particle size of emulsions was immediately reduced, whereas zeta-potential was continuously increased in intestinal digestion. After 2 h digestion, the free fatty acids (FFA) release rate of 3OSA-SMDG-BC and 5OSA-SMDG-BC was significantly higher than that of blank emulsion. Bioaccessibility of β-carotene encapsulated in 3OSA-SMDG-BC and 5OSA-SMDG-BC was also significantly higher than that of blank emulsion. FFA release rate and β-carotene bioaccessibility of 5OSA-SMDG-BC were higher than that of 3OSA-SMDG-BC. These results demonstrated that OSA-SMDG could be used to fabricate food-grade O/W Pickering emulsion as a delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yingjie Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
13
|
Wang F, Li J, Chen C, Qi H, Huang K, Hu S. Preparation and synergistic chemo-photothermal therapy of redox-responsive carboxymethyl cellulose/chitosan complex nanoparticles. Carbohydr Polym 2022; 275:118714. [PMID: 34742439 DOI: 10.1016/j.carbpol.2021.118714] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Chemo-photothermal combination therapy has great promise for enhanced tumor treatment. Hereby, we developed a complex nanoparticle using electrostatic absorption method, in which the inner chitosan (CS) NPs loaded polypyrrole (PPy) nanoparticles and 5-fluorouracil (5Fu), the outer shell was carboxymethyl cellulose (CMC) crosslinked with disulfide. The drug loaded polysaccharide complex nanoparticles displayed good photothermal effects, and the drug release would be triggered by multi-model response of NIR irradiation, high glutathione (GSH) and weak acidity in tumor environment. In vitro biological studies indicated the nanopartiles could be effectively internalized by HepG2 cancer cells. Moreover, the remarkable inhibition of the CMC complex PPy and 5Fu loaded CS nanoparticles (CMC/CS@PPy + 5Fu NPs) against tumor growth was achieved in HepG2-bearing mice model, suggesting its great potential for synergetic chemo-photothermal therapy.
Collapse
Affiliation(s)
- Fang Wang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China; Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Re, Nanjing 210037, Jiangsu, PR China.
| | - Jiarui Li
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Cheng Chen
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Hong Qi
- Nanjing Medical Univ, School of Public Health, Nanjing 211166, Jiangsu, PR China
| | - Kexin Huang
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| | - Sheng Hu
- Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Jiangsu, PR China
| |
Collapse
|
14
|
Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Hu X, Liu Y, Chen Y, Zhang T, Miao M. Fabrication, Structure and Functional Characterizations of pH-Responsive Hydrogels Derived from Phytoglycogen. Foods 2021; 10:foods10112653. [PMID: 34828934 PMCID: PMC8621403 DOI: 10.3390/foods10112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The pH-responsive hydrogels were obtained through successive carboxymethylation and phosphorylase elongatation of phytoglycogen and their structure and functional characterizations were investigated. Phytoglycogen (PG) was first carboxymethylated to obtain carboxymethyl phytoglycogen (CM-PG) with degree of substitution (DS) at 0.15, 0.25, 0.30, and 0.40, respectively. Iodine staining and X-ray diffraction analysis suggested that the linear glucan chains were successfully phosphorylase-elongated from the non-reducing ends at the CM-PG surface and assembled into the double helical segments, leading to formation of the hydrogel. The DS of CM-PG significantly influenced elongation of glucan chains. Specifically, fewer glucan chains were elongated for CM-PG with higher DS and the final glucan chains were shorter, resulting in lower gelation rate of chain-elongated CM-PG and lower firmness of the corresponding hydrogels. Scanning electron microscope observed that the hydrogels exhibited a porous and interconnected morphology. The swelling ratio and volume of hydrogels was low at pH 3–5 and then became larger at pH 6–8 due to electrostatic repulsion resulting from deprotonated carboxymethyl groups. Particularly, the hydrogel prepared from chain-elongated CM-PG (DS = 0.25) showed the highest sensitivity to pH. These results suggested that phosphorylase-treated CM-PG formed the pH-responsive hydrogel and that the elongation degree and the properties of hydrogels depended on the carboxymethylation degree. Thus, it was inferred that these hydrogels was a potential carrier system of bioactive substances for their targeted releasing in small intestine.
Collapse
Affiliation(s)
- Xiuting Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Yimei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (Y.L.); (Y.C.); (T.Z.)
- Correspondence:
| |
Collapse
|
16
|
Preparation of carboxymethyl starch/polyvinyl-alcohol electrospun composite nanofibers from a green approach. Int J Biol Macromol 2021; 190:601-606. [PMID: 34508720 DOI: 10.1016/j.ijbiomac.2021.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
A green approach for the preparation of starch-based composite nanofibers using electrospinning was developed. The water-soluble sodium carboxymethyl starch (CMS) with DS 0.31 was prepared. The addition of co-blending polymer polyvinyl-alcohol (PVA) was attempted to improve the CMS solution spinnability, which blends from aqueous solution were prepared at different CMS/PVA weight ratios. The solution parameters including viscosity, surface tension and conductivity were measured and the morphologies of nanofibers were observed by SEM. Smooth, continuous, and defect-free nanofibers were successfully obtained range from the blend of CMS/PVA weight ratios of 10:90 to 80:20. Diameter distribution diagrams suggested that the diameter of the nanofibers reduced with the concentration of CMS increasing. This is the first report that the thin nanofiber (135.29 nm) with bead-free was obtained at the maximal CMS content of 50.0 wt% in the CMS/PVA blend. This study provided a green approach to produce starch-based nano-scale fibers.
Collapse
|
17
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
18
|
Xue J, Luo Y. Properties and applications of natural dendritic nanostructures: Phytoglycogen and its derivatives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|