1
|
Wang L, Ma ZW, Tang JW, Mou JY, Liu QH, Wang ZY, Liu X, Zhang MY, Tang DQ. Identification of structural stability and fragility of mouse liver glycogen via label-free Raman spectroscopy coupled with convolutional neural network algorithm. Int J Biol Macromol 2025; 286:138340. [PMID: 39638186 DOI: 10.1016/j.ijbiomac.2024.138340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Glycogen structure is closely associated with its physiological functions. Previous studies confirmed that liver glycogen structure had two dominant states: mainly stable during the day and largely fragile at night. However, the diurnal change of glycogen structure is impaired, with dominant fragility in diseased conditions such as diabetes mellitus and liver fibrosis. Therefore, the persistent structural fragility of glycogen particles could be a potential molecular-level pathological biomarker for early screening of certain liver diseases. However, the current method for identifying glycogen structural stability and fragility suffers from sophisticated procedures and reliance on expensive instruments, which demands developing novel methods for rapidly discriminating the two types of glycogen particles. This study applied surface-enhanced Raman spectroscopy (SERS) to generate SERS spectra of glycogen samples, revealing distinct structural differences between fragile and stable glycogen particles. Machine learning models were then constructed to predict the structural states of unknown glycogen samples via SERS spectra, according to which the convolutional neural network (CNN) model achieved the best discrimination capacity. Taken together, the SERS technique coupled with the CNN model can identify stable and fragile liver glycogen samples, facilitating the application of glycogen structural fragility as a biomarker in diagnosing liver diseases.
Collapse
Affiliation(s)
- Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China; School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.
| | - Zhang-Wen Ma
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing-Yi Mou
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Clinical Medicine, School of The First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Xin Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Meng-Ying Zhang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu X, Gilbert RG. Normal and abnormal glycogen structure - A review. Carbohydr Polym 2024; 338:122195. [PMID: 38763710 DOI: 10.1016/j.carbpol.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Glycogen, a complex branched glucose polymer, is found in animals and bacteria, where it serves as an energy storage molecule. It has linear (1 → 4)-α glycosidic bonds between anhydroglucose monomer units, with branch points connected by (1 → 6)-α bonds. Individual glycogen molecules are referred to as β particles. In organs like the liver and heart, these β particles can bind into larger aggregate α particles, which exhibit a rosette-like morphology. The mechanisms and bonding underlying the aggregation process are not fully understood. For example, mammalian liver glycogen has been observed to be molecularly fragile under certain conditions, such as glycogen from diabetic livers fragmenting when exposed to dimethyl sulfoxide (DMSO), while glycogen from healthy livers is much less fragile; this indicates some difference, as yet unknown, in the bonding between β particles in healthy and diabetic glycogen. This fragility may have implications for blood sugar regulation, especially in pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
3
|
Mou JY, Ma ZW, Zhang MY, Yuan Q, Wang ZY, Liu QH, Li F, Liu Z, Wang L. Structural abnormality of hepatic glycogen in rat liver with diethylnitrosamine-induced carcinogenic injury. Int J Biol Macromol 2024; 260:129432. [PMID: 38228208 DOI: 10.1016/j.ijbiomac.2024.129432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Growing evidence confirms associations between glycogen metabolic re-wiring and the development of liver cancer. Previous studies showed that glycogen structure changes abnormally in liver diseases such as cystic fibrosis, diabetes, etc. However, few studies focus on glycogen molecular structural characteristics during liver cancer development, which is worthy of further exploration. In this study, a rat model with carcinogenic liver injury induced by diethylnitrosamine (DEN) was successfully constructed, and hepatic glycogen structure was characterized. Compared with glycogen structure in the healthy rat liver, glycogen chain length distribution (CLD) shifts towards a short region. In contrast, glycogen particles were mainly present in small-sized β particles in DEN-damaged carcinogenic rat liver. Comparative transcriptomic analysis revealed significant expression changes of genes and pathways involved in carcinogenic liver injury. A combination of transcriptomic analysis, RT-qPCR, and western blot showed that the two genes, Gsy1 encoding glycogen synthase and Gbe1 encoding glycogen branching enzyme, were significantly altered and might be responsible for the structural abnormality of hepatic glycogen in carcinogenic liver injury. Taken together, this study confirmed that carcinogenic liver injury led to structural abnormality of hepatic glycogen, which provided clues to the future development of novel drug targets for potential therapeutics of carcinogenic liver injury.
Collapse
Affiliation(s)
- Jing-Yi Mou
- Department of Clinical Medicine, School of 1(st) Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Meng-Ying Zhang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Quan Yuan
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Fen Li
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Zhao Liu
- Department of Clinical Medicine, School of 1(st) Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Liang Wang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Han M, Liao W, Dong Y, Bai C, Gai Z. Lacticaseibacillus rhamnosus Hao9 exerts antidiabetic effects by regulating gut microbiome, glucagon metabolism, and insulin levels in type 2 diabetic mice. Front Nutr 2023; 9:1081778. [PMID: 36687673 PMCID: PMC9849894 DOI: 10.3389/fnut.2022.1081778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a metabolic disease that has led to a significant global public health burden. Methods In this work, we investigated the effects of Lacticaseibacillus rhamnosus Hao9 on T2DM in mice with high-fat diet- and streptozotocin (STZ)-induced diabetes (diabetic mice) and explored the underlying mechanisms. Results We found that 109 colony forming units (CFUs) of Hao9 per day significantly reduced fasting blood glucose and insulin levels (p < 0.001) in diabetic mice. Moreover, Hao9 enhanced liver antioxidant capacity and significantly decreased glucose-6-phosphatase and phosphoenolpyruvate carboxykinase expression in the livers of diabetic mice (p < 0.001). Hao9 also reduced the serum concentrations of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα), interleukin-1β (IL1β), and IL6 (p < 0.05) and improved intestinal barrier function in diabetic mice. The composition of the gut microbiome was modulated by Hao9, with an increased abundance of Roseburia, Eubacterium, and Lacticaseibacillus, and decreased abundance of Escherichia/Shigella. Notably, Lacticaseibacillus was detected at both weeks 5 and 12 post-treatment, suggesting sustained colonization of the gut by Hao9. Discussion The supplementation of Hao9 improved gut microbiota, glucose metabolism, and insulin levels significantly in T2DM mice. That means Hao9 contributes to improving T2DM symptoms with its potential beneficial effects. Therefore, Hao9 is a promising dietary supplement for the treatment of T2DM.
Collapse
Affiliation(s)
- Mei Han
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Wenyan Liao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Center of Dairy Biotechnology, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yao Dong
- Department of Research and Development, Wecare Probiotics (Suzhou) Co., Ltd., Suzhou, China
| | - Chen Bai
- Department of Food Science, Shanghai Business School, Shanghai, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics (Suzhou) Co., Ltd., Suzhou, China,*Correspondence: Zhonghui Gai,
| |
Collapse
|
5
|
Li F, Wang MM, Liu QH, Ma ZW, Wang JJ, Wang ZY, Tang JW, Lyu JW, Zhu ZB, Wang L. Molecular mechanisms of glycogen particle assembly in Escherichia coli. Carbohydr Polym 2023; 299:120200. [PMID: 36876811 DOI: 10.1016/j.carbpol.2022.120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.
Collapse
Affiliation(s)
- Fen Li
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Meng-Meng Wang
- Department of Pharmacy, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China; Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jun-Jiao Wang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zi-Yi Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Wen Lyu
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zuo-Bin Zhu
- Department of Genetics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Protein Targeting to Glycogen (PTG): A Promising Player in Glucose and Lipid Metabolism. Biomolecules 2022; 12:biom12121755. [PMID: 36551183 PMCID: PMC9775135 DOI: 10.3390/biom12121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation and dephosphorylation are widely considered to be the key regulatory factors of cell function, and are often referred to as "molecular switches" in the regulation of cell metabolic processes. A large number of studies have shown that the phosphorylation/dephosphorylation of related signal molecules plays a key role in the regulation of liver glucose and lipid metabolism. As a new therapeutic strategy for metabolic diseases, the potential of using inhibitor-based therapies to fight diabetes has gained scientific momentum. PTG, a protein phosphatase, also known as glycogen targeting protein, is a member of the protein phosphatase 1 (PP1) family. It can play a role by catalyzing the dephosphorylation of phosphorylated protein molecules, especially regulating many aspects of glucose and lipid metabolism. In this review, we briefly summarize the role of PTG in glucose and lipid metabolism, and update its role in metabolic regulation, with special attention to glucose homeostasis and lipid metabolism.
Collapse
|
7
|
Tang JW, Qiao R, Xiong XS, Tang BX, He YW, Yang YY, Ju P, Wen PB, Zhang X, Wang L. Rapid discrimination of glycogen particles originated from different eukaryotic organisms. Int J Biol Macromol 2022; 222:1027-1036. [PMID: 36181881 DOI: 10.1016/j.ijbiomac.2022.09.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
There are many commercially available glycogen particles in the market due to their bioactive functions as food additive, drug carrier and natural moisturizer, etc. It would be beneficial to rapidly determine the origins of commercially-available glycogen particles, which could facilitate the establishment of quality control methodology for glycogen-containing products. With its non-destructive, label-free and low-cost features, surface enhanced Raman spectroscopy (SERS) is an attractive technique with high potential to discriminate chemical compounds in a rapid mode. In this study, we applied the combination of SERS technique and machine leaning algorithms on glycogen analysis, which successfully predicted the origins of glycogen particles from a variety of organisms with convolutional neural network (CNN) algorithm plus attention mechanism having the best computational performance (5-fold cross validation accuracy = 96.97 %). In sum, this is the first study focusing on the discrimination of commercial glycogen particles originated from different organisms, which holds the application potential in quality control of glycogen-containing products.
Collapse
Affiliation(s)
- Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Qiao
- Deparment of Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xue-Song Xiong
- Laboratory Medicine, The Fifth People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Bing-Xin Tang
- Department of Laboratory Medicine, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - You-Wei He
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ying-Ying Yang
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Pei Ju
- School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Peng-Bo Wen
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Xiao Zhang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Wang Z, Min X, Hu Z, Sullivan MA, Tang Y, Wang L, Gilbert RG, Shi C, Deng B. The fragility of liver glycogen from humans with type 2 diabetes: A pilot study. Int J Biol Macromol 2022; 221:83-90. [PMID: 36075306 DOI: 10.1016/j.ijbiomac.2022.08.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022]
Abstract
Liver glycogen is a highly branched glucose polymer found as β particles (~20 nm in diameter), which can bind together into larger composite α particles. Hepatic α particles have been shown to be structurally fragile (breaking up into smaller particles in certain solvents) in mouse models of diabetes; if occurring in vivo, the resulting small glycogen particles could exacerbate the poor blood-sugar homeostasis characteristic of the disease. Here we tested if this α-particle fragility also occurred in liver glycogen obtained from humans with diabetes. It was found that liver glycogen from diabetic humans was indeed more fragile than from non-diabetic humans, which was also seen in the mouse experiments we ran in parallel. Proteomic analysis revealed three candidate proteins from differentially expressed glycogen proteins (Diabetes/ Non-diabetes) in both human and mouse groups. Identifying these proteins may give clues to the binding mechanism that holds together α particles together, which, being different in diabetic glycogen, is relevant to diabetes prevention and management.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiaobo Min
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenxia Hu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mitchell A Sullivan
- Glycation and Diabetes, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Yong Tang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province 510080, China
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Comparative transcriptome analysis of diurnal alterations of liver glycogen structure: A pilot study. Carbohydr Polym 2022; 295:119710. [DOI: 10.1016/j.carbpol.2022.119710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
10
|
Hao J, Zhang Y, Wu T, Liu R, Sui W, Zhu J, Fang S, Geng J, Zhang M. Antidiabetic Effects of Bifidobacterium longum subsp. longum BL21 through Regulating Gut Microbiota Structure in Type 2 Diabetic Mice. Food Funct 2022; 13:9947-9958. [DOI: 10.1039/d2fo01109c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifidobacterium longum subsp. longum BL21 (BL21) possess hypoglycemic activity, but its anti-diabetic mechanism has rarely been illustrated. In the present work, the effect of BL21 on type 2 diabetes mellitus...
Collapse
|
11
|
Liu ZZ, Liu QH, Liu Z, Tang JW, Chua EG, Li F, Xiong XS, Wang MM, Wen PB, Shi XY, Xi XY, Zhang X, Wang L. Ethanol extract of mulberry leaves partially restores the composition of intestinal microbiota and strengthens liver glycogen fragility in type 2 diabetic rats. BMC Complement Med Ther 2021; 21:172. [PMID: 34126977 PMCID: PMC8204513 DOI: 10.1186/s12906-021-03342-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mulberry leaf as a traditional Chinese medicine is able to treat obesity, diabetes, and dyslipidemia. It is well known that diabetes leads to intestinal microbiota dysbiosis. It is also recently discovered that liver glycogen structure is impaired in diabetic animals. Since mulberry leaves are able to improve the diabetic conditions through reducing blood glucose level, it would be interesting to investigate whether they have any positive effects on intestinal microbiota and liver glycogen structure. METHODS In this study, we first determined the bioactive components of ethanol extract of mulberry leaves via high-performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS). Murine animal models were divided into three groups, normal Sprague-Dawley (SD) rats, high-fat diet (HFD) and streptozotocin (STZ) induced type 2 diabetic rats, and HFD/STZ-induced rats administered with ethanol extract of mulberry leaves (200 mg/kg/day). Composition of intestinal microbiota was analyzed via metagenomics by sequencing the V3-V4 region of 16S rDNAs. Liver glycogen structure was characterized through size exclusion chromatography (SEC). Both Student's t-test and Tukey's test were used for statistical analysis. RESULTS A group of type 2 diabetic rat models were successfully established. Intestinal microbiota analysis showed that ethanol extract of mulberry leaves could partially change intestinal microbiota back to normal conditions. In addition, liver glycogen was restored from fragile state to stable state through administration of ethanol extract of mulberry leaves. CONCLUSIONS This study confirms that the ethanol extract of mulberry leaves (MLE) ameliorates intestinal microbiota dysbiosis and strengthens liver glycogen fragility in diabetic rats. These finding can be helpful in discovering the novel therapeutic targets with the help of further investigations.
Collapse
Affiliation(s)
- Zhan-Zhong Liu
- Xuzhou Infectious Diseases Hospital, Xuzhou, 221000, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Eng-Guan Chua
- Marshall Center for Infectious Diseases and Training, University of Western Australia, Perth, WA, 6009, Australia
| | - Fen Li
- Department of Laboratory Medicine, Huaiyin Hospital, Huai'an, 223300, Jiangsu, China
| | - Xue-Song Xiong
- Department of Laboratory Medicine, Huaiyin Hospital, Huai'an, 223300, Jiangsu, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xin-Yi Shi
- School of Life Science, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xiang-Yu Xi
- Xuzhou Infectious Diseases Hospital, Xuzhou, 221000, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Liu QH, Tang JW, Wen PB, Wang MM, Zhang X, Wang L. From Prokaryotes to Eukaryotes: Insights Into the Molecular Structure of Glycogen Particles. Front Mol Biosci 2021; 8:673315. [PMID: 33996916 PMCID: PMC8116748 DOI: 10.3389/fmolb.2021.673315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glycogen is a highly-branched polysaccharide that is widely distributed across the three life domains. It has versatile functions in physiological activities such as energy reserve, osmotic regulation, blood glucose homeostasis, and pH maintenance. Recent research also confirms that glycogen plays important roles in longevity and cognition. Intrinsically, glycogen function is determined by its structure that has been intensively studied for many years. The recent association of glycogen α-particle fragility with diabetic conditions further strengthens the importance of glycogen structure in its function. By using improved glycogen extraction procedures and a series of advanced analytical techniques, the fine molecular structure of glycogen particles in human beings and several model organisms such as Escherichia coli, Caenorhabditis elegans, Mus musculus, and Rat rattus have been characterized. However, there are still many unknowns about the assembly mechanisms of glycogen particles, the dynamic changes of glycogen structures, and the composition of glycogen associated proteins (glycogen proteome). In this review, we explored the recent progresses in glycogen studies with a focus on the structure of glycogen particles, which may not only provide insights into glycogen functions, but also facilitate the discovery of novel drug targets for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jia-Wei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Meng-Meng Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Nawaz A, Zhang P, Li E, Gilbert RG, Sullivan MA. The importance of glycogen molecular structure for blood glucose control. iScience 2021; 24:101953. [PMID: 33458612 PMCID: PMC7797522 DOI: 10.1016/j.isci.2020.101953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes incidence continues to increase rapidly. This disease is characterized by a breakdown in blood glucose homeostasis. The impairment of glycemic control is linked to the structure of glycogen, a highly branched glucose polymer. Liver glycogen, a major controller of blood sugar, comprises small β particles which can link together to form larger α particles. These degrade to glucose more slowly than β particles, enabling a controlled release of blood glucose. The α particles in diabetic mice are however easily broken down into β particles, which degrade more quickly. Because this may lead to higher blood glucose, understanding this diabetes-associated breakdown of α-particle molecular structure may help in the development of diabetes therapeutics. We review the extraction of liver glycogen, its molecular structure, and how this structure is affected by diabetes and then use this knowledge to make postulates to guide the development of strategies to help mitigate type 2 diabetes.
Collapse
Affiliation(s)
- Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Peng Zhang
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G. Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia
| | - Mitchell A. Sullivan
- Glycation and Diabetes, Mater Research Institute – The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|