1
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Wang M, Tang HP, Bai QX, Yu AQ, Wang S, Wu LH, Fu L, Wang ZB, Kuang HX. Extraction, purification, structural characteristics, biological activities, and applications of polysaccharides from the genus Lilium: A review. Int J Biol Macromol 2024; 267:131499. [PMID: 38614164 DOI: 10.1016/j.ijbiomac.2024.131499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lei Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
3
|
Li L, Xu S, Li M, Yin X, Xi H, Yang P, Ma L, Zhang L, Li X. Combined gestational age and serum fucose for early prediction of risk for bronchopulmonary dysplasia in premature infants. BMC Pediatr 2024; 24:107. [PMID: 38347448 PMCID: PMC10860215 DOI: 10.1186/s12887-024-04556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.
Collapse
Affiliation(s)
- Liangliang Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Shimin Xu
- Division of Neonatology, Beijing jingdu Children's Hospital, Beijing, China
| | - Miaomiao Li
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Xiangyun Yin
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Hongmin Xi
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Ping Yang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lili Ma
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Lijuan Zhang
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Xianghong Li
- Division of Neonatology, The Affiliated Hospital of Qingdao University, Shandong, China.
| |
Collapse
|
4
|
Feng L, Shi Y, Zou J, Zhang X, Zhai B, Guo D, Sun J, Wang M, Luan F. Recent advances in Platycodon grandiflorum polysaccharides: Preparation techniques, structural features, and bioactivities. Int J Biol Macromol 2024; 259:129047. [PMID: 38171434 DOI: 10.1016/j.ijbiomac.2023.129047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Platycodon grandiflorum, a globally recognized medicinal and edible plant, possesses significant nutritional value and pharmacological value. In traditional Chinese medicine, it has the effects of tonifying the spleen and replenishing the Qi, moistening the lung and relieving the cough, clearing the heat and detoxifying, and relieving the pain. Accumulating evidence has revealed that the polysaccharides from P. grandiflorum (PGPs) are one of the major and representative biologically active macromolecules and have diverse biological activities, such as immunomodulatory activity, anti-inflammatory activity, anti-tumor activity, regulation of the gut microbiota, anti-oxidant activity, anti-apoptosis activity, anti-angiogenesis activity, hypoglycemic activity, anti-microbial activity, and so on. Although the polysaccharides extracted from P. grandiflorum have been extensively studied for the extraction and purification methods, structural characteristics, and pharmacological activities, the knowledge of their structures and bioactivity relationship, toxicologic effects, and pharmacokinetic profile is limited. The main purpose of the present review is to provide comprehensively and systematically reorganized information on extraction and purification, structure characterizations, and biological functions as well as toxicities of PGPs to support their therapeutic potentials and sanitarian functions. New valuable insights for future research regarding PGPs were also proposed in the fields of therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Lile Feng
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Mei Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
5
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
6
|
Zhao Y, Li Q, Wang M, Wang Y, Piao C, Yu H, Liu J, Li Z. Structural characterization of polysaccharides after fermentation from Ganoderma lucidum and its antioxidant activity in HepG2 cells induced by H 2O 2. Food Chem X 2023; 18:100682. [PMID: 37168720 PMCID: PMC10165195 DOI: 10.1016/j.fochx.2023.100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
In this study, Lactiplantibacillus plantarum ATCC14917 was used to ferment Ganoderma lucidum spore powder. Two polysaccharides were purified from unfermented (GLP) and fermented (FGLP) Ganoderma lucidum spore powder. The chemical structure and antioxidant activity of the polysaccharides were studied. Finally, the effect of GLP and FGLP on the oxidative stress regulation pathway in HepG2 cells was explored. The results showed that the main structural characteristics of Ganoderma lucidum polysaccharides remained unchanged during the fermentation. However, the average molecular weight (Mw) of Ganoderma lucidum polysaccharides decreased from 1.12 × 105 Da to 0.89 × 105 Da. Besides this, the contents of mannose, galactose, and glucuronic acid increased, while the contents of xylose and glucose were decreased. In addition, the content of uronic acid was raised, and the apparent structure was changed from smooth and hard to porous and loose. In antioxidant studies, intracellular ROS and MDA contents in the oxidative stress model were decreased, and T-AOC content was increased under GLP and FGLP intervention. In the investigation of the regulation pathway, Nrf-1 gene expression was up-regulated, and Keap1 gene expression was down-regulated under GLP and FGLP intervention. The antioxidant genes NQO1 and NO-1 expressions were increased to activate the activities of antioxidant enzymes CAT, SOD and GSH-PA to resist oxidative stress. Compared with GLP, FGLP has a stronger regulatory role in this pathway, thus showing more potent antioxidant activity. This experiment is beneficial to the further utilization of Ganoderma lucidum spore powder.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qinyang Li
- School of Life Science, Jilin University, Changchun 130012, China
| | - Minghui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Chunhong Piao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Corresponding authors.
| | - Zhuowei Li
- Changchun Vocational Institute of Technology, Changchun 130033, China
- Corresponding authors.
| |
Collapse
|
7
|
Wei W, Li Z, Li S, Wu S, Zhang D, An Y, Li Y, Wu M, Zhang J, Yao C, Bi Q, Guo DA. Fingerprint profiling and gut microbiota regulation of polysaccharides from Fritillaria species. Int J Biol Macromol 2023; 237:123844. [PMID: 36858091 DOI: 10.1016/j.ijbiomac.2023.123844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Few studies reported the quality evaluation and gut microbiota regulation effect of polysaccharides from Fritillaria species. In this study, polysaccharides extracted from ten Fritillaria species were compared and distinguished through multi-levels evaluation strategy and data fusion. Furthermore, the gut microbiota regulation effect of polysaccharides among different species was analyzed and evaluated. The fingerprint profiling of IR, molecular weight distribution of polysaccharides, chromatogram of partially hydrolyzed polysaccharides (oligosaccharides) and completely hydrolyzed polysaccharides (monosaccharides) were similar, and no exclusive signals were observed. However, the signal strength of functional group, oligosaccharides abundance and monosaccharides proportion showed obvious differences in inter- and intra-species. Glucan may be the main component of polysaccharides in Fritillaria species, CIRR derived from CIR, PRZ, DEL, TAI, UNI possessed higher total polysaccharides content, polymerization degree, oligosaccharides abundance (DP 2-4), and glucose content than the others. Meanwhile, data fusion model was established for identification of affinis and multi-original species, the accuracy of which proved to be 100 %. In addition, Fritillaria polysaccharides could increase the bacterial community richness and diversity, regulate the gut microbiota composition and possessed potential therapeutic effects on gastrointestinal diseases and nervous system diseases.
Collapse
Affiliation(s)
- Wenlong Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhenwei Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Shiwei Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Daidi Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yaling An
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Menglei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianqing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
8
|
Wang H, Li Y, Dai Y, Ma L, Di D, Liu J. Screening, structural characterization and anti-adipogenesis effect of a water-soluble polysaccharide from Lycium barbarum L. by an activity-oriented approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Shen C, Mackeigan DT, Shoara AA, Xu R, Bhoria P, Karakas D, Ma W, Cerenzia E, Chen Z, Hoard B, Lin L, Lei X, Zhu G, Chen P, Johnson PE, Ni H. Dual roles of fucoidan-GPIbα interaction in thrombosis and hemostasis: implications for drug development targeting GPIbα. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1274-1288. [PMID: 36732162 DOI: 10.1016/j.jtha.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Platelet GPIbα-von Willebrand factor (VWF) interaction initiates platelet adhesion, activation, and thrombus growth, especially under high shear conditions. Therefore, the GPIb-VWF axis has been suggested as a promising target against arterial thrombosis. The polysaccharide fucoidan has been reported to have opposing prothrombotic and antithrombotic effects; however, its binding mechanism with platelets has not been adequately studied. OBJECTIVE The objective of this study was to explore the mechanism of fucoidan and its hydrolyzed products in thrombosis and hemostasis. METHODS Natural fucoidan was hydrolyzed by using hydrochloric acid and was characterized by using size-exclusion chromatography, UV-visible spectroscopy, and fluorometry techniques. The effects of natural and hydrolyzed fucoidan on platelet aggregation were examined by using platelets from wild-type, VWF and fibrinogen-deficient, GPIbα-deficient, and IL4Rα/GPIbα-transgenic and αIIb-deficient mice and from human beings. Platelet activation markers (P-selectin expression, PAC-1, and fibrinogen binding) and platelet-VWF A1 interaction were measured by using flow cytometry. GPIbα-VWF A1 interaction was evaluated by using enzyme-linked immunosorbent assay. GPIb-IX-induced signal transduction was detected by using western blot. Heparinized whole blood from healthy donors was used to test thrombus formation and growth in a perfusion chamber. RESULTS We found that GPIbα is critical for fucoidan-induced platelet activation. Fucoidan interacted with the extracellular domain of GPIbα and blocked its interaction with VWF but itself could lead to GPIbα-mediated signal transduction and, subsequently, αIIbβ3 activation and platelet aggregation. Conversely, low-molecular weight fucoidan inhibited GPIb-VWF-mediated platelet aggregation, spreading, and thrombus growth at high shear. CONCLUSION Fucoidan-GPIbα interaction may have unique therapeutic potential against bleeding disorders in its high-molecular weight state and protection against arterial thrombosis by blocking GPIb-VWF interaction after fucoidan is hydrolyzed.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong, China; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Daniel T Mackeigan
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Aron A Shoara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Runjia Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Eric Cerenzia
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - ZiYan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Brock Hoard
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Lisha Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xi Lei
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada; Canadian Blood Services Centre for Innovation, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Zhu L, Yu T, Yang L, Liu T, Song Z, Liu S, Zhang D, Tang C. Polysaccharide from Cordyceps cicadae inhibit mitochondrial apoptosis to ameliorate drug-induced kidney injury via Bax/Bcl-2/Caspase-3 pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Recent advances in qualitative and quantitative analysis of polysaccharides in natural medicines: A critical review. J Pharm Biomed Anal 2022; 220:115016. [PMID: 36030753 DOI: 10.1016/j.jpba.2022.115016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Polysaccharides from natural medicines, being safe and effective natural mixtures, show great potential to be developed into botanical drugs. However, there is yet one polysaccharide-based case that has fulfilled the Botanical Guidance definition of a botanical drug product. One of the reasons is the analytical methods commonly used for qualitative and quantitative analysis of polysaccharides fall far behind the quality control criteria of botanical drugs. Here we systemically reviewed the recent advances in analytical methods. A critical evaluation of the strength and weaknesses of these methods was provided, together with possible solutions to the difficulties. Mass spectrometry with or without robust chromatographic separation was increasingly employed. And scientists have made significant progress in simplifying polysaccharide quantification by depolymerizing it into oligosaccharides. This oligosaccharides-based strategy is promising for qualitative and quantitative analysis of polysaccharides. And continuous efforts are still needed to develop a standardized quality control method that is specific, accurate, repeatable, and applicable for analyzing individual components in natural medicine formulas.
Collapse
|
12
|
王 志, 盛 楷, 林 毅, 张 秋, 张 丽, 常 红. Serum levels of degraded monosaccharides in children with Henoch-Schönlein purpura. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:894-898. [PMID: 36036128 PMCID: PMC9425874 DOI: 10.7499/j.issn.1008-8830.2202125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To examine the serum levels of degraded monosaccharides in children with Henoch-Schönlein purpura (HSP) and to study the clinical significance of degraded monosaccharides in HSP. METHODS A prospective analysis was performed on 132 children who were diagnosed with HSP from September 2019 to January 2022, and 132 healthy children were enrolled as the control group. High-performance liquid chromatography was used to determine the content of degraded monosaccharides in serum in both groups. The receiver operating characteristic (ROC) curve was used to evaluate the efficiency of degraded monosaccharides for the diagnosis of HSP. RESULTS Compared with the control group, the HSP group had significantly higher serum levels of mannose, glucosamine, aminogalactose, and galactose (P<0.001). The four degraded monosaccharides had an area under the ROC curve of 0.919, 0.913, 0.832, and 0.932 respectively for the diagnosis of HSP (P<0.05). CONCLUSIONS Children with HSP have higher serum levels of mannose, glucosamine, aminogalactose, and galactose than the healthy population. The levels of degraded monosaccharides may have an important value for the diagnosis of HSP.
Collapse
Affiliation(s)
| | | | | | | | - 丽娟 张
- 青岛大学附属医院系统生物医学中心,山东青岛266003
| | | |
Collapse
|
13
|
Kurzyna-Szklarek M, Cybulska J, Zdunek A. Analysis of the chemical composition of natural carbohydrates - An overview of methods. Food Chem 2022; 394:133466. [PMID: 35716502 DOI: 10.1016/j.foodchem.2022.133466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Natural carbohydrates are gaining importance over a wide spectrum of human activity due to their versatile functionalities. The properties of carbohydrates are currently used in many branches of industry and new possibilities of their utilization, like in medicine or materials science, are demonstrated systematically. The attractive properties of carbohydrates result from their chemical structure and ability to form macromolecules and derivatives. Each application of carbohydrate requires a knowledge of their chemical composition, which due to the number and differentiation of monosaccharides and their spatial forms is often challenging. This review presents an overview on sample preparation and the methods used for the determination of the fine chemical structure of natural carbohydrates. Most popular and reliable colorimetric, chromatographic and spectroscopic methods are presented with an emphasis on their pros and cons.
Collapse
Affiliation(s)
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
14
|
Song C, Huang F, Liu L, Zhou Q, Zhang D, Fang Q, Lei H, Niu H. Characterization and prebiotic properties of pectin polysaccharide from Clausena lansium (Lour.) Skeels fruit. Int J Biol Macromol 2022; 194:412-421. [PMID: 34813784 DOI: 10.1016/j.ijbiomac.2021.11.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023]
Abstract
Pectins have proven to be advantageous for human health as they regulate beneficial microbial communities and enhance immunity. The fruit of Clausena lansium (Lour.) Skeels (Wampee), also referred to as "treasure in fruit", is rich in pectin polysaccharides. In this study, a homogalacturonan-type pectin (CCP2) with a molecular weight of 8.9 × 104 Da and degree of esterification of 42.86% was isolated from Wampee fruit. The gut microbiota regulation and phagocytosis-enhancing properties of CCP2 were examined in vivo and in vitro, respectively. Oral administration of CCP2 dramatically decreased the abundance of Bacteroidetes and increased the abundance of Firmicutes in intestinal bacteria in mice. The content of short-chain fatty acids in the feces also significantly improved. Moreover, CCP2 exhibited excellent phagocytosis-enhancing activities on RAW 264.7 macrophages. These results suggested that CCP2 could be a potential gut microbiota regulator and phagocytosis-enhancer, which could be used in food products to promote health through beneficial manipulation of gut microbiota.
Collapse
Affiliation(s)
- Can Song
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Linyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Quan Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Qi Fang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
15
|
Liu D, Tang W, Yin JY, Nie SP, Xie MY. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|