1
|
Gollapudi KK, Dutta SD, Adnan M, Taylor ML, Reddy KVNS, Alle M, Huang X. Dialdehyde cellulose nanofibrils/polyquaternium stabilized ultra-fine silver nanoparticles for synergistic antibacterial therapy. Int J Biol Macromol 2024; 280:135971. [PMID: 39322171 DOI: 10.1016/j.ijbiomac.2024.135971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Dialdehyde cellulose nanofibrils (DACNF) and Polyquaternium-10 (PQ: chloro-2-hydroxy-3-(trimethylamino) propyl polyethylene glycol cellulose) have become increasingly favored as antibacterial substances due to their advantageous characteristics. DACNF exhibits exceptional mechanical properties and biocompatibility, whereas PQ demonstrates a positive charge that enhances its antibacterial activity. Combined in a DACNF/PQ mixture, they provide an excellent template material for preparing and stabilizing ultra-fine (~ 10.3 nm) silver nanoparticles (AgNPs) at room temperature. Here, the dialdehyde group of DACNF functions as a reducing agent, while the quaternary ammonium of PQ and carboxylate groups of DACNF synergistically helped in-situ generation of AgNPs uniformly. The synthesized nanocomposites, namely PQ@AgNPs, AgNPs@DACNF, and AgNPs@DACNF/PQ, were subjected to comprehensive characterization using various advanced analytical techniques. The films containing AgNPs@DACNF and AgNPs@DACNF/PQ, fabricated via vacuum filtration, exhibited excellent mechanical properties of 9.78 ± 0.21 MPa, and demonstrated superior antibacterial activity against both Escherichia coli and Staphylococcus aureus. Additionally, the silver ion leaching from the prepared composite films was well controlled. The fabricated nanocomposites also effectively inhibited bacterial biofilm formation. It was also found to be highly biocompatible and non-toxic to human skin fibroblast cells. Furthermore, the nanocomposites exhibited enhanced migration of human dermal fibroblasts, suggesting their potential in facilitating wound healing processes.
Collapse
Affiliation(s)
- Kranthi Kumar Gollapudi
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India
| | - Sayan Deb Dutta
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis, Sacramento 95817, United States
| | - Md Adnan
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States
| | - K V N Suresh Reddy
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, India.
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, United States.
| |
Collapse
|
2
|
Elhenawy S, Khraisheh M, AlMomani F, Al-Ghouti M, Selvaraj R, Al-Muhtaseb A. Emerging Nanomaterials for Drinking Water Purification: A New Era of Water Treatment Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1707. [PMID: 39513787 PMCID: PMC11547847 DOI: 10.3390/nano14211707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The applications of nanotechnology in the field of water treatment are rapidly expanding and have harvested significant attention from researchers, governments, and industries across the globe. This great interest stems from the numerous benefits, properties, and capabilities that nanotechnology offers in addressing the ever-growing challenges related to water quality, availability, and sustainability. This review paper extensively studies the applications of several nanomaterials including: graphene and its derivative-based adsorbents, CNTs, TiO2 NPs, ZnO NPs, Ag NPs, Fe NPs, and membrane-based nanomaterials in the purification of drinking water. This, it is hoped, will provide the water treatment sector with efficient materials that can be applied successfully in the water purification process to help in addressing the worldwide water scarcity issue.
Collapse
Affiliation(s)
- Salma Elhenawy
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Fares AlMomani
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; (S.E.); (F.A.)
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar;
| | - Rengaraj Selvaraj
- Department of Chemistry, Sultan Qaboos University, Muscat 123, Oman;
| | - Ala’a Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat 123, Oman;
- Sustainable Energy Research Centre, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
3
|
Krishna SBN, Sheik AG, Pillay K, Ahmed Hamza M, Mohammed Elamir MY, Selim S. Nanotechnology in action: silver nanoparticles for improved eco-friendly remediation. PeerJ 2024; 12:e18191. [PMID: 39372718 PMCID: PMC11456292 DOI: 10.7717/peerj.18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Nanotechnology is an exciting area with great potential for use in biotechnology due to the far-reaching effects of nanoscale materials and their size-dependent characteristics. Silver and other metal nanoparticles have attracted a lot of attention lately because of the exceptional optical, electrical, and antimicrobial characteristics they possess. Silver nanoparticles (AgNPs) stand out due to their cost-effectiveness and abundant presence in the earth's crust, making them a compelling subject for further exploration. The vital efficacy of silver nanoparticles in addressing environmental concerns is emphasized in this thorough overview that dives into their significance in environmental remediation. Leveraging the distinctive properties of AgNPs, such as their antibacterial and catalytic characteristics, innovative solutions for efficient treatment of pollutants are being developed. The review critically examines the transformative potential of silver nanoparticles, exploring their various applications and promising achievements in enhancing environmental remediation techniques. As environmental defenders, this study advocates for intensified investigation and application of silver nanoparticles. Furthermore, this review aims to assist future investigators in developing more cost-effective and efficient innovations involving AgNPs carrying nanoprobes. These nanoprobes have the potential to detect numerous groups of contaminants simultaneously, with a low limit of detection (LOD) and reliable reproducibility. The goal is to utilize these innovations for environmental remediation purposes.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
| | - Karen Pillay
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Bandi R, Dadigala R, Han SY, Van Hai L, Kwon GJ, Lee SH. Dicarboxylate cellulose nanofibrils-supported silver nanoparticles as a novel, green, efficient and recyclable catalyst for 4-nitrophenol and dyes reduction. Int J Biol Macromol 2024; 280:136023. [PMID: 39326609 DOI: 10.1016/j.ijbiomac.2024.136023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
This study reports dicarboxylate cellulose nanofibrils (DCNF) as a novel reducing and supporting agent for producing silver nanoparticles (AgNPs) with high efficiency (63.82 % reduction) and loading (6.88 %) using UV light. Unlike previous research, AgNPs formation with DCNF doesn't involve cellulose oxidation. Instead, it appears to involve a loss of carboxyl groups from DCNF. In comparative studies, pristine CNF (PCNF) and TEMPO-oxidized CNF (TOCNF) were also examined for AgNPs production. The resulting AgNPs from DCNF exhibited a significantly smaller average size (3.9 ± 0.7 nm) compared to those from PCNF (26.9 ± 10.9 nm) and TOCNF (13.5 ± 4.5 nm). Catalytic activity evaluation by the 4-nitrophenol (4-NP) reduction reaction revealed a high rate constant of 8.47× 10-3 s-1 by AgNPs/DCNF, which surpassed AgNPs/TOCNF (1.79 × 10-3 s-1) and AgNPs/PCNF (0.63 × 10-3 s-1) by 4.7 and 13.4 times, respectively. Besides 4-NP, AgNPs/DCNF aerogels were also applied for methyl orange and Rhodamine B dyes reduction. The aerogels showed excellent reusability, maintaining over 95 % conversion even after five cycles and also effective in treating real samples and mixed dye solutions. This study opens the door for future research exploring DCNF as a support material for various metal, metal oxide, and carbon nanoparticles.
Collapse
Affiliation(s)
- Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Le Van Hai
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Almasi Nezhad S, Jaleh B, Darabi E, Dorranian D. Laser-Assisted Preparation of TiO 2/Carbon/Ag Nanocomposite for Degradation of Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4118. [PMID: 39203296 PMCID: PMC11356562 DOI: 10.3390/ma17164118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024]
Abstract
The ever-increasing expansion of chemical industries produces a variety of common pollutants, including colors, which become a global and environmental problem. Using a nanocatalyst is one of the effective ways to reduce these organic contaminants. With this in mind, a straightforward and effective method for the production of a novel nanocatalyst based on lignin-derived carbon, titanium dioxide nanoparticles, and Ag particles (TiO2/C/Ag) is described. The preparation of carbon and Ag particles (in sub-micro and nano size) was carried out by laser ablation in air. The nanocomposite was synthesized using a facile magnetic stirrer of TiO2, C, and Ag. According to characterization methods, a carbon nanostructure was successfully synthesized through the laser irradiation of lignin. According to scanning electron microscope images, spherical Ag particles were agglomerated over the nanocomposite. The catalytic activities of the TiO2/C/Ag nanocomposite were tested for the decolorization of methylene blue (MB) and Congo red (CR), employing NaBH4 in a water-based solution at 25 °C. After adding fresh NaBH4 to the mixture of nanocomposite and dyes, both UV absorption peaks of MB and CR completely disappeared after 10 s and 4 min, respectively. The catalytic activity of the TiO2/C/Ag nanocomposite was also examined for the reduction of 4-nitrophenol (4-NP) using a NaBH4 reducing agent, suggesting the complete reduction of 4-NP to 4-aminophenol (4-AP) after 2.30 min. This shows excellent catalytic behavior of the prepared nanocomposite in the reduction of organic pollutants.
Collapse
Affiliation(s)
- Shahin Almasi Nezhad
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.A.N.); (E.D.); (D.D.)
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 6517838695, Iran
| | - Elham Darabi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.A.N.); (E.D.); (D.D.)
| | - Davoud Dorranian
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (S.A.N.); (E.D.); (D.D.)
| |
Collapse
|
6
|
Heo JW, Oh DH, Xia Q, Kim MS, Kim YS. Green synthesis of silver nanoparticles-capped aminated lignin as a robust active catalyst for dye discoloration. Int J Biol Macromol 2024; 274:133211. [PMID: 38909738 DOI: 10.1016/j.ijbiomac.2024.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Considering the severity of global environmental issues, biomass-derived products have received significant attention as alternatives to foster sustainability and eco-friendliness. The use of metal nanoparticle catalysts for dye decomposition is emerging as a promising approach for environmentally friendly dye removal. In this study, an aminosilane-modified lignin (AML)/silver nanoparticle (AgNP) composite was fabricated and used as a hydrogenation catalyst. The AgNPs were well dispersed on the AML surface and formed strong bonds within the AML/AgNP complex. AML also served as an effective reducing and capping agent for Ag(I) ions. The AML/AgNPs were found to be an efficient catalyst with excellent dye degradation ability and easy reusability. Biomass-derived lignin can be used as a reducing and capping agent for metals and this complex can be used as a high-value bio-catalyst for wastewater remediation.
Collapse
Affiliation(s)
- Ji Won Heo
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Do Hun Oh
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Qian Xia
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Min Soo Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Sik Kim
- Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
7
|
El Allaoui B, Chakhtouna H, Ouhssain A, Kadmiri IM, Benzeid H, Zari N, Qaiss AEK, Bouhfid R. Silver nanoparticle-decorated cellulose beads: Eco-friendly catalysts for efficient 4-nitrophenol reduction and antibacterial performance. Int J Biol Macromol 2024; 273:133078. [PMID: 38942667 DOI: 10.1016/j.ijbiomac.2024.133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
This study presents an innovative and environmentally friendly method to produce fibrous cellulose beads by mechanically stirring natural fibers in an aqueous medium. Date palm fibers are transformed into uniform beads with a diameter of 1.5 to 2 mm through chemical treatment and mechanical agitation. These beads are then decorated with silver nanoparticles (Ag0 NPs) in a one-step synthesis, giving them catalytic capabilities for the reduction of 4-nitrophenol (4-NP) and antibacterial activities. Characterization techniques such as FTIR, XRD, SEM, EDX, and TGA confirmed the successful synthesis and deposition of Ag0 NPs on the cellulose beads. Tests showed complete conversion of 4-NP to 4-AP in just 7 min, with pseudo-first-order kinetics and a Kapp of 0.590 min-1. Additionally, Ag0@CB demonstrated exceptional recyclability and stability over five cycles, with minimal silver release. The beads also showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus, effectively eradicating bacterial colonies in 30 min. In summary, Ag0@CB exhibits multifunctional capabilities for degrading organic pollutants and biomedical applications, offering promising potential for large-scale production and practical use in water treatment and antibacterial coatings.
Collapse
Affiliation(s)
- Brahim El Allaoui
- Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco
| | - Hanane Chakhtouna
- Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco
| | - Ali Ouhssain
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Issam Meftah Kadmiri
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Hanane Benzeid
- Laboratoire de Chimie Analytique, Faculté de Médecine et de Pharmacie, Université Mohammed V de Rabat, Rabat, Morocco
| | - Nadia Zari
- Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Bouhfid
- Moroccan Foundation of Advanced Science Innovation and Research (MAScIR), Composites and Nanocomposites Center, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
8
|
Palani G, Trilaksana H, Sujatha RM, Kannan K, Rajendran S, Korniejenko K, Nykiel M, Uthayakumar M. Silver Nanoparticles for Waste Water Management. Molecules 2023; 28:molecules28083520. [PMID: 37110755 PMCID: PMC10145794 DOI: 10.3390/molecules28083520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors. This review article summarises the applications of nanosilver-based particles in the dye removal/degradation process, effective water management strategies, and the field of agriculture.
Collapse
Affiliation(s)
- Geetha Palani
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Herri Trilaksana
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - R Merlyn Sujatha
- Department of Biomedical Engineering, JNN Institute of Engineering, Kannigaipair 601102, India
| | - Karthik Kannan
- Chemical Sciences Department and the Radical Research Centre, Ariel University, Ariel 40700, Israel
| | - Sundarakannan Rajendran
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Kinga Korniejenko
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marek Nykiel
- Faculty of Material Engineering and Physics, Cracow University of Technology, al. Jana Pawła II 37, 31-864 Kraków, Poland
| | - Marimuthu Uthayakumar
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| |
Collapse
|
9
|
Long H, Gu J, Jiang J, Guan L, Lin X, Zhang W, Hu C. Mechanically strong and biodegradable holocellulose films prepared from Camellia oleifera shells. Carbohydr Polym 2023; 299:120189. [PMID: 36876804 DOI: 10.1016/j.carbpol.2022.120189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
Abstract
Bioplastic derived from renewable lignocellulosic biomass is an attractive alternative to petroleum-based plastics. Herein, Callmellia oleifera shells (COS), a unique byproduct from tea oil industry, were delignified and converted into high-performance bio-based films via a green citric acid treatment (15 %, 100 °C and 24 h), taking advantage of their high hemicellulose content. The structure-property relations of COS holocellulose (COSH) films were systematically analyzed considering different treatment conditions. The surface reactivity of COSH was improved via a partial hydrolysis route and strong hydrogen bonding formed between the holocellulose micro/nanofibrils. COSH films exhibited high mechanical strength, high optical transmittance, improved thermal stability, and biodegradability. A mechanical blending pretreatment of COSH, which disintegrated the COSH fibers before the citric acid reaction, further enhanced the tensile strength and Young's modulus of the films up to 123.48 and 5265.41 MPa, respectively. The films decomposed completely in soil, demonstrating an excellent balance between degradability and durability.
Collapse
Affiliation(s)
- Haibo Long
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Jin Gu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Sciences, Nanjing 210042, PR China.
| | - Litao Guan
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Xiuyi Lin
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China
| | - Weiwei Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| | - Chuanshuang Hu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
10
|
Banu R, Gangapuram B, Ayodhya D, Dadigala R, Veerabhadram G, Kotu GM. Biogenic Synthesis of Carboxymethyl Cashew Gum Modified Gold Nanoparticles and its Sensitive and Selective Calorimetric Detection of Hg 2+ Ions and Catalytic Reduction of Methyl Red. J Fluoresc 2023; 33:209-221. [PMID: 36399249 DOI: 10.1007/s10895-022-03073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
In the present study, we have successfully synthesized and characterized carboxy methyl cashew gum modified gold nanoparticles (CMCG-AuNPs) via a microwave-assisted method and used as a calorimetric probe for selective detection of Hg2+ ions as well as catalytic reduction of methyl red in an aqueous medium. The effect of different parameters including concentration and irradiation time on the formation of CMCG-AuNPs was also investigated. The presence of strong surface plasmon resonance (SPR) peak in the visible region indicated the formation of AuNPs. The characterization techniques were identified the interaction between the CMCG and AuNPs with estimation of size and morphology. The face centred cubic (FCC) crystal structure was identified by using XRD and supporting with SAED pattern. TEM images of CMCG-AuNPs were exhibited as polydispersed with spherical in shape and the average particle size was 12 ± 3 nm. The synthesized CMCG-AuNPs were utilized to sensing Hg2+ ions in an aqueous medium, the presence of Hg2+ ions selectively among other metal ions, the CMCG-AuNPs were aggregated by changing the color from wine red to purple blue accompanied by change in the position of SPR peak and intensity. It was observed as a strong linear relationship based on the change in intensity, the limit of detection was determined to be 0.277 nM. The catalytic activity was also examined for the reduction of methyl red (MR) in the presence of CMCG-AuNPs was completed within 12 min and followed pseudo-first order kinetics with a rate constant of 0.261 min-1. From the obtained results, the synthesized CMCG-AuNPs were useful for detection of heavy metal ions as well as toxic pollutants degradation via a green method, and utilized sensing, environmental, and biomedical application in future.
Collapse
Affiliation(s)
- Ruqya Banu
- Department of Chemistry, Palamuru University, Mahaboob Nagar, Telangana, 509001, India
| | | | - Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Ramakrishna Dadigala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | | |
Collapse
|
11
|
Wang G, Yang F, Huang W, Zhou Y, Huang R, Yang Q, Yan B. Recyclable Mussel-Inspired Magnetic Nanocellulose@Polydopamine-Ag Nanocatalyst for Efficient Degradation of Refractory Organic Pollutants and Bacterial Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52359-52369. [PMID: 36346778 DOI: 10.1021/acsami.2c13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Development of a novel strategy to tackle bacterial-contaminated complex industrial wastewaters containing refractory organic pollutants is of great demand. In this study, polydopamine (PDA)-coated magnetic cellulose nanofiber (MCNF)-loaded silver nanoparticle (AgNP) (MCNF/PDA-Ag) nanocomposites were designed and applied for efficient degradation of organic dye pollutants and inactivation of Escherichia coli (E. coli) in wastewater. In the presence of NaBH4, MCNF/PDA-Ag could achieve a high catalytic reduction rate of 6.54 min-1 for the removal of methylene blue. Similarly, it showed good catalytic reduction performance for methyl orange (0.63 min-1) and 4-nitrophenol (2.94 min-1). The MCNF/PDA-Ag nanocomposites can be easily magnetically recycled and reused with negligible loss of catalytic performance. Moreover, this nanocatalyst also exhibited excellent disinfection performance against E. coli, with more than 99% disinfection ratio at very low doses (50 μg/mL). Overall, this work provides new insights into a delicate design of advanced magnetically recyclable silver nanocomposites with ultrahigh catalytic rates and excellent antibacterial properties from sustainable nature biomass.
Collapse
Affiliation(s)
- Guihua Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Fan Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou450000, China
| | - Wenhuan Huang
- Sinopec, Shengli Oilfield, Chunliang Oil Prod Plant, Dongying, Shandong256600, China
| | - Yifan Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Rongfu Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
12
|
Hasheena M, Ratnamala A, Noorjahan M, Deepthi Reddy G, Chandra Babu Naidu K. Electrochemical sensor for detection of dopamine and tyrosine using CdS–C quantum dots modified electrode. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Jayeoye TJ, Sirimahachai U, Wattanasin P, Rujiralai T. Eco-friendly poly(aniline boronic acid)/gum tragacanth stabilized silver nanoparticles nanocomposite for selective sensing of Hg2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Satarzadeh N, Shakibaie M, Adeli-Sardou M, Jabari-Morouei F, Forootanfar H, Sadeghi-Dousari A. Facile Microwave-Assisted Biosynthesis of Arsenic Nanoparticles and Evaluation their Antioxidant Properties and Cytotoxic Effects: A Preliminary in Vitro Study. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Dadigala R, Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Lee SH. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129165. [PMID: 35739705 DOI: 10.1016/j.jhazmat.2022.129165] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nanozyme-based dye degradation methods are promising for the remediation of water pollution. Though Pd nanoparticles (PdNPs) are known to act as nanozymes, their dye degradation capability has not been investigated. Low nanozyme activities, easy aggregation, difficulties in recovery and reuse are the major challenges in achieving this. For the first time, cellulose nanofibrils-supported PdNPs (PdNPs/PCNF) as a novel nanozyme with good peroxidase and oxidase-mimicking activities and easy recyclability is explored for dye degradation. An efficient and rapid method of PdNPs/PCNF preparation was demonstrated by adjusting the pH and microwave irradiation. Enzyme kinetic studies revealed good kinetic parameters and specific activities of 415 and 277 U/g for peroxidase and oxidase, respectively. PdNPs/PCNF offered 99.64% degradation of methylene blue within 12 min (0.468 min-1) with 0.4 M H2O2 at pH 5.0. Mechanistic studies revealed the involvement of hydroxyl and superoxide radicals. Owing to the network-like structure of PCNF, films and foams were prepared, their dye degradation potentials were compared, and recyclability was tested. Successful degradation of mixed dye solutions and spiked real water samples was achieved and a continuous flow method was demonstrated using a foam-packed column.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
16
|
Cellulose-based bio-adsorbent from TEMPO-oxidized natural loofah for effective removal of Pb(II) and methylene blue. Int J Biol Macromol 2022; 218:285-294. [PMID: 35870625 DOI: 10.1016/j.ijbiomac.2022.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/22/2022]
Abstract
Excessive discharge of inorganic and organic contaminants in water poses a serious threat to the ecosystems. However, most synthetic adsorbents lack cost-effectiveness in terms of preparation. Interestingly, loofah sponge (LS) was a natural absorbent that could effectively remove pollutions in wastewater, but its adsorption capacity is barely satisfactory. Herein, we present a novel strategy of TEMPO-oxidized loofah sponge (TOLS) to boost the adsorption performance of LS. The batch experiments demonstrated that the maximum removal capacity of TOLS for Pb(II) and methylene blue (MB) was 96.6 mg/g and 10.0 mg/g, respectively, which were 3.5 and 1.3 times that of pristine LS. Notably, the continuous-flow reaction testing of the mixed solution revealed that the elimination rate of Pb(II) and MB was still better than 90 % even after 16 h. Such excellent performance was benefit from the enhanced specific surface area and surface carboxyl content of TOLS. This work offers new insights into the rational development of multifunctional and inexpensive cellulose-based bio-adsorbents for wastewater remediation.
Collapse
|
17
|
Role of plant (tulasi, neem and turmeric) extracts in defining the morphological, toxicity and catalytic properties of silver nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Silver nanomaterials sensing of mercury ions in aqueous medium. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Li Y, Luan Y, Liu W, Wang C, Cao H, Liu P. Cellulose nanofibrils/polyvinyl alcohol/silver nanoparticles composite hydrogel: Preparation and its catalyst degradation performance of cationic dye. J Appl Polym Sci 2022. [DOI: 10.1002/app.52246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Yunhao Luan
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Wanyi Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Cong Wang
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
20
|
Chen S, Xu H, He X, Su Y, Liu Q, Zhang B. One-pot synthesis of polydopamine/Ag microspheres through microemulsion environment and its methylene blue removal application. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02896-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Li J, Wu Y, Qin Y, Liu M, Chen G, Hu L, Gu W, Zhu C. AgCu@CuO aerogels with peroxidase-like activities and photoelectric responses for sensitive biosensing. Chem Commun (Camb) 2021; 57:13788-13791. [PMID: 34870654 DOI: 10.1039/d1cc06177a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photoelectrochemical (PEC) enzymatic biosensors integrate the excellent selectivity of enzymes and high sensitivity of PEC bioanalysis, but the drawbacks such as high cost, poor stability, and tedious immobilization of natural enzymes on photoelectrodes severely suppress their applications. AgCu@CuO aerogel-based photoelectrode materials with both remarkable enzyme-like activities and outstanding photoelectric properties were innovatively designed and synthesized to evaluate the activity of xanthine oxidase with a wide linear detection range and a low limit of detection.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China. .,School of Electronic and Information Engineering, Jingchu University of Technology, Jingmen, 448000, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
22
|
Shakibaie M, Torabi-Shamsabad R, Forootanfar H, Amiri-Moghadam P, Amirheidari B, Adeli-Sardou M, Ameri A. Rapid microwave-assisted biosynthesis of platinum nanoparticles and evaluation of their antioxidant properties and cytotoxic effects against MCF-7 and A549 cell lines. 3 Biotech 2021; 11:511. [PMID: 34926109 DOI: 10.1007/s13205-021-03007-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, platinum nanoparticles (Pt NPs) were synthesized by a green method using an aqueous extract of Eucalyptus camaldulensis with assistance of microwave irradiation (850 W) and their physicochemical characteristics were studied by UV-visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Antioxidant activities, hemocompatibility, and cytotoxic effects of the prepared Pt NPs were then evaluated. The attained results showed that the newly formed Pt NPs possess a size range between 7.4 and 11.2 nm. These spherical-shaped NPs were slightly aggregated and held various functional groups on their surface. The antioxidant activity of Pt nanostructures was comparable to that of butylated hydroxyl anisole at concentrations higher than 320 µg/mL. At the same concentration of 640 μg/mL, the scavenging activities were 3.36 ± 0.9% (hexachloroplatinic acid) and 52.13 ± 0.43% (Pt NPs). The results of hemolytic assay revealed satisfactory hemocompatibility of the Pt NPs even at the concentration as high as 4 mg/mL (hemolysis percent equal to 3.5 ± 1.3%). The cytotoxicity studies revealed that MCF-7, A549, and 3T3 cell lines treated with hexachloroplatinic acid and cisplatin for 24 h and 48 h showed a higher percentage of cell death compared with the Pt NPs. After 24 h, for A549, 3T3, and MCF-7 cells exposed to Pt NPs, the cell viability was measured to be 80 ± 3.2%, 96 ± 1%, and 89 ± 2.6%, respectively, at concentration of 640 µg/mL. Further investigations are required to elucidate the mechanisms behind the biological activities of as-synthesized Pt NPs.
Collapse
Affiliation(s)
- Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Parinaz Amiri-Moghadam
- The Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboubeh Adeli-Sardou
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Atefeh Ameri
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Jayeoye TJ, Eze FN, Olatunde OO, Singh S, Zuo J, Olatunji OJ. Multifarious Biological Applications and Toxic Hg 2+ Sensing Potentiality of Biogenic Silver Nanoparticles Based on Securidaca inappendiculata Hassk Stem Extract. Int J Nanomedicine 2021; 16:7557-7574. [PMID: 34803379 PMCID: PMC8597655 DOI: 10.2147/ijn.s325996] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The use of environmentally benign resources for nanoparticles synthesis is consistently pushed to the front burner in a bid to ensure and enhance environmental protection and beneficiation. In this light, application of different plant parts for the reduction and stabilization of nanoparticles is gaining popularity. MATERIALS AND METHODS In this contribution, we have exploited Securidaca inappendiculata stem extract (SISE), as the reducing and stabilizing agent for room temperature synthesis of highly stable and dispersed AgNPs. The major bioactive compounds in SISE were profiled using an ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-MS-QTOF-MS). RESULTS AND DISCUSSION SISE could reduce silver salts to its nanoparticles almost instantaneously with a maximum absorption spectrum at 423 nm, under the optimal conditions. The fabricated SISE AgNPs was extensively characterized using FTIR, TEM, SEM, XRD, EDS, Zeta analysis/DLS and TGA/DTG analysis. SISE AgNPs with average particles size between 10-15 nm and a zeta potential value of -19.5 ± 1.8 mV was obtained. It was investigated for in-vitro biological applications by carrying out, antimicrobial, antioxidant, hemolytic, cytotoxicity and antidiabetic assays. It was found that SISE AgNPs exhibited potent antimicrobial capacity against some food borne microbes, good antioxidant property, while also demonstrating high biocompatibility. Moreover, with a view to extending further the applications SISE AgNPs, it was tested as a colorimetric nanoprobe for Hg2+ detection in aqueous environment, where good linearity between 0.10 and 10.0 μM, with a detection limit of 26.5 nM, were obtained. The practicality of the probe was investigated by carrying out Hg2+ detection in water sample, with good accuracy and precision. DISCUSSION Overall, this work introduced a new stabilizer for biocompatible AgNPs with far-reaching applications.
Collapse
Affiliation(s)
- Titilope John Jayeoye
- Department of Chemistry, Faculty of Physical Science, Alex-Ekwueme Federal University Ndufu-Alike, Abakalilki, Ebonyi State, Nigeria
| | - Fredrick Nwude Eze
- Faculty of Pharmaceutical Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Drug Delivery System Excellence of Center, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB, R3T 6C5, Canada
| | - Sudarshan Singh
- Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241001, People’s Republic of China
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241001, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241001, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
24
|
Sharma G, Park SC, Bandi R, Ahn J, Alle M, Kim JC. Polyquaternium enhances the colloidal stability of chitosan-capped platinum nanoparticles and their antibacterial activity. NANOTECHNOLOGY 2021; 32:455603. [PMID: 34352732 DOI: 10.1088/1361-6528/ac1afa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Here, for the first time, we have developed a novel green synthesis method where chitosan acts as a reducing agent and as a colloidal stabilizer, together with polyquaternium for the synthesis of platinum nanoparticles (PtNPs). It was observed that only chitosan-stabilized PtNPs (Ch@PtNPs) were stable up to pH 5, with a diameter of around 89 nm. The diameter of the Ch@PtNPs increased with the increase in pH, indicating the instability of Ch@PtNPs at neutral and alkaline mediums. However, when polyquaternium (PQ) (a cationic polymer) was added as a stabilizer along with chitosan, the diameter of chitosan/polyquaternium stabilized PtNPs (Ch/PQ@PtNPs), i.e. 87 nm, remained almost constant up to pH 9. Similarly, the pH-dependent decrease in the surface charge of Ch@PtNPs was also attenuated with the addition of polyquaternium. This indicates high colloidal stability of Ch/PQ@PtNPs in acidic, neutral, as well as alkaline mediums. It was observed that Ch/PQ@PtNPs exhibited high antibacterial activity againstStaphylococcus aureus, as compared to uncapped PtNPs and Ch@PtNPs. Thus, the addition of PQ increases the antibacterial properties of Ch/PQ@PtNPs againstStaphylococcus aureusby enhancing the stability of PtNPs at neutral pH.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Soo Chan Park
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
25
|
Microwave Assisted Biosynthesis of Cadmium Nanoparticles: Characterization, Antioxidant and Cytotoxicity Studies. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02107-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Jamila N, Khan N, Bibi N, Waqas M, Khan SN, Atlas A, Amin F, Khan F, Saba M. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. CHEMOSPHERE 2021; 272:129794. [PMID: 35534954 DOI: 10.1016/j.chemosphere.2021.129794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 06/14/2023]
Abstract
This study reports synthesis of Garcinia mangostana fruit pericarp (unwanted waste material) and α-mangostin mediated silver nanoparticles (AgNPs). These AgNPs were efficiently produced using 1:10 (extract and salt) ratio under stirring and heating, which was confirmed by surface plasmon resonance (SPR) band in UV-Visible spectroscopic analysis, and size of 73-91 nm determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The synthesized AgNPs were used for Hg(II) detection in tap water, where the limits of detection and quantification were 2.6 μM and 8.9 μM, respectively. Furthermore, the subject AgNPs showed promising catalytic activity in the reduction of dyes and food colours including Congo red (CR), methylene blue (MB), malachite green (MG), methyl orange (MO), para-nitrophenol (PNP), rhodamine B (RdB), zarda yellow (ZY), deep green (DG), and bright red (BR). The synthesized AgNPs were also evaluated for their antioxidant, antimicrobial, and anticancer properties, where α-mangostin and its nanoparticles (Mang-AgNPs) exhibited promising IC50 values of 14.1 and 13.5 μg/mL, respectively against DU-145 cell line validated by in silico molecular docking study. This study is the first report highlighting the application of AgNPs of G. mangostana fruit pericarp extracts, and α-mangostin in Hg(II) detection, dyes degradation, and anticancer potential against DU-145. Finding of this study suggested the suitability of AgNPs as promising solid biosensor in Hg(II) metal detection, dyes reduction, and target in anticancer drug development.
Collapse
Affiliation(s)
- Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waqas
- Department of Botanical and Environmental Science, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amir Atlas
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Amin
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Khan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Malka Saba
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
27
|
Mohammed A, Gugulothu Y, Bandi R, Dadigala R, Utkoor UK. Ultraspeed synthesis of highly fluorescent N‐doped carbon dots for the label‐free detection of manganese (
VII
). J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Areef Mohammed
- Department of Chemistry Osmania University Hyderabad India
| | - Yaku Gugulothu
- Department of Chemistry Osmania University Hyderabad India
| | - Rajkumar Bandi
- Department of Chemistry Osmania University Hyderabad India
| | | | | |
Collapse
|
28
|
Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Alle M, Park SC, Bandi R, Lee SH, Kim JC. Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydr Polym 2021; 253:117239. [PMID: 33278995 DOI: 10.1016/j.carbpol.2020.117239] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023]
Abstract
Novel microwave-assisted green in-situ synthesis of positively charged gold nanoparticles (AuNPs) supported by cationic cellulose nanofibrils (C.CNF) within 30 s and devoid of additional reducing agent is reported. Peroxidase activity of these positive AuNPs was studied and that appeared to be superior over its negative charged counterpart. Further the AuNPs@C.CNF is casted into a film which makes it reusable. Using TMB substrate, simple and sensitive colorimetric detection methods for H2O2 and glucose were established. Under optimal conditions, the linear ranges were found to be 0.5-30 μM and 1-60 μM, and the detection limits were 0.30 and 0.67 μM for H2O2 and glucose, respectively. The film was potentially reused for the detection of glucose up to five cycles without a decrease in the activity. Further, this technique was employed to quantify glucose in human serum samples, and the obtained results were comparable with those of the standard GOD-POD method.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Soo Chan Park
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Medical Biomaterials Engineering, College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|