1
|
Song X, Chen J, Deng L, Zhao Q. Rheological, textural, and pasting properties of A- and B-type wheat starches in relation to their molecular structures. Food Chem 2024; 460:140810. [PMID: 39167869 DOI: 10.1016/j.foodchem.2024.140810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
A- and B-type wheat starches have significant differences in rheological, textural, and pasting properties; however, the structure-property relationship is not fully revealed. Herein, the physicochemical characteristics and molecular structures of A- and B-type starches isolated from three wheat varieties with different apparent amylose contents (2.41%-27.93%) were investigated. A-type starches exhibited higher pasting viscosities, relative crystallinity, onset gelatinization temperatures, and enthalpies, while B-type starches had wide gelatinization temperature ranges. B-type starches had lower resistant starch contents than their A-type counterparts, but B-type starches formed more stable gels and had a lower tendency to retrograde, resulting in lower hardness, storage (G') and loss (G'') moduli but higher tan δ values. A-type starches had lower contents of short amylose (100 ≤ X < 1000) and amylopectin chains (DP 6-12) than B-type. These findings elucidated the differences in molecular structures between A- and B-type starches, which can contribute to their effective application.
Collapse
Affiliation(s)
- Xiaoyan Song
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jianyang Chen
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Lili Deng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Zheng X, Wang Q, Li L, Liu C, Ma X. Recent advances in germinated cereal and pseudo-cereal starch: Properties and challenges in its modulation on quality of starchy foods. Food Chem 2024; 458:140221. [PMID: 38943963 DOI: 10.1016/j.foodchem.2024.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Germination is an environmentally friendly process with no use of additives, during which only water spraying is done to activate endogenous enzymes for modification. Furthermore, it could induce bioactive phenolics accumulation. Controlling endogenous enzymes' activity is essential to alleviate granular disruption, crystallinity loss, double helices' dissociation, and molecular degradation of cereal and pseudo-cereal starch. Post-treatments (e.g. thermal and high-pressure technology) make it possible for damaged starch to reassemble towards well-packed structure. These contribute to alleviated loss of solubility and pasting viscosity, improved swelling power, or enhanced resistant starch formation. Cereal or pseudo-cereal flour (except that with robust structure) modified by early germination is more applicable to produce products with desirable texture and taste. Besides shortening duration, germination under abiotic stress is promising to mitigate starch damage for better utilization in staple foods.
Collapse
Affiliation(s)
- Xueling Zheng
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Qingfa Wang
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China
| | - Limin Li
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Chong Liu
- College of Food Science and Engineering, Henan University of Technology, No. 100 Lianhua Street in Zhongyuan District, Zhengzhou, Henan 450001, China.
| | - Xiaoyan Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Yuekainan Street, Baoding, Hebei 071001, China
| |
Collapse
|
3
|
Wang J, Xu X, Cui B, Wang B, Abd El-Aty AM. Changes in the properties of the corn starch glycerol film in a time-dependent manner during gelatinization. Food Chem 2024; 458:140183. [PMID: 38943954 DOI: 10.1016/j.foodchem.2024.140183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
This study aimed to investigate the fundamental properties, solubility, mechanical properties, barrier performance, and microstructural features of films composed of corn starch and glycerol. Changes in the microstructure were analyzed to understand how they relate to the physical and chemical properties of these films. Specifically, we found that increasing the gelatinization time decreased the film thickness, solubility, water vapor permeability, and maximum degradation temperature and increased the water content. A gradual increase in the water contact angle of the corn starch-glycerol films was observed with increasing gelatinization time. This trend is likely due to the disruptive effect of gelatinization on the crystalline and amorphous structures inherent in corn starch, resulting in reduced film crystallinity, degree of order (DO) and degree of double helix (DD).
Collapse
Affiliation(s)
- Jiarui Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xin Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Food Science and Engineering, Shandong Agricultural University, Taian, 271018, China; Shandong Qingyun Large Leaf Coriander Science and Technology Backyard, Dezhou 253600, Shandong, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
4
|
Deng C, Geng H, Shi S, Jin Y, Sheng T, Wu Y, Yu Z, Zhou Y. Structure and digestibility changes of Indica and japonica waxy rice starch during in vitro pre-digestion. Int J Biol Macromol 2024; 279:135504. [PMID: 39255884 DOI: 10.1016/j.ijbiomac.2024.135504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
The digestion of starch have been of great interest, yet little is known about the structure changes and structure-digestibility relationships of waxy rice starch during digestion. In this study, waxy rice starch from Indica and Japonica cultivars were in vitro pre-digested for different times, and the changes in their structure and properties were investigated, including granule morphology, chain length distribution, short-range ordered structure, crystallinity, thermal properties, and digestibility. Pre-digested Indica and Japonica waxy rice starch had the characteristics of porous starch, showing similar surface erosion and pores. With the prolongation of pre-digestion time, the amylose content decreased by 0.74 %-2.69 %, the proportion of amylopectin short A chain (DP6-12) and B1 chain (DP13-24) decreased, and the proportion of long B2 (DP25-36) and B3 chain (DP ≥ 37) increased, especially in pre-digested Indica waxy rice starch. The short- and long-range ordered structure of pre-digested starch increased, manifested by an increase in the absorbance ratio at 1047/1022 cm-1, a decrease at 1022/995 cm-1, and an increase in relative crystallinity, leading to higher gelatinization temperature and enthalpy. Pre-digested waxy rice starch had a reduced rapidly digestible starch of 18.27 %-33.93 % and an increased resistant starch of 29.51 %-41.32 %, which will be applied in functional starch and healthy starchy foods.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Huihui Geng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Sanxu Shi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Qiao J, Zhang Z, Xing B, Liang Y, Jia M, Yun J, Niu J, Li H, Ren G, Qin P, Zhang L. Starch chain-length distributions affect the processing and digestion characteristics of proso millet starch. Food Chem 2024; 457:140104. [PMID: 38941905 DOI: 10.1016/j.foodchem.2024.140104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Starch chain-length distributions play a key role in regulating the processing and digestion characteristics of proso millet starch. Waxy proso millet starch has higher endothermic enthalpy (13.06-16.73 J/g) owing to its higher relative crystallinity (27.83%-32.04%), while nonwaxy proso millet starch has lower peak viscosity (1.0630-1.1930 Pa∙s) and stronger viscoelasticity owing to its higher amylose content (21.72%-24.34%). Non-waxy proso millet starch exhibited two different digestion phases and its resistant starch content (18.37%-20.80%) was higher than waxy proso millet starch. Correlation analysis showed proso millet starch with longer amylopectin B1 chains and more amylopectin B2 chains exhibited excellent thermal ability and retrograde resistance, whereas proso millet starch with shorter and more amylose medium/long-chains not only reduced the digestion rate and increased the resistant starch content but also exhibited stronger viscoelasticity and excellent retrogradation properties. These results could provide more insights into efficient utilization of proso millet starch.
Collapse
Affiliation(s)
- Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Min Jia
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Junyan Yun
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hai Li
- Institute of the High Latitude Crops, Shanxi Agricultural University, Datong 037008, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Lin J, Li E, Li C. Multi-scale structural insights on starch digestibility of instant rice. Food Chem 2024; 456:140074. [PMID: 38876074 DOI: 10.1016/j.foodchem.2024.140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Multi-scale structures were investigated to understand starch digestibility of instant rice. A wide range of maximum starch digested ratio, up to about 20%, was observed among instant rice prepared from different rice varieties. Instant rice with a smooth and densely packed cross-section showed slower starch digestibility than those with a porous and loosely packed structure. All samples displayed B + V type crystallinity, with V-type crystallinity negatively correlating with maximum starch digested percentage. After digestion, starch chain-length distributions were significantly altered: rapidly digested starch comprised long amylose and short amylopectin chains, while slowly digested starch comprised chains with a peak degree of polymerization (DP) around 130. These results indicate that instant rice with a compact microstructure, high V-type crystallinity, and DP 130 fractions during digestion can reduce starch digestibility. This study provides insights for food industry to develop instant rice products with slow starch digestibility, potentially improving human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
7
|
Liu X, Xu Z, Zhang C, Xu Y, Ma M, Sui Z, Corke H. Dynamic development of changes in multi-scale structure during grain filling affect gelatinization properties of rice starch. Carbohydr Polym 2024; 342:122318. [PMID: 39048212 DOI: 10.1016/j.carbpol.2024.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Rice was collected over the entire grain filling period (about 40 days) to explore the multi-structure evolution and gelatinization behavior changes of starch. During the early stage (DAA 6-14), the significant reduction in lamellar repeat distance (10.04 to 9.68 nm) and relative crystallinity (26.6 % to 22.7 %) was due to initial rapid accumulation of amylose (from 9.38 % to 14.05 %) and short amylopectin chains. Meanwhile, the decreased proportion of aggregation structure resulted in a decrease in the gelatinization temperature and a narrowed range of gelatinization temperature also indicated an increase in homogeneity as starch matured. Gelatinization enthalpy was mainly controlled by aggregation structure, which was negatively and positively related to the amylose content and the degree of order respectively. Peak viscosity of starch pasting increased and reached a maximum (924 cP) at DAA-21 due to larger granule size. Amylose and short amylopectin chains with degree of polymerization 6-12 showed positive and negative correlation with short-term retrogradation ability (setback value) respectively. The dynamics of different scale structure during grain filling had varying degrees of impact on gelatinization properties.
Collapse
Affiliation(s)
- Xiaoning Liu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuting Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
8
|
Zhang S, Wang Z, Wang L, Tian H, Wang H, Du C, Zhang D, Li M, Huang J, Zhang X. A- and B-type wheat starch granules: The multiscale structural evolution during digestion and the distinct digestion mechanisms. Int J Biol Macromol 2024; 278:135033. [PMID: 39182861 DOI: 10.1016/j.ijbiomac.2024.135033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The digestive characteristics of wheat starch are closely related to human health. However, the digestive mechanisms of distinct wheat starch granules are not well understood. To address this problem, A- and B-type wheat starch granules (AWS and BWS, respectively) were digested in vitro and the structural evolution of the digestive remnants was compared. After stomach-intestinal digestion of AWS, its crystallinity decreased from 12.75 % to 6.65 %, its fractal dimension decreased from 3.12 to 2.35, and the median particle size decreased from 20.613 to 10.135 μm. Additionally, the number of short chains (polymerization degree<14) and thermodynamic stability decreased after digestion. For BWS, Fourier transform infrared ratio of 1047/1022 cm-1 and 995/1022 cm-1 increased from 0.665 and 0.725 to 0.990 and 0.800, respectively. The median particle size decreased from 5.480 to 4.769 μm. An enzyme-resistant scattering peak was observed in the 1.35 nm-1 lamellar structure. Additionally, the number of B2 and B3 chains and the thermodynamic stability increased after digestion. Our study confirmed that BWS is more likely than AWS to form enzyme-resistant structures during digestion. These findings provide insights into the distinct digestion mechanisms of AWS and BWS, and serve as a foundation for modifying wheat starch to increase its nutritional value.
Collapse
Affiliation(s)
- Sijie Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Luyang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Hailong Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Huiping Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Chenxu Du
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Meijuan Li
- Henan Guode Standard Testing Technology Co., LTD, Zhengzhou 451100, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China; Collaborative Innovation Center of Functional Food Green Manufacturing Henan Province, School of Food and Pharmacy, Xuchang University, Xuchang 461000, China.
| | - Xinrui Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
9
|
Feng P, Zhou X, Yu W. Study of starch molecular structure-property relations provides new insight into slowly digested rice development. Food Res Int 2024; 194:114887. [PMID: 39232521 DOI: 10.1016/j.foodres.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
White rice consumption has been regarded as a potential risk factor for non-communicable diseases including obesity and type 2 diabetes. Thus, increasing attention has been paid to develop slowly digested rices with acceptable palatability. As the most abundant component of rice kernels, the fine molecular structure of starch controls not only the texture & aroma, but also the digestion properties of cooked rice. A large number of studies have been conducted to see what molecular structural features control the digestibility and palatability of cooked rice, which further could be connected to starch biosynthesis to enable rices with targeted functionalities to be chosen in non-empirical ways. Nonetheless, little progress has been made because of improper experimental designs. For example, the effects of starch fine molecular structure on cooked rice digestibility and palatability has been rarely studied within one study, resulting to various digestion results. Even for the same sample, it is hard to obtain consistent conclusions and sometimes, the results/coclusions are even controversy. In this review paper, starch fine molecular structural effects on the texture, aroma and starch digestion properties of cooked white rice were summarized followed by a detailed discussion of the relations between the fine molecular structures of amylopectin and amylose to deduce a more general conclusion of starch molecular structure-cooked rice property relations. It is expected that this review paper could provide useful information in terms of how to develop slowly digested rices with acceptable palatability.
Collapse
Affiliation(s)
- Puxu Feng
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Xianglong Zhou
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China.
| |
Collapse
|
10
|
Yan X, McClements DJ, Luo S, Liu C, Ye J. Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydr Polym 2024; 340:122273. [PMID: 38858001 DOI: 10.1016/j.carbpol.2024.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2024; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
12
|
Li S, Feng D, Xiao X, Li E, Wang J, Li C. Oil-in-water emulsion activity and stability of short-term retrograded starches depend on starch molecular size, amylose content, and amylopectin chain length. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39235095 DOI: 10.1002/jsfa.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Natural emulsifiers are increasingly preferred by the food industry to meet consumers' demand for 'clean-label' emulsion products. In the present study, 10 short-term retrograded starches with unique molecular structures were explored to examine the relationships between starch structures and their ability to form stable oil-in-water emulsions. RESULTS Waxy maize starch showed the largest value of contact angle and conductivity of emulsion, whereas potato and lentil starch showed the lowest value of contact angle and conductivity of emulsion, respectively. Emulsion prepared by rice starch showed the lowest, whereas that of sweet potato starch showed the highest value of viscosity. Consequentially, the emulsion stabilized with waxy maize and tapioca starch showed the smallest and less polydisperse droplets, resulting in a much higher emulsifying index. On the other hand, emulsion prepared with potato starch showed the highest stability compared to other starches. Correlation analysis suggested that starches with larger molecular size, a lower amylose content and shorter amylopectin short chains had a higher emulsification ability, whereas the amount of starch molecular interactions formed during short-term retrogradation revealed no obvious linking to emulsion performances. CONCLUSION These findings provided food industry with exciting opportunities to develop 'clean-label' emulsions with desirable properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Duo Feng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Xue Xiao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jun Wang
- School of Tourism and Cuisine, Yangzhou University, Yangzhou, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Liang D, Liang W, Luo H, Liu Q, Temirlan K, Li W. Research on electron beam irradiation in the multiscale structure of starch and its related applications: A review. Compr Rev Food Sci Food Saf 2024; 23:e70009. [PMID: 39289807 DOI: 10.1111/1541-4337.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Electron beam irradiation (EBI), as a typical "green" emerging technology, can effectively alter the functional properties of starch by influencing its microstructure. This alteration enables starch to meet the current demands of consumers and the market for "health food." This paper reviews studies on modifying various starches using EBI and describes the changes in microstructure, physicochemical properties, and functional properties induced by this method. Additionally, the effects of EBI on starch-containing food products are discussed, along with issues to be addressed and research gaps in the synergistic treatment of modified starch. It is noted that the source, irradiation dose, and irradiation time all influence the effectiveness of starch modification. Given the characteristics of EBI technology, integrating physical, chemical, and biological modification methods can optimize the modification process and enhance efficiency. This technology can potentially diversify modified starch varieties and expand their applications. Furthermore, there remains significant research potential in producing modified starch using EBI technology and applying it to the food industry.
Collapse
Affiliation(s)
- Danyang Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Haiyu Luo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Qing Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Khamiddolov Temirlan
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
15
|
Zhang L, Zhao J, Li F, Jiao X, Zhang Y, Yang B, Li Q. Insight to starch retrogradation through fine structure models: A review. Int J Biol Macromol 2024; 273:132765. [PMID: 38823738 DOI: 10.1016/j.ijbiomac.2024.132765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The retrogradation of starch is crucial for the texture and nutritional value of starchy foods products. There is mounting evidence highlighting the significant impact of starch's fine structures on starch retrogradation. Because of the complexity of starch fine structure, it is a formidable challenge to study the structure-property relationship of starch retrogradation. Several models have been proposed over the years to facilitate understanding of starch structure. In this review, from the perspective of starch models, the intricate structure-property relationship is sorted into the correlation between different types of structural parameters and starch retrogradation performance. Amylopectin B chains with DP 24-36 and DP ≥36 exhibit a higher tendency to form ordered crystalline structures, which promotes starch retrogradation. The chains with DP 6-12 mainly inhibit starch retrogradation. Based on the building block backbone model, a longer inter-block chain length (IB-CL) enhances the realignment and reordering of starch. The mathematical parameterization model reveals a positive correlation between amylopectin medium chains, amylose short chains, and amylose long chains with starch retrogradation. The review is structured according to starch models; this contributes to a clear and comprehensive elucidation of the structure-property relationship, thereby providing valuable references for the selection and utilization of starch.
Collapse
Affiliation(s)
- Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
16
|
Haziman ML, Ishaq MI, Qonit MAH, Lestari EG, Susilawati PN, Widarsih W, Syukur C, Herawati H, Arief R, Santosa B, Purba R, Andoyo R, Yursak Z, Tan SS, Musfal M, Mubarok S. Sorghum starch review: Structural properties, interactions with proteins and polyphenols, and modification of physicochemical properties. Food Chem 2024; 463:139810. [PMID: 39293183 DOI: 10.1016/j.foodchem.2024.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 09/20/2024]
Abstract
Sorghum, a gluten-free carbohydrate source with high antioxidants and resistant starch, contains anti-nutrients like phytic acid, tannin, and kafirin. Interactions with starch and proteins result in polyphenol-starch, starch-kafirin, and tannin-protein complexes. These interactions yield responses such as V-type amylose inclusion complexes, increased hydrophobic residues, and enzyme resistance, reducing nutrient availability and elevating resistant starch levels. Factors influencing these interactions include starch composition, structure, and Chain Length Distribution (CLD). Starch structure is impacted by enzymes like ADP-glucose pyrophosphorylase, starch synthases, and debranching enzymes, leading to varied chain lengths and distributions. CLD differences significantly affect crystallinity and physicochemical properties of sorghum starch. Despite its potential, the minimal utilization of sorghum starch in food is attributed to anti-nutrient interactions. Various modification approaches, either direct or indirect, offer diverse physicochemical changes with distinct advantages and disadvantages, presenting opportunities to enhance sorghum starch applications in the food industry.
Collapse
Affiliation(s)
- Muhammad Luthfan Haziman
- Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia.
| | - Muhammad Iskandar Ishaq
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Muhammad Abdillah Hasan Qonit
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Endang Gati Lestari
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Pepi Nur Susilawati
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Wiwi Widarsih
- Department of Analytical Chemistry, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia
| | - Cheppy Syukur
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Heny Herawati
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Ramlah Arief
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Budi Santosa
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Resmayeti Purba
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Zuraida Yursak
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Siti Sehat Tan
- Research Center for Social Welfare, Villages and Connectivity, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Musfal Musfal
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
17
|
Yang H, Chen L, Xiong R, Zeng Y, Jiang Y, Zhang J, Zhang B, Yang T. Experimental Warming Increased Cooked Rice Stickiness and Rice Thermal Stability in Three Major Chinese Rice Cropping Systems. Foods 2024; 13:1605. [PMID: 38890834 PMCID: PMC11171534 DOI: 10.3390/foods13111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Climate warming is a critical environmental issue affecting rice production. However, its effects on cooked rice texture and rice thermal properties remain unstudied in China. To address this gap, we conducted a two-year multi-site field warming experiment using free-air temperature increase facilities across three major Chinese rice cropping systems. Interestingly, warming had a minimal impact on the hardness of cooked rice, while it significantly increased stickiness by an average of 16.3% under warming conditions. Moreover, compared to control treatments, rice flour exhibited a significant increase in gelatinization enthalpy, onset, peak, and conclusion temperatures under warming conditions, with average increments of 8.7%, 1.00 °C, 1.05 °C, and 1.17 °C, respectively. In addition, warming significantly declined the amylose content, remarkedly elevated the protein content and relative crystallinity, and altered the weight distribution of the debranched starch. Correlation analysis revealed significant relationships between cooked rice stickiness, rice flour thermal properties, amylose content, protein content, and partial starch structures. Therefore, warming-induced alterations in rice composition and starch structure collectively enhanced cooked rice stickiness and rice thermal stability.
Collapse
Affiliation(s)
- Huifang Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The China Academy of Science, Beijing 100093, China
| | - Liming Chen
- Jiangxi Key Laboratory of Plant Resources and Biodiversity, Jingdezhen University, Jingdezhen 333400, China
| | - Ruoyu Xiong
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanhua Zeng
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Taotao Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
18
|
Qiao J, Jia M, Niu J, Zhang Z, Xing B, Liang Y, Li H, Zhang Y, Ren G, Qin P, Zhang L. Amylopectin chain length distributions and amylose content are determinants of viscoelasticity and digestibility differences in mung bean starch and proso millet starch. Int J Biol Macromol 2024; 267:131488. [PMID: 38615862 DOI: 10.1016/j.ijbiomac.2024.131488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/23/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.
Collapse
Affiliation(s)
- Jiawei Qiao
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Min Jia
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiahui Niu
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hai Li
- Institute of the High Latitude Crops, Shanxi Agricultural University, Datong 037008, China
| | - Yaowen Zhang
- Institute of Crop Sciences, Shanxi Agricultural University, Taiyuan 030012, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
19
|
Wang H, Liu J, Zhang Y, Li S, Liu X, Zhang Y, Zhao X, Shen H, Xie F, Xu K, Zhang H. Insights into the hierarchical structure and physicochemical properties of starch isolated from fermented dough. Int J Biol Macromol 2024; 267:131315. [PMID: 38569985 DOI: 10.1016/j.ijbiomac.2024.131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Understanding the hierarchical structure and physicochemical properties of starch isolated from fermented dough with different times (0-120 min) is valuable for improving the quality of fermented dough-based products. The results indicate that fermentation disrupted the starch granule surface and decreased the average particle size from 19.72 μm to 18.45 μm. Short-term fermentation (< 60 min) disrupted the crystalline, lamellar, short-range ordered molecular and helical structures of starch, while long-term fermentation (60-120 min) elevated the ordered degree of these structures. For example, relative crystallinity and double helix contents increased from 23.7 % to 26.8 % and 34.4 % to 37.2 %, respectively. During short-term fermentation, the structural amorphization facilitated interactions between starch molecular chains and water molecules, which increased the peak viscosity from 275.4 to 320.6 mPa·s and the swelling power from 7.99 to 8.52 g/g. In contrast, starches extracted from long-term fermented dough displayed the opposite results. Interestingly, the hardness and springiness of starch gels gradually decreased as fermentation time increased. These findings extend our understanding of the starch structure-property relationship during varied fermentation stages, potentially benefiting the production of better-fermented foods.
Collapse
Affiliation(s)
- Hongwei Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Jiajia Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yusong Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Shuaihao Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| | - Xingli Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yanyan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Xuewei Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Huishan Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ke Xu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Hua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
20
|
Huang X, Zhou X, Liu X, Zhong W, Wang X, Ju Z, Yin Y, Xin Q, Liu N, Liu X, Jin Y, Wang G, Wang J, Ma P. Structural and physicochemical effects on the starch quality of the high-quality wheat genotype caused by delayed sowing. Front Nutr 2024; 11:1389745. [PMID: 38689937 PMCID: PMC11058212 DOI: 10.3389/fnut.2024.1389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Background Bread wheat is one of the most important food crops associated with ensuring food security and human nutritional health. The starch quality is an important index of high-quality wheat. It is affected by a complex series of factors; among which, suitable sowing time is a key factor. Aim and methods To analyze the integrative effects of sowing time on the starch quality of high-quality wheat, in the present study, we selected a high-quality bread wheat cultivar Jinan 17 and investigated the effect of different sowing times on the starch properties and the related genes by analyzing X-ray diffraction patterns, apparent amylose content, thermal properties, pasting properties, in vitro starch digestibility, and qRT-PCR. Meanwhile, we also investigated the agronomic and yield performance that may be associated with the starch properties. Results Delayed sowing had little effect on starch crystalline morphology, but there was a tendency to reduce the formation of crystals within wheat starch granules: (1) delayed sowing for 15 days altered the thermal properties of starch, including onset, peak and termination temperatures, and enthalpy changes; (2) delayed sowing for 30 days changed the thermal characteristics of starch relatively insignificant; (3) significant differences in pasting characteristics occurred: peak viscosity and hold-through viscosity increased, while final viscosity, breakdown viscosity, and setback viscosity tended to increase and then decrease, suggesting that delayed sowing caused changes in the surface of the starch granules resulting in a decrease in digestibility. Analysis of related genes showed that several key enzymes in starch biosynthesis were significantly affected by delayed sowing, leading to a reduction in apparent straight-chain starch content. In addition to starch properties, thousand-kernel weight also increased under delayed sowing conditions compared with normal sowing. Conclusion The impact of delayed sowing on starch quality is multifaceted and complex, from the fine structure, and functional properties of the starch to the regulation of key gene expression. Our study holds significant practical value for optimizing wheat planting management and maximizing the potential in both quality and yield.
Collapse
Affiliation(s)
- Xiaomei Huang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xin Zhou
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xueqing Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan, China
| | - Xinyu Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Zhengchun Ju
- Shandong Agricultural Technology Extension Center, Jinan, China
| | - Yan Yin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingguo Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ning Liu
- Shandong Zhongnong Tiantai Seed Industry Co., Ltd., Linyi, China
| | - Ximei Liu
- Shandong Zhongnong Tiantai Seed Industry Co., Ltd., Linyi, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Guie Wang
- Shandong Seed Administration Station, Jinan, China
| | - Jiangchun Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
21
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Gebre BA, Zhang C, Li Z, Sui Z, Corke H. Impact of starch chain length distributions on physicochemical properties and digestibility of starches. Food Chem 2024; 435:137641. [PMID: 37804724 DOI: 10.1016/j.foodchem.2023.137641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/02/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Changing starch structure at different levels is a promising approach to promote desirable metabolic responses. Chain length distribution (CLD) is among the starch structural characteristics having a potential to determine properties of starch-based products. Therefore, the objective of the current review is to summarize recent findings on CLD and its impact on physicochemical properties and digestion. Investigations undertaken to enhance understanding of starch structure have shown clearly that CLD is a significant determining factor in modulating starch digestibility. Enzymatic modifications and processing treatments alter the CLD of starch, which in turn affects the rate of digestion, but the underlying molecular mechanisms have yet to be fully elucidated. Even though advances have been made in manipulating CLD using different methods and to correlate the changes with various functional properties, in general the area needs further investigations to open new awareness for enhancing healthiness of starchy foods.
Collapse
Affiliation(s)
- Bilatu Agza Gebre
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Food Science & Nutrition, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijun Li
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320000, Israel.
| |
Collapse
|
23
|
Huang M, Guo S, Li Z, Peng X. Molecular rotor as an in-situ fluorescent probe for the degree of polymerization of α-D-1,4-glucans. Carbohydr Polym 2024; 324:121573. [PMID: 37985067 DOI: 10.1016/j.carbpol.2023.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Various starch synthesis and tailoring processes involve prevailing adjustments in the degree of polymerization (DP) of linear α-D-1,4-glucan chains (LGCs) for the improved functional performances. Previous studies indicated that LGCs might hinder the twisted relaxation of 9-(2-carboxy-2-cyanovinyl)-julolidine (CCVJ, a hydrophilic molecular rotor), highlighting CCVJ as a potential in-situ structural probe for LGC. In this study, glucose and its α-D-1,4 oligomers and polymers with molecular weights ranging from 0.18 kDa to 70.00 kDa were prepared as the model molecules (MM). The fluorescent emission behavior of CCVJ in various concentrations (1-5 g/L) of MM solutions or dispersions were analyzed. Results showed that for the low-DP MMs (≤ 3.98 kDa) with good aqueous stability, CCVJ emission increased by about 20 times with the DP of MMs. In contrast, CCVJ generally emitted weak DP-relevant but glucan content-dependent fluorescence in response to the interaction with high-DP MMs (> 3.98 kDa). Furthermore, a double-logarithmic linear relationship was found between the emission intensity of CCVJ and the molar-based molecular weight of glucan. The result combined with the molecular dynamic simulation suggested that CCVJ underwent surface-to-surface interaction with MMs. This study may contribute to the real-time analysis of the DP of α-D-1,4 oligoglucosides in maltodextrin and starch syrup.
Collapse
Affiliation(s)
- Mingfei Huang
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siqi Guo
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhimin Li
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xingyun Peng
- Beijing Key Laboratory of Plant Protein and Cereal Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
24
|
Yang X, Peng T, Xu Y, Gao K, Zhao Q, Song X. Starch molecular structures in relation to properties of ratoon rice produced by different ratooning practices. Carbohydr Polym 2024; 323:121459. [PMID: 37940317 DOI: 10.1016/j.carbpol.2023.121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023]
Abstract
The development of forage-grain ratoon rice (RR) pattern could ensure food security and promote silage production. Herein three indica rice varieties were used to investigate the influence of different forage clipping stages (heading, milk-ripe, wax-ripe, and full-ripe) on starch molecular structures and RR properties. The apparent amylose contents (AAC) of starches increased, but pasting viscosities, gelatinization temperatures and starch sizes decreased with the postponement of clipping stages due to the retardation of endosperm development. The starches showed A-type crystalline structure with increased in vitro digestibility; however relative crystallinity decreased by 13.45 % to 23.89 %. The short fa (DP 6-12) chains of amylopectin increased while long fb3 (DP ≥ 37) chains decreased (p < 0.05). The proportions of amylose chains with DP 100-2000 increased but those with DP 2000-20,000 decreased. Rice grain strength was positively correlated with fb3 chains while negatively correlated with fa chain. The hardness of cooked RR was positively correlated with AAC while negatively correlated with fb2 (DP 25-36). RR clipping at milk-ripe stage had the highest grain strength and moderate texture properties. The elucidation of structure-property relationships is helpful for RR utilization and development of suitable cultivation conditions for RR production.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yimei Xu
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China
| | - Kaige Gao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China.
| | - Xiaoyan Song
- Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, PR China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
25
|
Li Y, Niu L, Sun C, Tu J, Xiao J. Comparison of in vitro starch digestibility and structure of matcha-fortified starch vermicelli from different botanical sources. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7775-7784. [PMID: 37483079 DOI: 10.1002/jsfa.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/12/2023] [Accepted: 07/22/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND In a study to explore the utilization of polyphenols in complex digestive systems, starch-based vermicelli was employed as the carrier and matcha (MT) was used as the source of polyphenols. Four percent MT was extruded with A-, B-, and C-type starch of rice, sweet potato, and mung bean to prepared starch vermicelli rice starch vermicelli (RSV), sweet potato starch vermicelli (SPSV), and mung bean starch vermicelli (MBSV), respectively. The multi-scale structure of starch, the digestive kinetics of starch, and the bioaccessibility of polyphenols during in vitro digestion were monitored. RESULTS Matcha did not change the crystal configuration of vermicelli, but increased the relative crystallinity of RSV. Vermicelli with MT possessed a more uniform structure, and the polydispersity index decreased from 3.85-4.89 to 2.56-3.69. However, these structural changes made only a limited contribution to delaying digestion. The detection of polyphenols during digestion revealed that the release of most polyphenols was accomplished in the first 20 min of digestion. The release amount was in the order RSV + MT > MBSV + MT > SPSV + MT, and reached 4.81-5.45 mg GAE g-1 . Correspondingly, the activity of digestive enzyme decreased in the order RSV + MT < MBSV + MT < SPSV + MT. Consequently, MT significantly (P < 0.05) reduced the digestive rate of vermicelli, and the rapidly digested starch and predicted glycemic index of RSV + MT decreased from 71.28% to 56.31% and from 74.68 to 62.86, respectively. The released polyphenols were also the main source of the strong antioxidant capacity of vermicelli with MT. CONCLUSIONS These results provided a theoretical basis for using polyphenols to pursue healthy starch-based food. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Li
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jin Tu
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
26
|
Xing B, Yang X, Zou L, Liu J, Liang Y, Li M, Zhang Z, Wang N, Ren G, Zhang L, Qin P. Starch chain-length distributions determine cooked foxtail millet texture and starch physicochemical properties. Carbohydr Polym 2023; 320:121240. [PMID: 37659823 DOI: 10.1016/j.carbpol.2023.121240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
27
|
Zheng J, Zhao W, Liu X, Liang W, Zheng Y, Ge X, Shen H, Li W. Electron beam irradiation-assisted prepare pea starch nanocrystals and characterization of their molecular structure, physicochemical and rheological properties. Int J Biol Macromol 2023; 251:126384. [PMID: 37595714 DOI: 10.1016/j.ijbiomac.2023.126384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Electron beam irradiation (EBI) is an environmentally friendly physical modification technology. In this study, pea starch nanocrystals (SNC) were prepared by EBI-assisted pretreatment, and investigated the effects of EBI on the multiscale structure and physicochemical properties of SNC. EBI-assisted pretreatment didn't change the particle morphology, crystalline type and FT-IR spectra of SNC. However, EBI-SNC's relative crystallinity and short-range orderliness index (R1047/1022) significantly increased with increasing irradiation dose (5 KGy-20 KGy). In addition, EBI-assisted pretreatment caused the long chains of SNC's amylopectin to break into short chains. Moreover, EBI-assisted treatment significantly reduced the mean size, molecular weight, apparent amylose content, swelling power and SDS + RS content of SNC, while increasing the solubility, zeta potential and RDS content. Furthermore, the flow properties of the EBI-SNC samples were increased. The results show that EBI effectively changed the structural and functional properties of SNC, and the excellent functional properties are expected to broaden the application range of SNC.
Collapse
Affiliation(s)
- Jiayu Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyue Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wei Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yue Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Huishan Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenhao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
28
|
Yuan X, Luo Y, Yang Y, Chen K, Wen Y, Luo Y, Li B, Ma Y, Guo C, Chen Z, Yang Z, Sun Y, Ma J. Effects of postponing nitrogen topdressing on starch structural properties of superior and inferior grains in hybrid indica rice cultivars with different taste values. FRONTIERS IN PLANT SCIENCE 2023; 14:1251505. [PMID: 37881615 PMCID: PMC10597642 DOI: 10.3389/fpls.2023.1251505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Introduction Nitrogen (N) fertilizer management, especially postponing N topdressing can affect rice eating quality by regulating starch quality of superior and inferior grains, but the details are unclear. This study aimed to evaluate the effects of N topdressing on starch structure and properties of superior and inferior grains in hybrid indica rice with different tastes and to clarify the relationship between starch structure, properties, and taste quality. Methods Two hybrid indica rice varieties, namely the low-taste Fyou 498 and high-taste Shuangyou 573, were used as experimental materials. Based on 150 kg·N hm-2, three N fertilizer treatments were established: zero N (N0), local farmer practice (basal fertilizer: tillering fertilizer: panicle fertilizer=7:3:0) (N1), postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) (N2). Results The starch granules of superior grains were more complete, and the decrease in small granules content and the stability of starch crystals were a certain extent less than those of inferior grains. Compared with N1, under N2, low-taste and high-taste varieties large starch granules content were significantly reduced by 6.89%, 0.74% in superior grains and 4.26%, 2.71% in inferior grains, the (B2 + B3) chains was significantly reduced by 1.61%, 0.98% in superior grains, and 1.18%, 0.97% in inferior grains, both reduced the relative crystallinity and 1045/1022 cm-1, thereby decreasing the stability of the starch crystalline region and the orderliness of starch granules. N2 treatment reduced the ΔHgel of two varieties. These changes ultimately contributed to the enhancement of the taste values in superior and inferior grains in both varieties, especially the inferior grains. Correlation analysis showed that the average starch volume diameter (D[4,3]) and relative crystallinity were significantly positively correlated with the taste value of superior and inferior sgrains, suggesting their potential use as an evaluation index for the simultaneous enhancement of the taste value of rice with superior and inferior grains. Discussion Based on 150 kg·N hm-2, postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) promotes the enhancement of the overall taste value and provides theoretical information for the production of rice with high quality.
Collapse
Affiliation(s)
- Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
29
|
Li W, Sun S, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of protein on the gelatinization behavior and digestibility of corn flour with different amylose contents. Int J Biol Macromol 2023; 249:125971. [PMID: 37494995 DOI: 10.1016/j.ijbiomac.2023.125971] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The effects of endogenous proteins on the gelatinization behavior and digestibility of waxy corn flour (WCF), normal corn flour (NCF) and high amylose corn flour (HCF) were systematically investigated. Microscopic characteristics showed that the proteins surrounded multiple starch granules, which led to an increase in the particle size of the corn flour, but no significant change in the relative crystallinity. Small angle x-ray scattering experiments during pasting revealed that the starch granules of NCF remained compact, while WCF and HCF were relatively loose. Carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) showed that the proteins retained the helical structure of starch allowing NCF to have a higher Resistant starch(RS) content. The presence of protein led to a decrease in swelling power, viscosity, and in vitro digestibility of starch, and a noticeable increase in gelatinization temperature and thermal stability. RS increased most significantly in NCF from 3.86 % to 15.27 %. The effect of protein on the water activity of starch with different amylose contents after pasting was also inconsistent. This study will contribute to the understanding of the interaction between starch and protein in corn flours with different amylose contents and contribute to the development of corn flours.
Collapse
Affiliation(s)
- Wendong Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shenglin Sun
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Caiming Li
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
30
|
Chi C, Lian S, Zou Y, Chen B, He Y, Zheng M, Zhao Y, Wang H. Preparation, multi-scale structures, and functionalities of acetylated starch: An updated review. Int J Biol Macromol 2023; 249:126142. [PMID: 37544556 DOI: 10.1016/j.ijbiomac.2023.126142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Acetylated starch has been widely used as food additives. However, there was limited information available regarding the impact of acetylation on starch structure and functionalities, as well as the advanced acetylation technologies. This review aimed to summarize current methods for starch acetylation and discuss the structure and functionalities of acetylated starch. Innovative techniques, such as milling, microwave, pulsed electric fields, ultrasonic, and extrusion, could be employed for environmental-friendly synthesis of acetylated starch. Acetylation led to the degradation of starch structures and weakening of the interactions between starch molecules, resulting in the disorganization of starch multi-scale ordered structure. The introduction of acetyl groups retarded the self-reassembly behavior of starch, leading to increased solubility, clarity, and softness of starch-based hydrogels. Moreover, the acetyl groups improved water/oil absorption capacity, emulsifiability, film-forming properties, and colonic fermentability of starch, while reduced the susceptibility of starch molecules to enzymes. Importantly, starch functionalities were largely influenced by the decoration of acetyl groups on starch molecules, while the impact of multi-scale ordered structures on starch physicochemical properties was relatively minor. These findings will aid in the design of structured acetylated starch with desirable functionalities.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Suyang Lian
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yiqing Zou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongwei Wang
- College of Food and Bioengineering, Key Laboratory of Cold Chain Food Processing and Safety Control, Food Laboratory of Zhongyuan, Zhengzhou University of Light Industry, No. 136 Kexue Road, Zhengzhou, Henan 450001, China
| |
Collapse
|
31
|
Guo L, Chen H, Zhang Y, Yan S, Chen X, Gao X. Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput Struct Biotechnol J 2023; 21:4172-4186. [PMID: 37675285 PMCID: PMC10477758 DOI: 10.1016/j.csbj.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Starch is a vital component of wheat grain and flour, characterized by two distinct granule types: A-type starch (AS) with granules larger than 10 µm in diameter, and B-type starch (BS) with granules measuring no more than 10 µm in diameter. This review comprehensively evaluates the isolation, purification, and biosynthesis processes of these types of granules. In addition, a comparative analysis of the structure and properties of AS and BS is presented, encompassing chemical composition, molecular, crystalline and morphological structures, gelatinization, pasting and digestive properties. The variation in size distribution of granules leads to differences in physicochemical properties of starch, influencing the formation of polymeric proteins, secondary and micro-structures of gluten, chemical and physical interactions between gluten and starch, and water absorption and water status in dough system. Thus, starch size distribution affects the quality of dough and final products. In this review, we summarize the up-to-date knowledge of AS and BS, and propose the possible strategies to enhance wheat yield and quality through coordinated breeding efforts. This review serves as a valuable reference for future advancements in wheat breeding.
Collapse
Affiliation(s)
- Lei Guo
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Yan
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueyan Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| |
Collapse
|
32
|
Li Y, Wang H, Wang L, Qiu J, Li Z, Wang L. Multi-scale structure and digestive property of bran starch in different particle size wheat bran. Food Chem 2023; 414:135744. [PMID: 36821917 DOI: 10.1016/j.foodchem.2023.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
In this study, the multi-scale (granular, molecular, crystalline, lamellar and helical) structure and digestive property of starch isolated from wheat bran of different particle size, including plant scale (1110 μm), tissue scale (235 μm, 83 μm) and cell scale (19 μm), were investigated and compared with wheat flour starch. Bran milling modified bran starch to varying degrees. Tissue-scale milling of bran reduced the granule size of bran starch, but did not significantly modify its molecular, lamellar, crystalline and helical structure. However, cell-scale milling caused significant destruction of crystalline regions and double helix, and increase in starch digestibility. In addition, compared to wheat flour starch, wheat bran starch had more resistant starch and lower digestibility, which were highly correlated with its thinner lamellas, more double helix proportion and compact fractal. This study highlights the effect of supramolecular structure on bran starch digestibility and contributes to the application of bran starch.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Haoran Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lijuan Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Ju Qiu
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Zaigui Li
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China; Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, No. 2, Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
33
|
Zhu Q, Yao S, Wu Z, Li D, Ding T, Liu D, Xu E. Hierarchical structural modification of starch via non-thermal plasma: A state-of-the-art review. Carbohydr Polym 2023; 311:120747. [PMID: 37028874 DOI: 10.1016/j.carbpol.2023.120747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
The hierarchical architecture of natural and processed starches with different surface and internal structures determines their final physicochemical properties. However, the oriented control of starch structure presents a significant challenge, and non-thermal plasma (cold plasma, CP) has gradually been used to design and tailor starch macromolecules, though without clear illustration. In this review, the multi-scale structure (i.e., chain-length distribution, crystal structure, lamellar structure, and particle surface) of starch is summarized by CP treatment. The plasma type, mode, medium gas and mechanism are also illustrated, as well as their sustainable food applications, such as in food taste, safety, and packaging. The effects of CP on the chain-length distribution, lamellar structure, amorphous zone, and particle surface/core of starch includes irregularity due to the complex of CP types, action modes, and reactive conditions. CP-induced chain breaks lead to short-chain distributions in starch, but this rule is no longer useful when CP is combined with other physical treatments. The degree but not type of starch crystals is indirectly influenced by CP through attacking the amorphous region. Furthermore, the CP-induced surface corrosion and channel disintegration of starch cause changes in functional properties for starch-related applications.
Collapse
Affiliation(s)
- Qingqing Zhu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Siyu Yao
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314103, China.
| |
Collapse
|
34
|
Lin J, Li C. Influence of instant rice characteristics and processing conditions on starch digestibility-A review. J Food Sci 2023. [PMID: 37326341 DOI: 10.1111/1750-3841.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Instant rice is increasingly popular around the world due to its convenience, but it commonly has a high glycemic index, and a frequent consumption might contribute to the occurrence of many chronic diseases. In this review, the main factors determining starch digestibility of instant rice were comprehensively evaluated, aiming to help the rice industry develop instant rice with slow starch digestibility. Starch digestibility in instant rice can be reduced by manipulating its intrinsic and extrinsic nutrients. Processing conditions, including pre-gelatinization, storage, and reheating are also important for the starch digestibility of instant rice. Individual differences in terms of glycemic response to the same carbohydrate-based diet should be considered when knowledge is transformed from in vitro method to human conditions. This review contains important information that has the potential to reduce the starch digestibility of instant rice and improve public health.
Collapse
Affiliation(s)
- Jiakang Lin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
35
|
Mauro RR, Vela AJ, Ronda F. Impact of Starch Concentration on the Pasting and Rheological Properties of Gluten-Free Gels. Effects of Amylose Content and Thermal and Hydration Properties. Foods 2023; 12:2281. [PMID: 37372492 DOI: 10.3390/foods12122281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The pasting and rheological properties of starch gels from different botanical origins have been widely used to evaluate the application of these starches in pharmaceutical and food products. However, the ways in which these properties are modified by starch concentration and their dependence on amylose content and thermal and hydration properties have not been adequately established so far. An exhaustive study of the pasting and rheological properties of starch gels (maize and rice (normal and waxy in both cases), wheat, potato, and tapioca) at concentrations of 6.4, 7.8, 9.2, 10.6, and 11.9 g/100 g was performed. The results were evaluated in terms of a potential equation fit between each parameter and each gel concentration. The parameters determined for the gels at the studied concentrations were correlated with the hydration properties and thermal properties by applying principal component analysis (PCA). Wheat starch, followed by normal maize and normal rice starches, presented a greater capacity to modulate their gels' pasting and viscoelastic properties via their concentration in water. On the contrary, the characteristics of waxy rice and maize, potato, and tapioca starches were barely modified by concentration in pasting assays, but the gels of potato and tapioca showed noticeable changes in their viscoelastic properties as functions of concentration. In the PCA plot, the non-waxy cereal samples (wheat, normal maize, and normal rice) were located close to each other. Wheat starch gels were the most dispersed on the graph, which is consistent with the high dependence on the concentration of the gel shown in most of the studied parameters. The waxy starches had close positions not too distant from those of the tapioca and potato samples and with little influence from amylose concentration. The potato and tapioca samples were close to the vectors of the crossover point in rheology and peak viscosity in their pasting properties. The knowledge gained from this work allows a better understanding of the effects of starch concentration on food formulations.
Collapse
Affiliation(s)
- Raúl Ricardo Mauro
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Antonio José Vela
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| | - Felicidad Ronda
- Department of Agriculture and Forestry Engineering, Food Technology, College of Agricultural and Forestry Engineering, University of Valladolid, 34004 Palencia, Spain
| |
Collapse
|
36
|
Li C. Structural basis for rice starch multi-digestible fractions revealed by consecutive reaction kinetics model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4203-4210. [PMID: 36641546 DOI: 10.1002/jsfa.12451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Starch-based foods (e.g. rice) usually contain multiple starch fractions with distinct digestion rate constants, although their nature is currently unknown. The present study applied the recently developed consecutive reaction kinetics model to fit the in vitro digestion curves for starch fractions deconvoluted from the overall digestograms to differentiate their binding and catalysis rates to starch digestive enzymes. The fitting parameters were then correlated with starch molecular structures obtained from published data to understand starch structural features determining the binding and catalytic rate constants. RESULTS Binding and catalysis rates for the rapidly (RDF) and slowly digestible starch fraction (SDF) were controlled by distinct starch structural features. Typically, (i) the binding rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, whereas it was positively correlated with the relative length of amylopectin intermediate chains; (ii) the catalysis rate constant for RDF was negatively correlated with the amount of amylose short to intermediate chains, relative length of amylose intermediate chains and amount of amylopectin long chains, whereas it was positively correlated with starch molecular size as well as relative length of amylopectin intermediate chains; (iii) and the catalysis rate constant for SDF was negatively correlated with the amount of amylopectin long chains, whereas it was positively correlated with starch molecular size. CONCLUSION These results provide a better understanding of the nature of different starch digestible fractions and the development of foods such as rice with slow starch digestibility. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
37
|
Song X, Deng L, Zhang J, Ren H, Zhao R. Physicochemical properties and molecular structure of starches from different wheat varieties and their influence on Chinese steamed bread. J Food Sci 2023. [PMID: 37227942 DOI: 10.1111/1750-3841.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Starch is one of the key factors for the texture of Chinese steamed bread (CSB). In this study, the molecular structures and physicochemical properties of starches from 11 wheat varieties with amylose content (AC) of 1.75%-28.79% were investigated. Northern style CSB was made using these wheat varieties to explore the structure-property-quality relationship of starches. AC was negatively correlated with the pasting and gelatinization properties. The relative crystallinity (RC) had a negative correlation with AC but a positive correlation with gelatinization. The molecular structure results from the fluorophore-assisted capillary electrophoresis spectrophotometer indicated that the length of short amylopectin chains (βAp,i ) was positively correlated with hot paste and cool paste viscosities. The amount of medium amylopectin chains (hAp,iii ) was positively correlated with peak and breakdown viscosities but negatively correlated with setback viscosity. The hAp,iii had positive correlations with gelatinization temperatures and RC. The amount of long amylopectin chains (hAp,v ) had a positive correlation with peak temperature. For the CSB texture, βAp,i had negative correlations with hardness and chewiness, whereas had a positive correlation with resilience. The hAp,iii was negatively correlated with springiness and resilience. The hAp,v was negatively associated with resilience. PRACTICAL APPLICATION: Starch has a vital role in wheat flour products. Clarifying the structure-property-quality relationship of starches will help illuminate the role of starch molecular structure in CSB production and provide valuable information for the control of CSB quality. It also provides a significant reference for wheat breeding.
Collapse
Affiliation(s)
- Xiaoyan Song
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou, P. R. China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lili Deng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Jian Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Renyong Zhao
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
38
|
Lu Y, Lv D, Zhou L, Yang Y, Hao W, Huang L, Fan X, Zhao D, Li Q, Zhang C, Liu Q. Combined effects of SSII-2RNAi and different Wx alleles on rice grain transparency and physicochemical properties. Carbohydr Polym 2023; 308:120651. [PMID: 36813343 DOI: 10.1016/j.carbpol.2023.120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Near-isogenic lines Nip(Wxb/SSII-2), Nip(Wxb/ss2-2), Nip(Wxmw/SSII-2), Nip(Wxmw/ss2-2), Nip(Wxmp/SSII-2) and Nip(Wxmp/ss2-2) in the Nipponbare (Nip) background containing the SSII-2RNAi cassette combined with different Waxy (Wx) alleles were investigated in terms of rice grain transparency and quality profiles. Rice lines carrying the SSII-2RNAi cassette displayed downregulation of SSII-2, SSII-3 and Wx genes. Introduction of the SSII-2RNAi cassette decreased apparent amylose content (AAC) in all transgenic lines, but grain transparency differed between low AAC rice lines. Grains from Nip(Wxb/SSII-2) and Nip(Wxb/ss2-2) were transparent, while those of rice were increasingly translucent with decreasing moisture due to cavities within starch granules. Rice grain transparency was positively correlated with grain moisture and AAC, but negatively correlated with cavity area within starch granules. Starch fine structure analysis revealed a marked increase in short amylopectin chains with DP 6-12, but a decrease in intermediate chains with DP 13-24, resulting in decreased gelatinisation temperature. Starch crystalline structure analysis showed that the transgenic rice starches have lower crystallinity and lamellar repeat distance than controls due to differences in starch fine structure. The results highlight the molecular basis underpinning rice grain transparency, and provide strategies for improving rice grain transparency.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongjing Lv
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yong Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Weizhuo Hao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/State Key Laboratory of Hybrid Rice/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
39
|
Tong C, Ma Z, Chen H, Gao H. Toward an understanding of potato starch structure, function, biosynthesis, and applications. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
40
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
41
|
Li C, Hu Y, Li S, Yi X, Shao S, Yu W, Li E. Biological factors controlling starch digestibility in human digestive system. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Sun X, Sun Z, Saleh AS, Lu Y, Zhang X, Ge X, Shen H, Yu X, Li W. Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chem 2023; 405:134837. [DOI: 10.1016/j.foodchem.2022.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
43
|
Yin X, Hu Z, Zheng Y, Chai Z, Kong X, Chen S, Ye X, Tian J. Multi-scale structure characterization and in vivo digestion of parboiled rice. Food Chem 2023; 402:134502. [DOI: 10.1016/j.foodchem.2022.134502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/30/2023]
|
44
|
Starch Chemical Composition and Molecular Structure in Relation to Physicochemical Characteristics and Resistant Starch Content of Four Thai Commercial Rice Cultivars Differing in Pasting Properties. Polymers (Basel) 2023; 15:polym15030574. [PMID: 36771875 PMCID: PMC9921408 DOI: 10.3390/polym15030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Variations in starch pasting properties, considered an alternative potential quality classification parameter for rice starches, are directly controlled by the diverse starch molecular composition and structural features. Here, the starch characteristics of four rice cultivars (i.e., RD57, RD29, KDML105, and RD6) differing in pasting properties were assessed, and their relationship was determined. The results revealed that protein and moisture contents and their crystalline type were similar among the four rice starches. However, their molecular compositions and structures (i.e., reducing sugar and amylose contents, amylopectin branch chain-length distributions, granule size and size distribution, and degree of crystallinity) significantly varied among different genotypes, which resulted in distinct swelling, solubility, gelatinization, retrogradation, and hydrolytic resistance properties. The swelling power and gelatinization enthalpy (∆H) were positively correlated with C-type granule and relative crystallinity, but were negatively correlated with amylose content, B-type granule and median particle size (d(0.5)). Conversely, the water solubility and resistant starch content negatively correlated with C-type granule, but positively correlated with amylose content, B-type granule, and d(0.5). The gelatinization onset temperature (To(g)), and retrogradation concluding temperatures (Tc(r)), enthalpy (∆H(r)), and percentage (R%) were positively impacted by the amount of protein, amylose, and B1 chains (DP 13-24), while they were negatively correlated with short A chains (DP 6-12). Collectively, the starch physicochemical and functional properties of these Thai rice starches are attributed to an interplay between compositional and structural features. These results provide decisive and crucial information on rice cultivars' suitability for consumption as cooked rice and for specific industrial applications.
Collapse
|
45
|
Chi C, He Y, Xiao X, Chen B, Zhou Y, Tan X, Ji Z, Zhang Y, Liu P. A novel very small granular starch from Chlorella sp. MBFJNU-17. Int J Biol Macromol 2023; 225:557-564. [PMID: 36395943 DOI: 10.1016/j.ijbiomac.2022.11.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Novel resources of very small granular starch are of great interests to food scientists. We previously found Chlorella sp. MBFJNU-17 contained small granular starch but whether the MBFJNU-17 was a novel resource of very small granular starch remained unresolved. This study isolated and characterized the starch from MBFJNU-17 in comparison with quinoa starch (a typical very small granular starch), and discussed whether the MBFJNU-17 could be a resource of very small granular starch. Results showed that chlorella starch displayed a smaller size (1024 nm) than quinoa starch did (1107 nm), suggesting MBFJNU-17 was a good resource of very small granular starch. Additionally, chlorella starch had less amylose, higher proportion of long amylopectin branches, more ordered structures, thinner amorphous lamellae, better paste thermostability, and slower enzymatic digestion than quinoa starch did. These findings indicated that Chlorella sp. MBFJNU-17 was a novel resource of very small granular starch with desirable thermostability and nutritional attributes.
Collapse
Affiliation(s)
- Chengdeng Chi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Xuehua Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Xiaoyan Tan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhili Ji
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yiping Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Pingying Liu
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
46
|
Li C. Starch fine molecular structures: The basis for designer rice with slower digestibility and desirable texture properties. Carbohydr Polym 2023; 299:120217. [PMID: 36876819 DOI: 10.1016/j.carbpol.2022.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Development of whole rice with low glycaemic index has been achieved, however, these rices are frequently associated with a poor texture property. Recent advances in terms of understanding the importance of starch fine molecular structures on the starch digestibility/texture of cooked whole rice have shed new insights on mechanisms of starch digestibility and texture from molecular levels. With an extensive discussion on the correlative and causal relationships among starch molecular structure, texture and starch digestibility of cooked whole rice, this review identified desirable starch fine molecular structures contributing to both slow starch digestibility and preferable textures. For instance, the selection of rice variety having more amylopectin intermediate chains while less amylopectin long chains might help develop cooked whole rice with both slower starch digestibility and softer texture. The information could help rice industry transform cooked whole rice into a healthier food product with slow starch digestibility and desirable texture.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
47
|
The Effects of Starch Molecular Fine Structure on Thermal and Digestion Properties of Rice Starch. Foods 2022; 11:foods11244012. [PMID: 36553754 PMCID: PMC9778140 DOI: 10.3390/foods11244012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Whole white rice is a major staple food for human consumption, with its starch digestion rate and location in the gastrointestinal tract having a critical role for human health. Starch has a multi-scale structure, which undergoes order-disorder transitions during rice cooking, and this structure is a major determinant of its digestibility. The length distributions of amylose and amylopectin chains are important determinants of rice starch gelatinization properties. Starch chain-length and molecular-size distributions are important determinants of nucleation and crystal growth rates, as well as of intra- and intermolecular interactions during retrogradation. A number of first-order kinetics models have been developed to fit starch digestograms, producing new information on the structural basis for starch digestive characteristics of cooked whole rice. Different starch digestible fractions with distinct digestion patterns have been found for the digestion of rice starch in fully gelatinized and retrograded states, the digestion kinetics of which are largely determined by starch fine molecular structures. Current insights and future directions to better understand digestibility of starch in whole cooked rice are summarized, pointing to ways of developing whole rice into a healthier food by way of having slower starch digestibility.
Collapse
|
48
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Liang W, Zhao W, Liu X, Zheng J, Sun Z, Ge X, Shen H, Ospankulova G, Muratkhan M, Li W. Understanding how electron beam irradiation doses and frequencies modify the multiscale structure, physicochemical properties, and in vitro digestibility of potato starch. Food Res Int 2022; 162:111947. [DOI: 10.1016/j.foodres.2022.111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
|
50
|
Guo J, Qu L, Wei Q, Lu D. Effects of post-silking low temperature on the starch and protein metabolism, endogenous hormone contents, and quality of grains in waxy maize. FRONTIERS IN PLANT SCIENCE 2022; 13:988172. [PMID: 36407592 PMCID: PMC9673756 DOI: 10.3389/fpls.2022.988172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waxy maize has many excellent characteristics in food and nonfood industries. However, post-silking low temperature (LT) has severe limitations on its grain yield and quality. In this study, field and pot trials were conducted to investigate the effects of post-silking LT on the physiological, biochemical, and functional characteristics of two waxy maize grains. The field and pot trials were performed with sowing date and artificial climate chamber, respectively, for LT treatment from silking stage to maturity. Results in pot trial were used to explain and validate the findings in field trial. Compared with the ambient treatment, the LT treatment significantly reduced kernel weight during the grain filling stage (P < 0.05). LT treatment in both environments resulted in an average decrease in dry weight of SYN5 and YN7 at maturity by 36.6% and 42.8%, respectively. Enzymatic activities related to starch and protein biosynthesis decreased under the LT treatment during the filling stage, accompanied by a decrease in the accumulation amounts and contents of soluble sugar and starch, and a decrease in protein accumulation amount. Meanwhile, the contents of abscisic acid, indole-3-acetic acid, and gibberellin 3 in grains decreased under the LT treatment during the filling stage. Peak, trough, breakdown, final, and setback viscosities of grains decreased by LT. LT treatment decreased the gelatinization enthalpy of grains and increased the retrogradation percentage. In conclusion, post-silking LT stress altered the content of grain components by inhibiting the production of phytohormones and down-regulating the enzymatic activities involved in starch and protein metabolism, which resulted in the deterioration of grain pasting and thermal properties.
Collapse
Affiliation(s)
- Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Qi Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|