1
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Pu Y, Peng K, Sun J, Meng Q, Zhao F, Sang Y. Synthesis of dextran of different molecular weights by recombinant dextransucrase DsrB. Int J Biol Macromol 2024; 277:134094. [PMID: 39059525 DOI: 10.1016/j.ijbiomac.2024.134094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Leuconostoc citreum JZ-002 was extracted from artisanal orange wine. This strain was used to synthesize dextran with a purification extraction of 27.9 g/L. The resulting dextran had a molecular weight of 2.45 × 106 Da. A significant portion, amounting to 64 % of the structure, is constituted by the main chain, with α-(1,6) glycosidic bonds acting as the linkages. In contrast, the branched chain, comprising 34 % of the entire molecule, is characterized by the presence of α-(1,3) glycosidic bonds. The dextransucrase DsrB, believed to be accountable for the formation of the dextran backbone, was successfully cloned into the pET-28a-AcmA vector. The recombinant expression of the enzyme was achieved. Purified recombinant enzymes and immobilized in a single go using the gram-positive enhancer matrix (GEM). The maximum yield of dextran produced by suchimmobilized enzyme was 191.9 g/L. The composition featured a dextran connected via α-(1,6) glycosidic linkages. Molecular weight controlled synthesis was achieved with sucrose concentrations of 100-2000 mM and enzyme concentrations of 320-1280 U. The Mw of the synthesized dextran extended from 4680 to 1,320,000 Da. By controlling the ratio between enzyme concentration and sucrose concentration, dextrans with diverse Mw can be enzymatically generated.
Collapse
Affiliation(s)
- Yuanhao Pu
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Kaige Peng
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Qingyong Meng
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China
| | - Fangkun Zhao
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China.
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071000, PR China.
| |
Collapse
|
3
|
Ernst L, Schulz C, Petzold A, Thurn-Albrecht T, Saalwächter K, Wefers D. Detailed structural characterization of five water-insoluble α-glucans produced by glucansucrases from Streptococcus spp. Carbohydr Polym 2024; 337:122164. [PMID: 38710558 DOI: 10.1016/j.carbpol.2024.122164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.
Collapse
Affiliation(s)
- Luise Ernst
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Celine Schulz
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Albrecht Petzold
- Institute of Physics, Experimental Polymer Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Thomas Thurn-Albrecht
- Institute of Physics, Experimental Polymer Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institute of Physics, NMR, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Daniel Wefers
- Institute of Chemistry, Food Chemistry, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| |
Collapse
|
4
|
Pijning T, Dijkhuizen L. Unprecedented Diversity of the Glycoside Hydrolase Family 70: A Comprehensive Analysis of Sequence, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16911-16929. [PMID: 39025827 PMCID: PMC11299179 DOI: 10.1021/acs.jafc.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The glycoside hydrolase family 70 (GH70) contains bacterial extracellular multidomain enzymes, synthesizing α-glucans from sucrose or starch-like substrates. A few dozen have been biochemically characterized, while crystal structures cover only the core domains and lack significant parts of auxiliary domains. Here we present a systematic overview of GH70 enzymes and their 3D structural organization and bacterial origin. A representative set of 234 permuted and 25 nonpermuted GH70 enzymes was generated, covering 12 bacterial families and 3 phyla and containing 185 predicted glucansucrases (GS), 15 branching sucrases (BrS), 8 "twin" GS-BrSs, and 51 α-glucanotransferases (α-GT). Analysis of AlphaFold models of all 259 entries showed that, apart from the core domains, the structural variation regarding auxiliary domains is far greater than anticipated, with nine different domain types. We analyzed the phylogenetic distribution and discuss the possible roles of auxiliary domains as well as possible correlations between enzyme specificity, auxiliary domain type, and bacterial origin.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular
X-ray Crystallography, Groningen Biomolecular Sciences and Biotechnology
Institute (GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
- CarbExplore
Research B.V., Zernikelaan
8, Groningen 9747 AA, The Netherlands
| |
Collapse
|
5
|
Wang Y, Gao N, Li X, Ling G, Zhang P. Metal organic framework-based variable-size nanoparticles for tumor microenvironment-responsive drug delivery. Drug Deliv Transl Res 2024; 14:1737-1755. [PMID: 38329709 DOI: 10.1007/s13346-023-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/09/2024]
Abstract
Nanoparticles (NPs) have been designed for the treatment of tumors increasingly. However, the drawbacks of single-size NPs are still worth noting, as their circulation and metabolism in the blood are negatively correlated with their accumulation at the tumor site. If the size of single-size NPs is too small, it will be quickly cleared in the blood circulation, while, the size is too large, the distribution of NPs in the tumor site will be reduced, and the widespread distribution of NPs throughout the body will cause systemic toxicity. Therefore, a class of variable-size NPs with metal organic frameworks (MOFs) as the main carrier, and size conversion in compliance with the characteristics of the tumor microenvironment (TME), was designed. MOF-based variable-size NPs can simultaneously extend the time of blood circulation and metabolism, then enhance the targeting ability of the tumor site. In this review, MOF NPs are categorized and exemplified from a new perspective of NP size variation; the advantages, mechanisms, and significance of MOF-based variable-size NPs were summarized, and the potential and challenges in delivering anti-tumor drugs and multimodal combination therapy were discussed.
Collapse
Affiliation(s)
- Yu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
6
|
Nakamura S, Kurata R, Miyazaki T. Structural insights into α-(1→6)-linkage preference of GH97 glucodextranase from Flavobacterium johnsoniae. FEBS J 2024; 291:3267-3282. [PMID: 38661728 DOI: 10.1111/febs.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Glycoside hydrolase family 97 (GH97) comprises enzymes like anomer-inverting α-glucoside hydrolases (i.e., glucoamylase) and anomer-retaining α-galactosidases. In a soil bacterium, Flavobacterium johnsoniae, we previously identified a GH97 enzyme (FjGH97A) within the branched dextran utilization locus. It functions as an α-glucoside hydrolase, targeting α-(1→6)-glucosidic linkages in dextran and isomaltooligosaccharides (i.e., glucodextranase). FjGH97A exhibits a preference for α-(1→6)-glucoside linkages over α-(1→4)-linkages, while Bacteroides thetaiotaomicron glucoamylase SusB (with 69% sequence identity), which is involved in the starch utilization system, exhibits the highest specificity for α-(1→4)-glucosidic linkages. Here, we examined the crystal structures of FjGH97A in complexes with glucose, panose, or isomaltotriose, and analyzed the substrate preferences of its mutants to identify the amino acid residues that determine the substrate specificity for α-(1→4)- and α-(1→6)-glucosidic linkages. The overall structure of FjGH97A resembles other GH97 enzymes, with conserved catalytic residues similar to anomer-inverting GH97 enzymes. A comparison of active sites between FjGH97A and SusB revealed differences in amino acid residues at subsites +1 and +2 (specifically Ala195 and Ile378 in FjGH97A). Among the three mutants (A195S, I378F, and A195S-I378F), A195S and A195S-I378F exhibited increased activity toward α-(1→4)-glucoside bonds compared to α-(1→6)-glucoside bonds. This suggests that Ala195, located on the Gly184-Thr203 loop (named loop-N) conserved within the GH97 subgroup, including FjGH97A and SusB, holds significance in determining linkage specificity. The conservation of alanine in the active site of the GH97 enzymes, within the same gene cluster as the putative dextranase, indicates its crucial role in determining the specificity for α-(1→6)-glucoside linkage.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
7
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
8
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
9
|
Dai Y, Ge Z, Wang Z, Wang Z, Xu W, Wang D, Dong M, Xia X. Effects of water-soluble and water-insoluble α-glucans produced in situ by Leuconostoc citreum SH12 on physicochemical properties of fermented soymilk and their structural analysis. Int J Biol Macromol 2024; 267:131306. [PMID: 38574904 DOI: 10.1016/j.ijbiomac.2024.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
This study investigated the effect of in situ produced water-soluble α-glucan (LcWSG) and water-insoluble α-glucan (LcWIG) from Leuconostoc citreum SH12 on the physicochemical properties of fermented soymilk. α-Glucans produced by Leuc. citreum SH12 improved water-holding capacity, viscosity, viscoelasticity and texture of fermented soymilk. Gtf1365 and Gtf836 of the five putative glucansucrases were responsible for synthesizing LcWSG and LcWIG during soymilk fermentation, respectively. Co-fermentation of soymilk with Gtf1365 and Gtf836 and non-exopolysaccharide-producing Lactiplantibacillus plantarum D1031 indicated that LcWSG effectively hindered the whey separation of fermented soymilk by increasing viscosity, while LcWIG improved hardness, springiness and accelerated protein coagulation. Fermented soymilk gel formation was mainly based on hydrogen bonding and hydrophobic interactions, which were promoted by both LcWSG and LcWIG. LcWIG has a greater effect on α-helix to β-sheet translation in fermented soymilk, causing more rapid protein aggregation and thicker cross-linked gel network. Structure-based exploration of LcWSG and LcWIG from Leuc. citreum SH12 revealed their distinct roles in the physicochemical properties of fermented soymilk due to their different ratio of α-1,6 and α-1,3 glucosidic linkages and various side chain length. This study may guide the application of the water-soluble and water-insoluble α-glucans in fermented plant protein foods for their quality improvement.
Collapse
Affiliation(s)
- Yiqiang Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiwen Ge
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weimin Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiudong Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Institute of Agro-Product Processing, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
12
|
Chen Z, Chen J, Ni D, Xu W, Zhang W, Mu W. Microbial dextran-hydrolyzing enzyme: Properties, structural features, and versatile applications. Food Chem 2024; 437:137951. [PMID: 37951078 DOI: 10.1016/j.foodchem.2023.137951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Dextran, an α-glucan mainly composed of (α1 → 6) linkages, has been widely applied in the food, cosmetic, and medicine industries. Dextranase can hydrolyze dextran to synthesize oligodextrans, which show prominent properties and promising applications in the food industry. Dextranases are widely distributed in bacteria, yeasts, and fungus, and classified into glycoside hydrolase (GH) 13, 15, 31, 49, and 66 families according to their sequence similarity, structural features, and reaction types. Dextranase, as a dextran-hydrolyzing enzyme, displays great application potential in the sugar-making, oral health care, medicine, and biotechnology industries. Here we mainly focused on presenting the enzymatic properties, structural features, and versatile (potential) applications of dextranase. To date, seven crystal structures of dextranases from GH 13, 15, 31, 49, and 66 families have been successfully solved. However, their molecular mechanisms for hydrolyzing dextran, especially on the size determinants of the hydrolysates, remain largely unknown. Additionally, the classification, microbial distribution, and immobilization technology of dextranase were also discussed in detail. This review discussed dextranase from different aspects with the ambition to present how they constitute the groundwork for promising future developments.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
Liu L, Jia Y, Zheng L, Luo R, Essawy H, Huang H, Wang Y, Deng S, Zhang J. Development and Characterization of Bio-Based Formaldehyde Free Sucrose-Based Adhesive for Fabrication of Plywood. Polymers (Basel) 2024; 16:640. [PMID: 38475323 DOI: 10.3390/polym16050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
In order to solve the problem of excessive consumption of petrochemical resources and the harm of free formaldehyde release to human health, biomass raw materials, such as sucrose (S) and ammonium dihydrogen phosphate (ADP) can be chemically condensed in a simple route under acidic conditions to produce a formaldehyde free wood adhesive (S-ADP), characterized by good storage stability and water resistance, and higher wet shear strength with respect to petroleum based phenolic resin adhesive. The dry and boiling shear strength of the plywood based on S-ADP adhesive are as high as 1.05 MPa and 1.19 MPa, respectively. Moreover, is Modulus of Elasticity (MOE) is as high as 4910 MPa. Interestingly, the plywood based on the developed S-ADP adhesive exhibited good flame retardancy. After burning for 90 s, its shape remains unchanged. Meanwhile, it can be concluded from thermomechanical analysis (TMA) and thermogravimetric analysis (TGA) that the S-ADP acquired excellent modulus of elasticity (MOE) and good thermal stability. It is thus thought promisingly that the use of S-ADP adhesive as a substitute for PF resin adhesive seems feasible in the near future.
Collapse
Affiliation(s)
- Longjiang Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
- School of Chemical Engineering, Yunnan Vocational College of National-Defense Technology, Yunnan Open University, Kunming 650223, China
| | - Yongbo Jia
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lulu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Rui Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Heming Huang
- Kunming Xinfeilin Wood-Based Panel Group Co., Ltd., Kunming 650106, China
| | - Yaming Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuduan Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
14
|
Xiao QH, Li ZZ, Ren L, Wang SY, Li XQ, Bai HX, Qiao RZ, Tang N, Liu WJ, Wang JM, Ma GY, Dong DC, Wu KH, Cao W. α-Glucan derivatives as selective blockers of aldolase A: Computer-aided structure optimization and the effects on HCC. Carbohydr Polym 2024; 325:121566. [PMID: 38008473 DOI: 10.1016/j.carbpol.2023.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/16/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Aldolase A (ALDOA) promotes hepatocellular carcinoma (HCC) growth and is a potential therapeutic target. A previous study found an α-D-glucan (α-D-(1,6)-Glcp-α-D-(1,4)-Glcp, 10.0:1.0), named HDPS-4II, that could specifically inhibit ALDOA but its activity was not high enough. In this study, the derivatives of α-D-glucan binding to ALDOA were optimized using molecular docking, and its sulfated modification demonstrated the highest affinity with ALDOA among sulfated, carboxylated, and aminated derivatives. Sulfated HDPS-4II and dextrans with different molecular weights (1000 Da, 3000 Da, and 4000 Da) were prepared. Using MST assay, 3-O-sulfated HDPS-4II (SHDPS-4II) and 1000 Da dextran (SDextran1) showed higher affinities to ALDOA with Kd of 1.83 μM and 85.04 μM, respectively. Furthermore, SHDPS-4II and SDextran1 markedly inhibited the proliferation of HCC cells both in vitro and in vivo by blocking ALDOA. These results demonstrate that sulfated modification of α-D-glucans could enhance their affinities with ALDOA and anti-HCC effects.
Collapse
Affiliation(s)
- Qian-Han Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ze-Zhi Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Shu-Yao Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Hong-Xin Bai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Rui-Zhi Qiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Na Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Jing-Mei Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Guang-Yuan Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Dian-Chao Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ke-Han Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China; Department of Pharmacology, Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Air Force Medical University, Xi'an, China.
| |
Collapse
|
15
|
Liu Y, Wu Y, Ji H, Li X, Jin Z, Svensson B, Bai Y. Cost-effective and controllable synthesis of isomalto/malto-polysaccharides from β-cyclodextrin by combined action of cyclodextrinase and 4,6-α-glucanotransferase GtfB. Carbohydr Polym 2023; 310:120716. [PMID: 36925243 DOI: 10.1016/j.carbpol.2023.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Isomalto/malto-polysaccharides (IMMPs) derived from malto-oligosaccharides such as maltoheptaose (G7) are elongated non-branched gluco-oligosaccharides produced by 4,6-α-glucanotransferase (GtfB). However, G7 is expensive and cumbersome to produce commercially. In this study, a cost-effective enzymatic process for IMMPs synthesis is developed that utilizes the combined action of cyclodextrinase from Palaeococcus pacificus (PpCD) and GtfB-ΔN from Limosilactobacillus reuteri 121 to convert β-cyclodextrin into IMMPs with a maximum yield (16.19 %, w/w). The purified IMMPs synthesized by simultaneous or sequential treatments, designated as IMMP-Sim and IMMP-Seq, possess relatively high contents of α-(1 → 6) glucosidic linkages. By controlling the release of G7 and smaller malto-oligosaccharides by PpCD, IMMP-Seq was obtained of DP varying from 12.9 to 29.5. Enzymatic fingerprinting revealed different linkage-type distribution of α-(1 → 6) linked segments with α-(1 → 4) segments embedded at the reducing end and middle part. The proportion of α-(1 → 6) segments containing the non-reducing end was 56.76 % for IMMP-Sim but 28.98 % for IMMP-Seq. Addition of G3 or G4 as specific acceptors resulted in IMMPs exhibiting low polydispersity. This procedure can be applied as a novel bioprocess that does not require costy high-purity malto-oligosaccharides and with control of the average DP of IMMPs by adjusting the substrate composition.
Collapse
Affiliation(s)
- Yixi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yazhen Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China; Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Nakamura S, Kurata R, Tonozuka T, Funane K, Park EY, Miyazaki T. Bacteroidota polysaccharide utilization system for branched dextran exopolysaccharides from lactic acid bacteria. J Biol Chem 2023:104885. [PMID: 37269952 PMCID: PMC10316084 DOI: 10.1016/j.jbc.2023.104885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Dextran is an α-(1→6)-glucan that is synthesized by some lactic acid bacteria, and branched dextran with α-(1→2)-, α-(1→3)-, and α-(1→4)-linkages are often produced. Although many dextranases are known to act on the α-(1→6)-linkage of dextran, few studies have functionally analyzed the proteins involved in degrading branched dextran. The mechanism by which bacteria utilize branched dextran is unknown. Earlier, we identified dextranase (FjDex31A) and kojibiose hydrolase (FjGH65A) in the dextran utilization locus (FjDexUL) of a soil Bacteroidota Flavobacterium johnsoniae and hypothesized that FjDexUL is involved in the degradation of α-(1→2)-branched dextran. In this study, we demonstrate that FjDexUL proteins recognize and degrade α-(1→2)- and α-(1→3)-branched dextrans produced by Leuconostoc citreum S-32 (S-32 α-glucan). The FjDexUL gene was significantly upregulated when S-32 α-glucan was the carbon source compared with α-glucooligosaccharides and α-glucans, such as linear dextran and branched α-glucan from L. citreum S-64. FjDexUL GHs synergistically degraded S-32 α-glucan. The crystal structure of FjGH66 shows that some sugar-binding subsites can accommodate α-(1→2)- and α-(1→3)-branches. The structure of FjGH65A in complex with isomaltose supports that FjGH65A acts on α-(1→2)-glucosyl isomaltooligosaccharides. Furthermore, two cell surface sugar-binding proteins (FjDusD and FjDusE) were characterized, and FjDusD showed affinity for isomaltooligosaccharides and FjDusE for dextran, including linear and branched dextrans. Collectively, FjDexUL proteins are suggested to be involved in the degradation of α-(1→2)- and α-(1→3)-branched dextrans. Our results will be helpful in understanding the bacterial nutrient requirements and symbiotic relationships between bacteria at the molecular level.
Collapse
Affiliation(s)
- Shuntaro Nakamura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazumi Funane
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37, Takeda-cho, Kofu, Yamanashi, 400-8510, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
17
|
Chen Z, Chen J, Huang Z, Ni D, Tian Y, Mu W. Mutations in the Different Residues between Dextransucrase Gtf-DSM and Reuteransucrase GtfO for the Investigation of Linkage Specificity Determinants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12107-12116. [PMID: 36124907 DOI: 10.1021/acs.jafc.2c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dextransucrase Gtf-DSM has 99.3% sequence identity with the reuteransucrase GtfO, and only 11 out of 1045 residues are different between their N-terminally truncated recombinant forms. Gtf-DSM is capable of synthesizing a dextran with 1% (α1 → 2), 6% (α1 → 4), 24% (α1 → 3), and 69% (α1 → 6) linkages, while GtfO produces a reuteran with 21% (α1 → 6) and 79% (α1 → 4) linkages. In this work, using recombinant Gtf-DSM and GtfO as templates, parallel substitutions targeting these 11 distinguishing residues were performed to investigate their linkage specificity determinants. The combinatorial mutation (I937L/D977A/D1083V/Q1086K/K1087G) at the acceptor binding subsites +1 and +2 nearly converted the linkage specificity of Gtf-DSM to that of GtfO. Surprisingly, all of the individual or combinatorial mutations in four residues from domains IV and V of Gtf-DSM significantly altered the linkage specificity of Gtf-DSM. Additionally, all mutations in the 11 distinguishing residues of Gtf-DSM resulted in a dramatically reduced transferase/hydrolysis activity ratio, which was closer to that of GtfO. These mutation results suggested that the linkage specificity differences between Gtf-DSM and GtfO are determined by the distinct micro-physicochemical environments, formed by the concerted action of a series of residues not only from the acceptor binding subsites +1 and +2 but also from domains IV and V.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuqing Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
18
|
Zhang Y, Liu J, Hu G, Hu X, Yang J, Zhang H. Fusion enzyme design based on the "channelization" cascade theory and homogenous dextran product improvement. Int J Biol Macromol 2022; 222:652-660. [PMID: 36174857 DOI: 10.1016/j.ijbiomac.2022.09.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
Abstract
Homogeneous low molecular weight dextran can be used to improve microcirculation and expand blood volume. However, the synthesis and separation of low molecular weight dextran are chemically difficult and environmentally unfriendly. Here, a one-step strategy for the synthesis of homogeneous low molecular weight dextran was developed. Dextransucrase and dextranase were fused by the addition of different length linker peptides. An artificial bifunctional enzyme was created to directly convert sucrose into low molecular weight dextran (13,050 Da), and the related substrate channel mechanism was found. The substrate channel adaptability was studied by changing the length of the linker and its corresponding product behavior. Compared with the mixture of two free enzymes, the residence lag time demonstrates the degree of substrate channelization of a series of fusion enzymes. And found that the highest channelization degree is not equal to produce homogenous dextran. Whereas a fusion enzyme with the appropriate linker (the one with the best substrate channel adaptation) will produce dextran with a homogeneous molecular weight. By studying the temperature dynamics of the fusion enzyme to adjust the two-stage catalytic efficiency of the fusion enzyme, we have increased the yield of low molecular weight homogeneous dextran (Yield of 62 %).
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiali Liu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ganpeng Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xueqin Hu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jingwen Yang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Hongbin Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
19
|
Pan L, Wang Q, Qu L, Liang L, Han Y, Wang X, Zhou Z. Pilot-scale production of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 and its application in set yogurt. J Dairy Sci 2022; 105:1072-1083. [PMID: 34998545 DOI: 10.3168/jds.2021-20997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
Exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) is a linear dextran that is built by glucose units via α-1,6 glycosidic bond. The primary objective of this study was to investigate the yield of XG5 EPS and its application in set yogurt. In laboratory scale, the culture conditions of XG5 EPS production were optimized using the L9 (33) orthogonal test. Here, the optimized yield of XG5 EPS was 26.02 g/L under the conditions of 100 g/L sucrose, initial pH 7.0, 25°C incubation, and 100 rpm for 36 h in a shaking flask. Based on the optimized parameters of laboratory scale, a pilot fed-batch fermentation was performed in a 50-L bioreactor with an adjusted agitation speed of 20 rpm. The XG5 EPS yield reached 40.07 g/L in fed-batch fermentation, which was 54% higher than that achieved in laboratory scale. In addition, XG5 EPS was added into set yogurt to investigate its effect on the stability of set yogurt. Our data demonstrated that the XG5 EPS improved the water-holding capacity, texture profile, and viscosity of set yogurt during cold storage compared with the controls. In particular, addition of 0.5% XG5 EPS increased the structure of 3-dimensional network of set yogurt, which eventually improved the physical stability of the set yogurt. Overall, this study provided new insights for exploring the pilot scale production and application of dextran.
Collapse
Affiliation(s)
- Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Liangfan Qu
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China
| | - Lu Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghe Wang
- Tianjin Research Institute of Industrial Microbiology Co., Ltd., Tianjin 300462, China; Tianjin SF-Bio Industrial Bio-Tec Co., Ltd., Tianjin 300462, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Xue N, Svensson B, Bai Y. Structure, function and enzymatic synthesis of glucosaccharides assembled mainly by α1 → 6 linkages - A review. Carbohydr Polym 2022; 275:118705. [PMID: 34742430 DOI: 10.1016/j.carbpol.2021.118705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/02/2022]
Abstract
A variety of glucosaccharides composed of glucosyl residues can be classified into α- and β-type and have wide application in food and medicine areas. Among these glucosaccharides, β-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 → 4 linkages and are well studied. Notably, in past decades also α1 → 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 → 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to β- type and α1 → 4 glucosaccharides, only few articles provide a systematic overview of α1 → 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 → 6 glucosaccharides, aiming both at improving understanding of traditional α1 → 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 → 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.
Collapse
Affiliation(s)
- Naixiang Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
21
|
Li X, Meng X, de Leeuw TC, Te Poele EM, Pijning T, Dijkhuizen L, Liu W. Enzymatic glucosylation of polyphenols using glucansucrases and branching sucrases of glycoside hydrolase family 70. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34907830 DOI: 10.1080/10408398.2021.2016598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polyphenols exhibit various beneficial biological activities and represent very promising candidates as active compounds for food industry. However, the low solubility, poor stability and low bioavailability of polyphenols have severely limited their industrial applications. Enzymatic glycosylation is an effective way to improve the physicochemical properties of polyphenols. As efficient transglucosidases, glycoside hydrolase family 70 (GH70) glucansucrases naturally catalyze the synthesis of polysaccharides and oligosaccharides from sucrose. Notably, GH70 glucansucrases show broad acceptor substrate promiscuity and catalyze the glucosylation of a wide range of non-carbohydrate hydroxyl group-containing molecules, including benzenediol, phenolic acids, flavonoids and steviol glycosides. Branching sucrase enzymes, a newly established subfamily of GH70, are shown to possess a broader acceptor substrate binding pocket that acts efficiently for glucosylation of larger size polyphenols such as flavonoids. Here we present a comprehensive review of glucosylation of polyphenols using GH70 glucansucrase and branching sucrases. Their catalytic efficiency, the regioselectivity of glucosylation and the structure of generated products are described for these reactions. Moreover, enzyme engineering is effective for improving their catalytic efficiency and product specificity. The combined information provides novel insights on the glucosylation of polyphenols by GH70 glucansucrases and branching sucrases, and may promote their applications.
Collapse
Affiliation(s)
- Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | | | | | - Tjaard Pijning
- Biomolecular X-ray Crystallography, University of Groningen, Groningen, The Netherlands
| | | | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
22
|
Kan X, Chen G, Zhou W, Zeng X. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties. Food Res Int 2021; 150:110740. [PMID: 34865759 DOI: 10.1016/j.foodres.2021.110740] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 01/13/2023]
Abstract
The protein-polysaccharide conjugates formed by Maillard reaction can be used as novel emulsifiers in the food industry. Proteins and polysaccharides have extensive sources, and their emulsifying properties are highly dependent on their structural features. The Maillard conjugates can be prepared from conventional and novel methods, and these methods have different advantages and limitations in industrial applications. After an appropriate glycation, the conjugates show some modified or enhanced functional properties, including solubility, emulsifying property, thermal stability, foaming capacity, and gelation property. However, the research on the structure-function relationship of both proteins and polysaccharides is limited. It is necessary to well understand the characteristics of these biopolymers, and select appropriate conditions to control the process of Maillard reaction. Overall, the Maillard conjugates show great potential as the emulsifiers and stabilizers in the emulsion system. This review introduces the sources and structural characteristics of commonly used proteins and polysaccharides for Maillard reaction, outlines the methods (dry-heating, wet-heating, electrospinning, ultrasound, pulsed electric field, and microwave) for preparing Maillard conjugates and focuses on the improved functional properties (solubility, emulsifying, foaming and thermal properties) and the potential mechanisms.
Collapse
Affiliation(s)
- Xuhui Kan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
23
|
Chen Z, Ni D, Cheng M, Zhu Y, Mu W. Comparative study of physicochemical properties of dextran and reuteran synthesised by two glucansucrases that are highly similar in amino acid sequence. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Mei Cheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu 214122 China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi, Jiangsu 214122 China
| |
Collapse
|
24
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
25
|
Doan CT, Tran TN, Nguyen TT, Tran TPH, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers (Basel) 2021; 13:polym13121959. [PMID: 34199171 PMCID: PMC8231626 DOI: 10.3390/polym13121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been increasing use of agro-byproducts in microbial fermentation to produce a variety of value-added products. In this study, among various kinds of agro-byproducts, pomelo albedo powder (PAP) was found to be the most effective carbon source for the production of sucrose hydrolyzing enzyme by Bacillus licheniformis TKU004. The optimal medium for sucrolytic enzyme production contained 2% PAP, 0.75% NH4NO3, 0.05% MgSO4, and 0.05% NaH2PO4 and the optimal culture conditions were pH 6.7, 35 °C, 150 rpm, and 24 h. Accordingly, the highest sucrolytic activity was 1.87 U/mL, 4.79-fold higher than that from standard conditions using sucrose as the carbon source. The purified sucrolytic enzyme (sleTKU004) is a 53 kDa monomeric protein and belongs to the glycoside hydrolase family 68. The optimum temperature and pH of sleTKU004 were 50 °C, and pH = 6, respectively. SleTKU004 could hydrolyze sucrose, raffinose, and stachyose by attacking the glycoside linkage between glucose and fructose molecules of the sucrose unit. The Km and Vmax of sleTKU004 were 1.16 M and 5.99 µmol/min, respectively. Finally, sleTKU004 showed strong sucrose tolerance and presented the highest hydrolytic activity at the sucrose concentration of 1.2 M–1.5 M.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Trung Dung Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
26
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
27
|
Matsuzaki C, Nakashima Y, Endo I, Tomabechi Y, Higashimura Y, Itonori S, Hosomi K, Kunisawa J, Yamamoto K, Hisa K. Enzymatically synthesized exopolysaccharide of a probiotic strain Leuconostoc mesenteroides NTM048 shows adjuvant activity to promote IgA antibody responses. Gut Microbes 2021; 13:1949097. [PMID: 34288820 PMCID: PMC8550178 DOI: 10.1080/19490976.2021.1949097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023] Open
Abstract
Leuconostoc mesenteroides strain NTM048 produces an exopolysaccharide (EPS; glucose polymers 94% and fructose polymers 6%) with adjuvanticity for mucosal vaccination. Strain NTM048 includes three putative EPS-synthesizing genes, gtf1 and gtf2 for synthesizing glucose polymers, and lvnS for synthesizing fructose polymer. To elucidate the key polymer structure for adjuvanticity, two genes, gtf1 and gtf2, which were annotated as glycoside hydrolase family 70 enzyme genes, were expressed in Escherichia coli. Glycosyl-linkage composition analysis and NMR analysis showed that the recombinant enzyme Gtf1 produced a soluble form of α-1,6-glucan, whereas the recombinant enzyme Gtf2 produced glucans with approximately equal percentages of α-1,6- and α-1,3-glucose residues both in the supernatant (S-glucan) and as a precipitate (P-glucan). Comparison of polysaccharides synthesized by Gtf1, Gtf2, and LvnS revealed that Gtf2-S-glucan, which was produced in the supernatant by Gtf2 and formed particles of 7.8 µm, possessed 1.8-fold higher ability to stimulate IgA production from murine Peyer's patch cells than native NTM048 EPS. Evaluation of adjuvanticity by intranasal administration of mice with an antigen (ovalbumin) and Gtf2-S-glucan or NTM048 EPS showed that Gtf2-S-glucan induced the production of higher antigen-specific antibodies in the airway mucosa and plasma, suggesting a pivotal role of Gtf2-S-glucan in the adjuvanticity of NTM048 EPS.
Collapse
Affiliation(s)
- Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, IshikawaJapan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Yukari Nakashima
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, IshikawaJapan
| | - Ikuto Endo
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Yusuke Tomabechi
- Department of Applied Chemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, IshikawaJapan
| | - Saki Itonori
- Department of Chemistry, Faculty of Liberal Arts and Education, Shiga University, ShigaJapan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, OsakaJapan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama, Japan
| | - Keiko Hisa
- Management Office, Noster Inc, Kyoto, Japan
| |
Collapse
|