1
|
He Y, Huang Y, Zhu X, Guo R, Wang Z, Lei W, Xia X. Investigation of the effect and mechanism of nanocellulose on soy protein isolate- konjac glucomannan composite hydrogel system. Int J Biol Macromol 2024; 254:127943. [PMID: 37951435 DOI: 10.1016/j.ijbiomac.2023.127943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
To enrich the application of nanocomposite hydrogels, we introduced two types of nanocellulose (CNC, cellulose nanocrystals; CNF, cellulose nanofibers) into the soy protein isolate(SPI)- konjac glucomannan (KGM) composite hydrogel system, respectively. The similarities and differences between the two types of nanocellulose as textural improvers of composite gels were successfully explored, and a model was developed to elaborate their interaction mechanisms. Appropriate levels of CNC (1.0 %) and CNF (0.75 %) prolonged SPI denaturation within the system, exposed more buried functional groups, improved molecular interactions, and strengthened the honeycomb structural skeleton formed by KGM. The addition of CNC resulted in greater gel strength (SKC1 2708.53 g vs. Control 810.35 g), while the addition of CNF improved the elasticity (SKF0.75 1940.24 g vs. Control 405.34 g). This was mainly attributed to the reinforcement of the honeycomb-structured, water binding and trapping, and the synergistic effect of covalent (disulfide bonds) and non-covalent interactions (hydrogen bonds, ionic bonds) within the gel network. However, the balance and interactions between proteins and polysaccharides were disrupted in the composite system with excessive CNF addition (≥0.75 %), which broken the stability of the honeycomb-like structure. We expect this study will draw attention on potential applications of CNC and CNF in protein-polysaccharide binary systems and facilitate the creation of novel, superior, mechanically strength-regulated nanofiber composite gels.
Collapse
Affiliation(s)
- Yang He
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Yuyang Huang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiuqing Zhu
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China.
| | - Ruqi Guo
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Zihan Wang
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Wenhua Lei
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| | - Xiaoyu Xia
- College of Food Engineering of Harbin University of Commerce, Key Laboratory of Food Science and Engineering of Heilongjiang Province, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource of Heilongjiang Province, Harbin 150076, China
| |
Collapse
|
2
|
Johns MA, Abu-Namous J, Zhao H, Gattrell M, Lockhart J, Cranston ED. Autofluorescence spectroscopy for quantitative analysis of cellulose nanocrystals. NANOSCALE 2022; 14:16883-16892. [PMID: 36315248 DOI: 10.1039/d2nr04823j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ability to determine the physicochemical properties of nanoparticles, such as cellulose nanocrystals, in suspension is critically important to maximize their potential. Currently, various techniques are required to ascertain different properties, which results in a laborious analysis procedure. Here, autofluorescence arising from the cluster-triggered emission (CTE) photoluminescence mechanism is utilized as an analytical spectroscopic tool to determine multiple properties from one data acquisition sequence. This study confirms that key properties - including the nanoparticle concentration in suspension, the critical concentration for liquid crystal formation, and the surface charge content - can be obtained simultaneously. Measured values are accurate to within 10% of conventional techniques with average residual errors of 0.4 wt% for the critical concentration, and 11 mmol kg-1 CNC for the surface charge content. This charge-coupled device (CCD) sensor-based methodology is rapid and does not require the addition of further chemicals. These results support the theory behind CTE and represent a new opportunity for quantitatively analysing non-aromatic, heteroatom-containing nanoparticles in flow based on understanding their inter- and intra-particle interactions.
Collapse
Affiliation(s)
- Marcus A Johns
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4.
| | - Jude Abu-Namous
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
| | - Hongying Zhao
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6V 1M8
| | - Michael Gattrell
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6V 1M8
| | - James Lockhart
- BC Research Inc., 12920 Mitchell Road, Richmond, BC, Canada V6V 1M8
| | - Emily D Cranston
- Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada V6T 1Z4.
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3
- UBC BioProducts Institute, 2385 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
3
|
Bu N, Huang L, Cao G, Pang J, Mu R. Stable O/W emulsions and oleogels with amphiphilic konjac glucomannan network: preparation, characterization, and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6555-6565. [PMID: 35587687 DOI: 10.1002/jsfa.12021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The stabilization of oil-in-water (O/W) emulsions has long been explored. Assembly of polymer networks is an effective method for stabilizing O/W emulsions. Konjac glucomannan (KGM) is a plant polysaccharide and the network of KGM gel is a good candidate for stabilizing O/W emulsions based on its high viscosity and thickening properties. However, natural KGM has strong hydrophilicity and is not able to offer interfacial activity. Octenyl succinic anhydride (OSA) is a hydrophobic molecule, which is widely used as thickener and stabilizer in food emulsions. In this work, the amphiphilic biopolymer (OSA-KGM) was fabricated by modifying the KGM with OSA. Furthermore, OSA-KGM biopolymer was used to prepare O/W emulsions, which were then freeze-dried and used to prepare oleogels as fat substitute for bakery products. RESULTS OSA-KGM had advanced hydrophobicity with water contact angle 81.13° and adsorption behavior at the oil-water interface, with interfacial tension decreasing from 18.52 to 13.57 mN m-1 within 1 h. The emulsification of OSA-KGM remarkably improved the stability of emulsions without phase separation during storage for 31 days. Oleogels with OSA-KGM showed good thixotropic and structure recovery properties (approximately 100%) and low oil loss (from 69.5% to 50.4%). Cakes made from oleogels had a softer texture than cakes made from peanut oil and margarine. CONCLUSION Amphiphilic biopolymer OSA-KGM shows advanced interfacial activity and hydrophobicity. This paper provides an insight into preparing stable O/W emulsions with a new biopolymer and oleogels potentially applied as fat substitute in bakery products. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nitong Bu
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liying Huang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoyu Cao
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Pang
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruojun Mu
- Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
The effect of ultrahigh shear rate on the physical characteristics of xanthan gum. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Shibayama M, Tozuka Y. Evaluation of the rheological and rupture properties of gelatin-based hydrogels blended with polymers to determine their drug diffusion behavior. Polym J 2022. [DOI: 10.1038/s41428-022-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Adedeji OE, Choi JY, Park GE, Kang HJ, Aminu MO, Min JH, Chinma CE, Moon KD, Jung YH. Formulation and characterization of an interpenetrating network hydrogel of locust bean gum and cellulose microfibrils for 3D printing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Parajuli S, Ureña-Benavides EE. Fundamental aspects of nanocellulose stabilized Pickering emulsions and foams. Adv Colloid Interface Sci 2022; 299:102530. [PMID: 34610863 DOI: 10.1016/j.cis.2021.102530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/26/2022]
Abstract
Nanocelluloses in recent years have garnered a lot of attention for their use as stabilizers of liquid-liquid and gas-liquid interfaces. Both cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) have been used extensively in multiple studies to prepare emulsions and foams. However, there is limited literature available that systematically discusses the mechanisms that affect the ability of nanocelluloses (modified and unmodified) to stabilize different types of interfaces. This review briefly discusses key factors that affect the stability of Pickering emulsions and foams and provides a detailed and systematic analysis of the current state knowledge on factors affecting the stabilization of liquid-liquid and gas-liquid interfaces by nanocelluloses. The review also discusses the effect of nanocellulose surface modifications on mechanisms driving the Pickering stabilization of these interfaces.
Collapse
|
8
|
Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Iwase H, Tominaga T, Yamada T, Takata SI, Shibayama M, Tozuka Y. Structural changes in pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blends aimed at drug-release systems. Int J Biol Macromol 2021; 190:989-998. [PMID: 34537299 DOI: 10.1016/j.ijbiomac.2021.09.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed to investigate the thermal- and pH-dependent gelation behavior of gelatin/HPMCP blends using ultraviolet (UV) spectrophotometry, viscoelasticity, and dynamic light scattering (DLS). We found that the release of lisinopril from gelatin/HPMCP gels can be inhibited at low pH. UV spectrophotometric analysis showed that pH had a significant effect on the transparency of aqueous HPMCP systems and gelatin/HPMCP gels. The viscoelastic patterns of gelatin/HPMCP at pH 4.6 considerably differed from those of gelatin/HPMCP at pH 5.2 and 6.0. DLS measurements showed that HPMCP molecules in low concentrations underwent strong aggregation below pH 4.8. Such HPMCP aggregation induces a physical barrier in the matrix structures of the gelatin/HPMCP gels, which inhibits the drug release at pH 1.2. This hydrogel delivery system using polymer blends of gelatin/HPMCP can be used in oral gel formulations with pH-responsive properties.
Collapse
Affiliation(s)
- Satoshi Nogami
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Taiki Tominaga
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Shin-Ichi Takata
- Materials & Life Science Facility Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| |
Collapse
|
9
|
Kádár R, Spirk S, Nypelö T. Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy. ACS NANO 2021; 15:7931-7945. [PMID: 33756078 PMCID: PMC8158857 DOI: 10.1021/acsnano.0c09829] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 05/04/2023]
Abstract
Cellulose nanocrystals (CNCs) self-assemble and can be flow-assembled to liquid crystalline orders in a water suspension. The orders range from nano- to macroscale with the contributions of individual crystals, their micron clusters, and macroscopic assemblies. The resulting hierarchies are optically active materials that exhibit iridescence, reflectance, and light transmission. Although these assemblies have the potential for future renewable materials, details about structures on different hierarchical levels that span from the nano- to the macroscale are still not unraveled. Rheological characterization is essential for investigating flow properties; however, bulk material properties make it difficult to capture the various length-scales during assembly of the suspensions, for example, in simple shear flow. Rheometry is combined with other characterization methods to allow direct analysis of the structure development in the individual hierarchical levels. While optical techniques, scattering, and spectroscopy are often used to complement rheological observations, coupling them in situ to allow simultaneous observation is paramount to fully understand the details of CNC assembly from liquid to solid. This Review provides an overview of achievements in the coupled analytics, as well as our current opinion about opportunities to unravel the structural distinctiveness of cellulose nanomaterials.
Collapse
Affiliation(s)
- Roland Kádár
- Department
of Industrial Materials Science, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
- Wallenberg
Wood Science Center (WWSC), Chalmers University
of Technology, 412 96 Gothenburg, Sweden
| | - Stefan Spirk
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, 8010 Graz, Austria
| | - Tiina Nypelö
- Wallenberg
Wood Science Center (WWSC), Chalmers University
of Technology, 412 96 Gothenburg, Sweden
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Gahrooee TR, Abbasi Moud A, Danesh M, Hatzikiriakos SG. Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydr Polym 2021; 257:117552. [PMID: 33541625 DOI: 10.1016/j.carbpol.2020.117552] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Abstract
The network of Cellulose Nanocrystal (CNC) suspension is explored below and above the critical micelle concentration (CMC), in the presence of cetyltrimethylammonium bromide (CTAB) with a positively charged head using TEM imaging and rheological characterization. CNC-CTAB gels show shear thinning behavior, complex relationship between strain amplitudes and CTAB concentration, diminishing thixotropic behavior as a function of CTAB and single and two yielding stress maxima as a function of CTAB, resulting from different microstructure below and above the critical Micelle Concentration (CMC) of CTAB. Comparing the flow curves of CNC-CTAB suspension/gel revealed the role played by CTAB content, CNC concentration and sonication energy in strengthening of the network. We analyzed and obtained yield stress from steady shear, creep testing and oscillatory experiments and compared them.
Collapse
Affiliation(s)
- Tina Raeisi Gahrooee
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Marziyeh Danesh
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Savvas G Hatzikiriakos
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|